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Abstract. We extend two combinatorial identitites published by Engbers and Stocker
in 2016. Among others, we prove that if b, n and r are integers such that b ≥ 1 and
n− 1≥ r ≥ 0, then
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The special case b = 1 is due to Engbers and Stocker.
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1. INTRODUCTION AND STATEMENT OF RESULTS

The work on this note has been inspired by an interesting research paper published by
Engbers and Stocker [1] in 2016. The authors use combinatorial techniques to show that
the identities
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are valid for all integers n and r with n − 1 ≥ r ≥ 0. Actually, they prove a bit more.
They present summation formulas involving
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, where s is a natural number. The

identities (1) and (2) turn out to be the most attractive special cases.

Date: August 21, 2016.
1



2 H. ALZER AND H. PRODINGER

Here, we provide a different kind of extension. We study the sums
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where b is an integer. In the next sections we use the concept of generating functions to
prove new extensions of (1) and (2). Our extension of (1) reads as follows.

Theorem 1. Let b, n and r be integers with n− 1≥ r ≥ 0.
(i) If b ≥ 1, then
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The case b = 1 gives (1) whereas the special cases b = 0 and b = −1 lead to the elegant
identities
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The sum
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Using (5) with b = 1, 0,−1, respectively, we conclude from Theorem 1 that the following
counterparts of (1), (3) and (4) are valid:
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In Section 3, we prove the following generalization of (2).

Theorem 2. Let b, n and r be integers with n− 1≥ r ≥ 0.
(i) If b ≥ 1, then
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(ii) If b ≤ 0, then
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In particular, the special cases b = 1 and b = 0,−1 lead to (2) and
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respectively.

2. PROOF OF THEOREM 1

We define
Fb(x , u) =
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Then, see [3, pp. 78, 81],
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Comparing the coefficients of xnur we find the identity
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Now, let b ≥ 1. Applying the following variant of the Vandermonde formula, see [2, p.
169],
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Next, let b ≤ 0. Using the Vandermonde type identity, see [2, p. 169],
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This completes the proof of Theorem 1.

3. PROOF OF THEOREM 2

As before, we consider the bivariate generating function
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The proof of Theorem 2 is complete.
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