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Abstract. We apply completely elementary tools to achieve recursion formulas for
four polynomials with binomial coefficients. In particular, we obtain simple new proofs
for Ruehr’s combinatorial identities. Moreover, we use our formulas to find identities
and inequalities for trigonometric polynomials.
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1. Introduction and main result

We define the following four sums:

An =
n∑
j=0

3j
(

3n− j
2n

)
, Bn =

n∑
j=0

2j
(

3n+ 1

n− j

)
,

Cn =
2n∑
j=0

(−3)j
(

3n− j
n

)
, Dn =

2n∑
j=0

(−4)j
(

3n+ 1

n+ 1 + j

)
.

The study of two integral equations led Ruehr [6] to the identities

(1) An = Cn and Bn = Dn (n = 0, 1, 2, . . .).

We remark that in [6] An is erroneously given with 4j instead of 3j. The corrected
version is due to Meehan et al. [8].

In a recently published paper, Meehan et al. [8] present new computer-generated
proofs for (1) by using the Wilf-Zeilberger method. Moreover, they offer an interesting
combinatorial proof for

An = Bn (n = 0, 1, 2, . . .).

In particular, the authors show that An, Bn, Cn, and Dn satisfy the recursion formula

(2) X0 = 1, Xn+1 =
27

4
Xn −

3

4(n+ 1)

(
3n+ 1

n

)
(n = 0, 1, 2, . . .).

In this note, we establish the recursions in the simplest possible way, by only using
the recursion (

n+ 1

k + 1

)
=

(
n

k + 1

)
+

(
n

k

)
of Pascal’s triangle and elementary rearrangements. Actually, we prove a bit more: in
the next section we demonstrate that the four polynomials

An(x) =
n∑
j=0

(
3n− j

2n

)
xj, Bn(x) =

n∑
j=0

(
3n+ 1

n− j

)
xj,

Cn(x) =
2n∑
j=0

(
3n− j
n

)
xj, Dn(x) =

2n∑
j=0

(
3n+ 1

n+ 1 + j

)
xj

satisfy the following recursion formulas.

Theorem. For all n ≥ 0 we have

An+1(x) =
x3

(x− 1)2
An(x) +

(4n+ 2)x2 − (15n+ 10)x+ 9n+ 6

2(n+ 1)(x− 1)2

(
3n+ 1

n

)
,

Bn+1(x) =
(x+ 1)3

x2
Bn(x) +

(4n+ 2)x2 − (7n+ 6)x− 2n− 2

2(n+ 1)x2

(
3n+ 1

n

)
,
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Cn+1(x) =
x3

x− 1
Cn(x) +

(2n+ 2)x2 + (3n+ 2)x− 9n− 6

2(n+ 1)(x− 1)

(
3n+ 1

n

)
,

Dn+1(x) =
(x+ 1)3

x
Dn(x) +

(2n+ 2)x2 + (7n+ 6)x− 4n− 2

2(n+ 1)x

(
3n+ 1

n

)
.

Remark 1. From the recursions we obtain the identities

(3) An(x+ 1) = Bn(x) and Cn(x+ 1) = Dn(x).

The fact that An(x+ 1) = Bn(x) can be seen directly:

An(x+ 1) =
n∑
j=0

(x+ 1)j
(

3n− j
2n

)
=

n∑
j=0

j∑
k=0

(
j

k

)
xk
(

3n− j
2n

)

=
n∑
k=0

xk
n∑
j=k

(
j

k

)(
3n− j

2n

)
=

n∑
k=0

xk
(

3n+ 1

2n+ 1 + k

)

=
n∑
k=0

xk
(

3n+ 1

n− k

)
= Bn(x).

The identity that was used here is a variant of the Vandermonde convolution [5].
The direct proof that Cn(x+ 1) = Dn(x) is similar.

Remark 2. We have An(3) = An, Bn(2) = Bn, Cn(−3) = Cn, and Dn(−4) = Dn.
From the Theorem we conclude that An, Bn, Cn and Dn satisfy the recursion formula
(2). In particular, we obtain An = Bn = Cn = Dn for n ≥ 0.

In the next section, we prove our theorem and in Section 3 we show that (3) can be
applied to obtain identities and inequalities for trigonometric polynomials.

2. Proof

Let us start with the simpler ones.

Bn+1(x) =
n+1∑
j=0

xj
(

3n+ 4

n+ 1− j

)

=
n+1∑
j=0

xj
[(

3n+ 1

n+ 1− j

)
+ 3

(
3n+ 1

n− j

)
+ 3

(
3n+ 1

n− 1− j

)
+

(
3n+ 1

n− 2− j

)]

= x

n∑
j=−1

xj
(

3n+ 1

n− j

)
+ 3

n∑
j=0

xj
(

3n+ 1

n− j

)

+
3

x

n∑
j=1

xj
(

3n+ 1

n− j

)
+

1

x2

n∑
j=2

xj
(

3n+ 1

n− j

)
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=
(x+ 1)3

x2

n∑
j=0

xj
(

3n+ 1

n− j

)
+

(
3n+ 1

n+ 1

)
− 3

x

(
3n+ 1

n

)
− 1

x2

(
3n+ 1

n

)
− 1

x

(
3n+ 1

n− 1

)
=

(x+ 1)3

x2
Bn(x) +

(4n+ 2)x2 − (7n+ 6)x− 2n− 2

2(n+ 1)x2

(
3n+ 1

n

)
.

Dn+1(x) =
2n+2∑
j=0

xj
(

3n+ 4

n+ 2 + j

)

=
2n+2∑
j=0

xj
[(

3n+ 1

n+ 2 + j

)
+ 3

(
3n+ 1

n+ 1 + j

)
+ 3

(
3n+ 1

n+ j

)
+

(
3n+ 1

n− 1 + j

)]

=
2n−1∑
j=0

xj
(

3n+ 1

n+ 2 + j

)
+ 3

2n∑
j=0

xj
(

3n+ 1

n+ 1 + j

)

+ 3
2n+1∑
j=0

xj
(

3n+ 1

n+ j

)
+

2n+2∑
j=0

xj
(

3n+ 1

n− 1 + j

)

=
1

x

2n∑
j=1

xj
(

3n+ 1

n+ 1 + j

)
+ 3

2n∑
j=0

xj
(

3n+ 1

n+ 1 + j

)

+ 3x
2n∑

j=−1

xj
(

3n+ 1

n+ 1 + j

)
+ x2

2n∑
j=−2

xj
(

3n+ 1

n+ 1 + j

)
=

(x+ 1)3

x
Dn(x)− 1

x

(
3n+ 1

n+ 1

)
+ 3

(
3n+ 1

n

)
+

(
3n+ 1

n− 1

)
+ x

(
3n+ 1

n

)
=

(x+ 1)3

x
Dn(x) +

(2n+ 2)x2 + (7n+ 6)x− 4n− 2

2(n+ 1)x

(
3n+ 1

n

)
.

Now we move to the two remaining sums.

An+1(x) =
n+1∑
j=0

xn+1−j
(

2n+ 2 + j

j

)

=
n+1∑
j=0

xn+1−j
(

2n+ 1 + j

j

)
+

n+1∑
j=0

xn+1−j
(

2n+ 1 + j

j − 1

)

=
n+1∑
j=0

xn+1−j
(

2n+ 1 + j

j

)
+

n+1∑
j=0

xn−j
(

2n+ 2 + j

j

)
− 1

x

(
3n+ 3

n+ 1

)

=
n+1∑
j=0

xn+1−j
(

2n+ 1 + j

j

)
+

1

x
An+1(x)− 1

x

(
3n+ 3

n+ 1

)
.
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Therefore(
1− 1

x

)
An+1(x) +

1

x

(
3n+ 3

n+ 1

)
=

n+1∑
j=0

xn+1−j
(

2n+ 1 + j

j

)

=
n+1∑
j=0

xn+1−j
(

2n+ j

j

)
+

n+1∑
j=0

xn+1−j
(

2n+ j

j − 1

)

= xAn(x) +

(
3n+ 1

n+ 1

)
+

n+1∑
j=0

xn−j
(

2n+ 1 + j

j

)
− 1

x

(
3n+ 2

n+ 1

)
= xAn(x) +

(
3n+ 1

n+ 1

)
− 1

x

(
3n+ 2

n+ 1

)
+

1

x

[(
1− 1

x

)
An+1(x) +

1

x

(
3n+ 3

n+ 1

)]
.

Simplifying,

(x− 1)2

x2
An+1(x) = xAn(x) +

(
3n+ 1

n+ 1

)
− 1

x

(
3n+ 2

n+ 1

)
− 1

x

(
3n+ 3

n+ 1

)
+

1

x2

(
3n+ 3

n+ 1

)
.

Therefore

An+1(x) =
x3

(x− 1)2
An(x) +

(4n+ 2)x2 − (15n+ 10)x+ 9n+ 6

2(n+ 1)(x− 1)2

(
3n+ 1

n

)
.

Finally,

Cn+1(x) =
2n+2∑
j=0

x2n+2−j
(
n+ 1 + j

j

)

=
2n+2∑
j=0

x2n+2−j
(
n+ j

j

)
+

2n+2∑
j=1

x2n+2−j
(
n+ j

j − 1

)
= x2Cn(x) + x

(
3n+ 1

2n+ 1

)
+

(
3n+ 2

2n+ 2

)
+

2n+2∑
j=0

x2n+1−j
(
n+ 1 + j

j

)
− 1

x

(
3n+ 3

2n+ 2

)
= x2Cn(x) + x

(
3n+ 1

2n+ 1

)
+

(
3n+ 2

2n+ 2

)
+

1

x
Cn+1(x)− 1

x

(
3n+ 3

2n+ 2

)

or

Cn+1(x) =
x3

x− 1
Cn(x) +

(2n+ 2)x2 + (3n+ 2)x− 9n− 6

2(n+ 1)(x− 1)

(
3n+ 1

n

)
.
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3. Applications

Gould [4] collected numerous interesting binomial identities for trigonometric sums
and polynomials. We use the formulas given in (3) to obtain identities for sine and
cosine sums which we could not locate in Gould’s compilation or any other publication.

We set x = eiθ. Then,

An(x+ 1) =
n∑
j=0

(
3n− j

2n

)
(eiθ + 1)j =

n∑
j=0

(
3n− j

2n

) j∑
ν=0

(
j

ν

)[
cos(νθ) + i sin(νθ)

]
and

Bn(x) =
n∑
j=0

(
3n+ 1

n− j

)
eiθj =

n∑
j=0

(
3n+ 1

n− j

)[
cos(jθ) + i sin(jθ)

]
.

Since An(x+ 1) = Bn(x), we obtain

(4)
n∑
j=0

(
3n− j

2n

) j∑
ν=0

(
j

ν

)
cos(νθ) =

n∑
j=0

(
3n+ 1

n− j

)
cos(jθ)

and

(5)
n∑
j=1

(
3n− j

2n

) j∑
ν=1

(
j

ν

)
sin(νθ) =

n∑
j=1

(
3n+ 1

n− j

)
sin(jθ).

If we apply Cn(x+ 1) = Dn(x), then we find the following companions of (4) and (5):

2n∑
j=0

(
3n− j
n

) j∑
ν=0

(
j

ν

)
cos(νθ) =

2n∑
j=0

(
3n+ 1

n+ 1 + j

)
cos(jθ)

and
2n∑
j=1

(
3n− j
n

) j∑
ν=1

(
j

ν

)
sin(νθ) =

2n∑
j=1

(
3n+ 1

n+ 1 + j

)
sin(jθ).

A theorem of Vietoris (see [7] and [10]) states that if a0, a1, . . . , an are real numbers
satisfying

(6) a0 ≥ a1 ≥ · · · ≥ an > 0 and a2j ≤
2j − 1

2j
a2j−1 (1 ≤ j ≤ n/2),

then
n∑
j=0

aj cos(jθ) and
n∑
j=1

aj sin(jθ) > 0 (0 < θ < π).

A short calculation reveals, that if we set aj =
(
3n+1
n−j

)
(j = 0, 1, . . . , n), then (6)

is valid. If follows that the sums given in (4) and (5) are positive for all n ∈ N and
θ ∈ (0, π).
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If we replace in (5) θ by π − θ, and add up the two sums on both sides, then we
arrive at

(7)
n∑
j=1

(
3n− j

2n

) j∑
ν=1
ν odd

(
j

ν

)
sin(νθ) =

n∑
j=1
j odd

(
3n+ 1

n− j

)
sin(jθ) > 0 (n ∈ N; 0 < θ < π).

We obtain similar results if we apply An(x + 1) = Bn(x) with x = eiθ − 1. In
particular, we get the following counterpart of (7):
(8)
n∑
j=1

(−1)j−1

(
3n+ 1

n− j

) j∑
ν=1
ν odd

(
j

ν

)
sin(νθ) =

n∑
j=1
j odd

(
3n− j

2n

)
sin(jθ) > 0 (n ∈ N; 0 < θ < π).

Another relative of (7) is given by
(9)
2n∑
j=1

(−1)j−1

(
3n+ 1

n+ 1 + j

) j∑
ν=1
ν odd

(
j

ν

)
sin(νθ) =

2n∑
j=1
j odd

(
3n− j
n

)
sin(jθ) > 0 (n ∈ N; 0 < θ < π).

We set x = eiθ − 1 in Cn(x + 1) = Dn(x). Then (as before), we replace θ by π − θ
and add up. This yields that the two sine polynomials in (9) are equal. To prove the
positivity we make use of the known identity

(10)
n∑
ν=1

bν sin((2ν − 1)θ) =
n∑
k=1

(bk − bk+1)
sin2(kθ)

sin(θ)
(bn+1 = 0).

Let bk =
(
3n+1−k

n

)
(k = 1, 2, . . . , n) and bn+1 = 0. Then, bk > bk+1 (k = 1, . . . , n), so

that (10) and
2n∑
j=1
j odd

(
3n− j
n

)
sin(jθ) =

n∑
ν=1

bν sin((2ν − 1)θ)

reveal that the sums in (9) are positive for n ∈ N and θ ∈ (0, π).
We note that the constant lower bound 0, given in (7), (8) and (9), respectively, is

best possible.
Additional inequalities for trigonometric polynomials involving binomial coefficients

are given in the research papers [1], [2], [3]. Nonnegative trigonometric polynomials
have remarkable applications in various branches. For instance, they play an important
role in geometric function theory, approximation theory and in the theory of absolutely
monotonic functions. More information on this subject can be found in [9, chapter 4].

Acknowledgement. We are grateful to the referee for inspiring comments which
improved the quality of the paper.
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