PARTIAL FRACTION DECOMPOSITION PROOFS OF SOME
¢-SERIES IDENTITIES

NANCY S. S. GU" AND HELMUT PRODINGER”

ABSTRACT. Using the partial fraction decomposition method, we give new proofs
of some g¢-series identities related to divisor functions in [10] and two finite g-series
transformations in [8]. Likewise, some new g¢-series identities are obtained, including
generalizations of some main results in [10] and generalizations of special cases of the
g-Pfaff-Saalschiitz summation theorem and the g-Chu-Vandermonde identity.

1. INTRODUCTION

Wenchang Chu [2] showed that some seemingly difficult identities can be proved
in a simple way by performing partial fraction decomposition to a suitable rational
function, and then taking a certain limit. For further applications of the partial fraction
decomposition method, see [1,3-5].

Although for the cases that we study here, the method called ¢-Rice method [11] is
computationally equivalent, we prefer to express everything in terms of partial fraction
decomposition, which is conceptually simpler than contour integrals and residues.

We reprove in this way some identities from [10] and from [8] in this very simple
fashion and obtain also some additional formulee. Especially, we generalize some main
results in [10] and special cases of the g-Pfaff-Saalschiitz summation theorem and the
¢-Chu-Vandermonde identity.

As usual, we follow the notation and terminology in [9]. For |¢| < 1, the g-shifted
factorial is defined by

- (45 ¢)oo
a;q)oo = 1—aq¢®) and (a;q), = ——=>2~ forn e C.
@ =[[0-ad) ant (@i = (O

For convenience, we shall adopt the following notation for multiple g-shifted facto-
rials:

(ah a2y ... Qm; Q>n = (al; Q)n(a2; Q)n T (am§ Q)ny
where n is an integer or infinity.
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The ¢-binomial coefficients, or the Gauss coefficients, are given by

(CHA .
m :{ i, f0<k<n,

0, otherwise.

The (unilateral) basic hypergeometric series ,.¢g is defined by

_ 0 (al,az,...,ar;q)k k (k) 1+s—r .
:|_Z((Lb17b2,..,,bs;q)k |:( 1)q2] zv.

ay, asg, ..., @

T¢s[b1, by, ..., b 17

k=0

2. SOME ¢-SERIES IDENTITIES OF GUO-ZHANG

In [10], the authors proved new generalizations of some g-series identities of Dilcher
[7] and Prodinger [11] related to divisor functions. They also obtained some special
cases including an identity related to overpartitions given by Corteel and Lovejoy [6,
Theorem 4.4].

In this section, using the partial fraction decomposition method, we give new proofs
of some theorems in [10].

Theorem 2.1. [10, Theorem 1.1] Forn >0 and 0 <I,m <n, we have

Xn: m 0/t Dlla™: Dok (~1)mq("?) Lﬂ (tg™5 @)i(tg™™; q)n

o Lkl g
k#m
n—l-1 k—m n k—m
tq q )
X —_— = — .
(; 1 _tqk—m p— 1 _qk—m
k#m
Proof. Set
1@ (12 @)na(tg";
F(z) = A0 (t230)n-i(td 5

(23 @Qntr (z2—q™)

Performing partial fraction decomposition on F'(z), we have

F(z) =) ey bun (2.1)

= 1—z¢b  (1—2qm)*

Multiplying both sides of (2.1) by z, and then letting z — oo, we get

n

ZZ—Z = 0. (22)

k=0

Now we compute b, for £k =0,1,...,n.
For k # m, we have

b, = lim (1 — 2z¢")F(2)

z—qFk
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(G Dn (t259)n-i(tg " q)
25q)n+41 (z—q™™)
= (G Dn(tz Dni(ta )
a—q* (2 Q)e (25 Qnoi(z — ™)

(4 ODn(tq™™; @)n(ta™ 5 q)
(% Or(g; Onrlg* — g ™)

& (k+1)+k k 4

(=D g )t ) (B @)oo

(tq= 5 @)oo (8 @)oo (@5 Qi (@; Q)i (1 — gF™)

k+1

_ m (=14 (g )t )i

= lim (1 — qu)(

z—q—Fk

k 1 —gk—m
_ {Z} (a/t; ?)k_(tqqk‘ Dk g0k

For kK = m, we have

b = —q ™ lim D.{(1 —2¢™)*F(2)}

C o™ lim a2 (G Dn (2 0)n(te )
- b z{“ ) i ™) }
(¢ Dn(tz; Q)na(tq™"q) }

(2 Q) m (2¢™ Y Qnem

= lim DZ{

z—q~ ™

_ . (t2; @) n—i
= (¢;9)n(tqg ") lim Dz{
(4 Dl )lwq*m (2 @)m (2™ @)

n—I[—1 n
(@ @)n(ta™"0)i(tg™™; @) ni tq" q*
= Ml - Z 1 — tqk—m + Z 1 — qk—m

(=1)mg~ ") (g @)n (0 @) pary s

k#m

n—{—1 L n k

— (—1)m1q(") [Zﬂ (ta™" s q)u(ta™; q)n-z( > 1_2% -2 JW

k=0

Therefore, according to (2.2), we get Theorem 2.1.

Theorem 2.2. [10, Theorem 1.2] For m,n > 1, we have

N L N O/ A7) TN (237
; [k?] (tq™™; @mn(l — q’“)mt

= — le PPN q

B 2 (I—tgm=1) (1 —gkr) (1 —tgbn=m)(1 —gbm)

1<km<-<ki<n

km

Proof. Set
F(z) = LD (24 ™Y @mtns |
(2 Ont1 ™ Qman(Eg ™5 Q)1 (2 — 1)

)
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Performing partial fraction decomposition on F'(z), we have

n bk m+1 i
F(z) = %
(2) ;l—zqk+§(l—z)k

Multiplying both sides of (2.3) by z, and then letting z — oo, we get
b

>k

=0 ¢

Now we calculate b, for 0 < k < n.

For 1 < k < n, we have

b = lim (1 — z¢")F(2)

z—q~k

~ lim (@ D24 Qmin

z—qF (Z§Q> (zqk+1 Q)n k(tq aQ)m—i-n(tq m+1, Q)m 1(2_ 1)
— ( 4,9 )n<tq " k+1aq)m+n—1

(@ k(@ Dnr(td™™; Qmn (g5 @)1 (g7F — 1)
_n- (—1)kq(k;rl)+km(tq m— k+17Q)m+n L
(tq—m; Q>m+n<tq_m+1; Q)m71<1 —dq )
] (—1)" <’““>+’“”< R )t @)

(g™ Qmn(1 = ¢*)™

(q /t7Q)k<t7 Q)n—k k

(g™ Qmn (1 = ¢*)™ Ga)"

o

EIERGIE

For k =0, we have

by = (=" lim D™ {(1 —2)" T F(z)}

m' z—1

— ﬂlingm){( (_1)m£ On(t2¢" Y Qmgn }

m! ==l 205 (™™ Qmen (E™ @)
— (q; q)n hmD m) {(t'zq m—&-l’ Q)ernfl
(tq™™; Q) metn (tg™™H; @) 1! 2—1 (245 Q)n
. t —m+1. S
_ (QaQ) 1 [(Z—l)m]( zq 7Q> + 1
™™ Qm(taT™ 5 Qmin—1 (2¢; Q)
— (q ) [wm (t(w + 1)q—m+1; Q)m+n71
(tg™™; Q) (tq™™ 5 @)imn—t (w4 1)g; @)n
m—+n—1 wag— Mtk
1 m k:+1 (1 - 1t,fq—m+k>
= [w™]

t —1m. m n wagk
(tg~™; q) ITe, (1 _ 1_"qk)

|

(2.3)

(2.4)
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In order to read off this coefficient, we have

n—1 1 — twg®
k=1-m 1—tgk
n _ wgk
Hk:l (1 1_qk )

k1

q tqkl_l qkm tqkm—m
- Z (1_qk1_1_tqk11)"'(1_qkm_1_tqkmm)

1<km <--<ki1<n

[w™

-y (1 —tq") ¢ (1 —tq™™)

1<k <-<ki<n (I—=tgh=1)(1 —gkr) (1 —tgkm—m)(1 — gkm)

kfl qk'm

o q
= (g™ @)m Z T i 1) (i )

1<km<--<ki<n

For the first equation of this chain of equalities, we argue as follows: We have to
select altogether m w’s from the factors. Factors in the denominator can be chosen
arbitrary often, but factors from the numerator only once. Let ki be the largest number
such that k; — 1 from the numerator is chosen or, if not, such that k; is chosen from
the denominator. This gives a contribution

qk’l tqkl_l
l—gh  1—tgh1)"

Now let k3 < ki be the largest number such that ks — 2 from the numerator is chosen
or, if not, such that ks is chosen from the denominator. This gives a contribution

qk’z tqk2—2
L—gh 1—tg=2)"

Then let k3 < kg be the largest number such that k3 — 3 from the numerator is chosen
or, if not, such that k3 is chosen from the denominator, and so on.

Therefore, we have

k1 km

4q 4q
bo = . .
1§km;_.§k1§n (I—tgm" )1 —qm)  (L—tgh—m)(1 —g*)
According to (2.4), we get Theorem 2.2. O

Theorem 2.3. [10, Theorem 4.1] For m,n > 1, we have

$°[] i

k (tq—m; Q)ernfl(l - qk)m

n k1 k1 ko2

k=1

— q q “ e
-2 (1 —tgk1=2)(1 — gh) 2 (1 —tgk==3)(1 — g2)

k1=1 ko=1

k)m—lfl ko — km—l k
tgmm ™ qr
X ( Z 1 — tqknL_m o kz ]_ — qk'm> ’

km=1

m=1



6 N. S. S. GU AND H. PRODINGER
Proof. Set

F(Z) — (Q; Q)n (th—m—H; Q)m+n—2
(Z; Q>n+1 (tq—m; Q)ernfl(tq_m—H; Q>mf2(2 - 1>m
Performing partial fraction decomposition on F'(z), we have

m+1

F(z) =) ] _b’“zqk + ; ﬂi—kz)k (2.5)

k=0

Multiplying by z on both sides of (2.5), and letting z — oo, we get
by,
d» S =0 (2.6)

Now we calculate b, for 0 < k < n.

For 1 < k < n, we have

b, = lim (1 — 2z¢")F(2)

z—qk
— im (@ Dn (24”5 Qmpn—o
a5 (2 k(20" Ok (tg™™; Q-1 (Lg7™ T @) ma(z — 1)™
(¢ Q)nltq™ " Q2
(@7 @k ODnr(tq™™; Q1 (b @) ma (g™ = 1)™

_ ] (_1)kq(k;rl)+km(tq—m—kz+1.q)m+n_2
_k_ (tq—m; Q)ernfl(tq_m—H ) (1 — qk)m

_ 1] (—1)kq<k+1)+km(tq_m k+1 ) (t/q; q)nfk
K] (tq~ ,q)m+n 1(1—=g5)m

B _k_ (tq—m; q)m-i—n—l(l - qk)m (tQ) .

For k = 0, we have

by = ﬂl D™ {(1—2)""F(2)}

ml  z—1

_ S o {( (=D)™(& Dn (24" @ min—2 }

T 24, Qn(tq™™; Qa1 (Lg™™ Y Q)m 2

(4 On lim D™ { (tzg™™ 7Q>m+n—2}

(™ Qmgn—1 (b Q) meaml! 21 (2¢; q)n
_ (4:9)n (5 — 1) (t2q”™ " Qman—2
(tg™™; Qmsn—1 (™ Q)2 (2¢; O
(¢ @)n ™ (t(w+ g™ Qo
(tg=™; @)man—1 (T @) m—s (w+1)g; q)n
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m+n—2 twq— Mk
_ 1— 2 >
1 e LLE=1 < 1—tg—m+F

Hk1<_1qk>

In order to read off this coefficient, we have

n—2 twg*
m Hk;:l—m (1 B quk)
n waqgk
[Ti-1 (1 o 1—qqk>
Z( tqkl*Q )i( qu tqkrz )
- _ ok _ k2 _ k2 ] _ f$ka—-3 ) "
1—qg™m 1 tg™ = 1—qg" 1—tg™

km

tqkm_l—m
<3 (L )
tqkmfmfl tqu
X J— e —
Z {(1 — gk 1— tqkm—m—1> ( 1—tg™™

km=1

[w

_ k1 _
Z 1—1tq7?) g (1 —tq™?)

tq’“ ~2) 1—qk1)k (L—tg3)(1—gh)
-

B S il (5
Tt = )

km—1=1
fom -1 k fom 1 km—m—1 -m
qm tq m tq
x - +

km=1
n k1
— (tq_m;Q)m—lgzzl (1 — tqhi- 2 (1= g™ z:: = :2 R
2 e 22—>
=t "™ @)m kli_l (1— tqkli]:;(l —gh) i (1— tqk;]:;(l ey
e m— Forn — . K1 —1 —
I

The explanation is very similar to the earlier instance Theorem 2.2. The difference is
that, if k,, = 1, there is an exception, since k,, — m — 1 = —m is out of range for the
numerator, and thus such a term cannot be taken.
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Perhaps a more aesthetic way would be to write

n—2 1 o t’qu
k=1—m 17tqk
n  wgk
Hk:l <1 1_qk)

k1

q tqkl—Q qkm tqkm—m—l
o Z <1—qk1_l—tqkl_Q)'”(l—qkm_1—tqkm_m_1>

2<km <-<k1<n

N Z qk1 B tqk1—2 qkm_l B tqkm_l_m q
1<kpm_1<-<ki1<n L—gh 1-tgh=2)  \1—gbnmr 1—tgtnm /1 —¢

_ Z " (1—1tq?) ¢ (1 —tq
vk ey L= @) (A —tgh=2) 77 (1 = ¢hm) (1 — tghm =)

N 3 ¢" (1 —tg?) g 11 —tg™™) q
et B ey T TN ) T g )Lt ) T

k1
. q q
= (tg" " Qm >

st oty cn L= @) (L= 1g"72) 7 (1 = ¢Fm) (1 — tgm=m)

> " gt q
+ (tq_mQ Q)m—l A k1—2) Km— km_1—m )
b T hien (1 —g*)(1 —tgk—2) (1 — gkm-1)(1 — tghm-1—m) 1 — ¢

[w™]

“met)

km

Therefore, we have

n e k1 ¢
by = e
: Z =21 = ) 2 = i) = )
km k km—1-1 Ky —m
g tg™
km=1 km=1
According to (2.6), we get Theorem 2.3. O

3. NEW RESULTS

In this section, using the partial fraction decomposition method, we get new general-
izations of some main results in [10], and also obtain some other new g-series identities,
including generalizations of special cases of the ¢-Pfaff-Saalschiitz summation theorem
and the ¢-Chu-Vandermonde identity.

After that, we give proofs of three theorems given by Guo and Zhang in [10]. While
we don’t find a proper way to prove [10, Theorem 1.3] by using the partial fraction
decomposition method. But we get the following similar new result.

Theorem 3.1. For m,n > 1, we have

m

t v £ q)nn(t . tq": Q)i (t; v;q)k k
Z(Q/Q)(q Okt Dk (B Do e Z (tq"; Qm—r(t; Q)nsr(a/v; q) .

— (03 Dr(v; Qi@ Dn—r (0" D — (0" Q)1 (V4™ )15 @)1 (@3 D
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B0 [~ A —v/q) —~  ¢"(1-t/g)
e (TS - L e ) 6

(@3 D@ @) \ = s

Proof. Set

(O Dmzg T v (0T
Fz) = (2 Ont1(V; O (267™; @) s (q) ’

Performing partial fraction decomposition on F'(z), we have

m

by, Cp, ar ao
F(z)= . 3.2
(2) Zl—zqk+;1—zqk+1—z+(1—z)2 (3:2)

k=1

Multiplying by z on both sides of (3.2), and letting z — oo, we get
m i

Z 2 (3.3)

=1 4 =1 4
For 1 < k < n, we have

by = lim (1 — 2q"F(2)
z—q~
- i, SO e ()"
e—at (23 k(26" @)k (V; D (2¢7™ D \q
q)

I B G B U <g>m
(@75 k(@ Dk (0; D (T Q1 \ ¢

Jm
" )t Qi (V6" O

(=) g)
(4 Ok(q Dt (V; Q)i (75 Q) msa
(DR g ) (8 ) (8 )k (057 )
(Q7 )k( )n k( ) (qk'Q)erl
t

_ @/t k(g™ Okt @)n—k(t; Om ™ ()¢
(@3 k(03 i@ D (@ Dy

For 1 < k < m, we have

¢ = lim (1 — 2q ") F(2)

z—qk
_ (t2; Onlt; O (26" ™ /03 @) (v)m
= — am - . —m. —k+1. -
2—a* (2, Q)nt1(V; Om(207™; @) m—r(2q 'Ok \ g

_ (% @atEmla ™ 0q)m <U>m

(@5 )1 (03 Do (T Qi (@ @) \ @

(DR (165 ) (8 ) (0475 )
(7% D1 (V; Do (@5 QD1 (25 Ok

_ (=D)*q G) (19" @)t k(v )i
(7% Dns1(vq™ % Q@5 Dm—r( O
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(t"; Q)i (b5 Qe (/5 D <_>

(6% Dt (04 (& D (4 )k \ g

Now we compute a;.

a = —l{l} D.{(1-2)*F(2)}
(

- s e (3)
_ (f;‘Q)m (E)mhsz{(tz,Q)n(qu ’”/v;q)m}

| a) = ' (Zq;(]l)_néZQTmSQ>m
_ B, <9) hm{(tz,Q)n(zq /v @)m

q (2¢; O)n(2¢7™; @) m,

z—1

n—1 " k m—1 1 n k m 1
X(_Zol—quzqk+§z— P . _Z k’)}
4

X
»Q/T\
M:
L
[u—
|H~
L}
~ | =
K
B
+
3
L
p—
l»—~
[t
<)
E
+
3
[u—
LS
Byl
()
E
|
NE
—_
—_
E
N—

k= k=0 k=1 — 4
Gt [~ d ! . 11
(@ Dnla59)n [;(1—& 1—1561’“‘1) +;(1—qu‘1 1—qk)1
Bt [~ FO -t/ < 1 -v/g)
(@ Dml@D)n (,; (1—tg"")(1—q") ,; (1 —vgh=1)(1 - qk))'
According to (3.3), we get (3.1). O

When we set v = ¢ in (3.1), we obtain

n

Z( (t; Ot (t; ODmar(q/; O b N (GEDm—r( Onrr(g/t Q)i "

@ Dt (G OGOt Qe (q’“‘ D1 (G Om—i (@3 Okt O
(1—t/q)tq tq S RS ¢*
CHAMCE <Z: (1—tgh~ : )(1 = q*) ;(1—7561’“‘1)(1—61’“))’

(3.4)
which is v = ¢ case of the following theorem given by Guo and Zhang in [10].
Theorem 3.2. [10, Theorem 1.3] For m,n > 0, we have

zn:(Q/t;q)k(vqm;Q)k(t;q)nk(t;q)mtk_ S (9/6 k(g™ Ot Dmk (5 O)n

— (@ Dp(V; (@ Dn-s (@ Dmer = (@D (V3 Qi@ Dm—r(@¥; @t

(=t DO (o ¢* N q*
(G Dl Dn (Z (1 —tg"")(1—¢") ,; (1 —tg" 1)1 - 61’“))'

k=1

tk:
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Interchanging m,n in (3.1), we have

(/1 9k (vq"; k(s Qmr(t; )n tk_i (4" (6 Dmina/vi)e 4
(

“ (03 (v (@3 D1 (0¥ D @3 QD1 (04" Qi@ D1 (G @)

_<t;q>m<t;q>n(i <1—v/q i 1—t/q> )(35>
(1—-wv —q8))

. . k— 1
(5 @) (@5 @)n \ = q —

Combining (3.1) and (3.5), we get

—~ (9/ r(vg"; Qrt Dot (b D e 0/t ,q (04" it Dt (t; D i
; (@5 )i (03 i@ D1 (@5 @)t Zl (¢ )i (v; Q)i(@; Dm—r(q"; )n+1t
i (4" Qi Dnerl@/vi e p N~ (005 @k Dmir(a/vi @)
— (0" D1 (V4™ QG D m—n (@3 D = (0" D1 (00" k(G D (G D

(1 =v/9)(t; )m(t; D)n (- q’“ - ¢*
T G (g0, (Z (1—vg" (1 —g*) ,; (1 —vgh1)(1 - qk))

=1

(1 =t/9)(t; Dt D (- ¢* - ¢*
T GOm0 (Z (1—tg" (1 —q") ; (1—tg" )1 - qk))‘

k=1

According to the above identity and Theorem 3.2, we have the following identity:

n

q;59)n—k Qm+kqvq Qka q)n+k\4/V5 4 k
(tq"; @)n—(t; m+r(a/ Z (t (& Dnsi(g/vie
=1 (q 7q>m+1<vqn ka) (q7 q)n k q q k=1 q q n+1 qu ka) (Q7Q)m—k(qa Q)k

_ (1-v/0t @t (N ¢" . ¢
(G DG Dn (; (1 —ovg=1)(1 = ¢ -2 (1 — og--1)(1 - qk))’

k=1

which can be obtained by interchanging v and ¢ in Theorem 3.2.

Remark 3.3. We were not successful to prove [10, Theorem 1.3] with the partial
fraction decomposition method. However, we offer the following observation. The
righthand-side of it does not depend on the parameter v. If this fact could be shown
by simple means, then we could argue that the lefthand-side also does not depend on v.
Henceforth, we could set v =1, and would achieve a proof.

Next, making some changes on the rational function F(z) in the proof of Theorem
2.1, we can get some new results.

Set

s D)n(t2;Qna(tq" [v;
F(z) = WE Dl dn-ilta” /v 9
(20, Qnra(z —q™)
Then using the partial fraction decomposition method, we get

n

(a/t; Qklta ™ /vi@nr (" (b @)uaa(ta™! /vs )
> () - |

— (¢ D)r(¢ Dn—r(1 —vg") \v VG @)nt

(3.6)

Setting v and ¢ to be ag™ and ag™ ™! /b in (3.6), respectively, we get the following result.

k
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Theorem 3.4. Forn >0 and 0 <[ <n, we have

Z”:( (a,b,g7™ q)x ()" (¢;4)n(ag/b; q)ni (37

“— (q,aq,bg"*; q)x (a¢; )n(a/b; Dt

Setting | = 0 in (3.7), we obtain

k—0 q,aq, bqina q)k (GQ7 Q/bﬂ q)n7

i ((a, b "k & (q,0q/b;q)n

which is ¢ = ag case of the ¢-Pfaff-Saalschiitz summation theorem [9, Appendix I1.12]
{ ", a b (c/a,c/b;q)n
302 ;

c, abqg'™"/c e (c,c/ab;q)n

If we set a = ¢ in (3.7), we get

Corollary 3.5. Forn >0 and 0 <1 <n, we have

~ (g ™Dk e (@0)a(@/b@)n
;(qz}bq"“;qn( )= (6% @)n(a/b; @)n—t

When we set b = ¢" ' in (3.8), we get

n n—I+1

(¢ ,2(1_”; @ YR ),
— (@

which is @ = ¢"~!*!

11.7]

and ¢ = ¢* case of the ¢-Chu-Vandermonde identity [9, Appendix

vy { ", a @] _ (c/a;q)n

¢’V a (;q)n

Moreover, we find that if we put a new parameter v in the proofs of Theorem 2.2
and Theorem 2.3, we get generalizations of these two theorems.

First, we give a generalization of Theorem 2.2.

Theorem 3.6. For m,n > 1, we have

n

> (v4; @) (g™ /t; Qi1 (t/0; @)k <£> -
(g™ @i -1(45 Dr1(65 @i (1 — vgF)™ L \w
k1—1

p— q .« .. q
1§km§_z,,§k1§n (1 —tg" ") —vgh) (1 —tgbm)(1 = vgr)

Proof. Set

F(z) = (v0; @)n (L2 @imn— |
(v2¢; @) n(tg™™/0; QO (tg™ 5 Q-1 (2 — 1)mH!
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Performing partial fraction decomposition on F'(z), we have

n bk m+1 cr
F(z) = P —— —_—
D=
k=1 k=1

Multiplying both sides of (3.9) by z, and then letting z — oo, we get

n

b
Z# = —C1.

k=1
Now we calculate b, for 1 < k < n.
For 1 < k < n, we have

b, = lim (1 —wvzg")F(2)

z—q~k /v

= lim (vg; Dn(t2¢™ 5 Qmsns

(3.9)

(3.10)

2mq /o (V245 @) k-1 (V2@ Q)i (PG /05 Q) (8™ @) g1 (2 — 1) HL

B (vq; Q)n(tg ™" 05 @)imgn—1

(@ Qe (@ Dkt /01 Q) (g™ Q1 (g7 0 = 1)
k+1

C CDE B g ), (b 01 )
(6 Dr-1(G Dt (tq™™ /03 Q)i (™™ @) gn—1 (1 — vgk)mH1
k+1 " m o
(—1)E-LgUs ) Hbmymt (g ), (b~ F f0: @)r (/03 @
(6 Oe-1(0 Ot @) pgn—1 (1 — vgk)m+t

v

m k—
_ (0g; Q) (vg™ "/t Q1 (£/V; Dt (t) lvmﬂqmw

(6 Ore-1(¢ Ot @) -1 (1 — vgk)m+t

For ¢;, we have

= =" lim D{™) {(1—2)""F(2)}

m! 2=l
_ D™ pm) { (=)™ (vg; Otz Qmgna }
ml 2=l (v2¢; Q)n(ta™™/V; QDm(ta™™ Y Qmgn
_ (vq; @)n lim D™ {(tzq‘m“; q)m+n1}
(tg™™ /v; Qm (g™ @) mam—am! ==1 7 (v2¢; @)n
_ (vg; @)n (2 — 1)) (tz¢"™ Y O
(g™ /v; Ot @) mn (v2¢; Q)n
(Vs Q) IUCs Da™ Qg1
(tg™™/v; Q) (™™ Qimgn (v(w+1)g;q)n

m—+n—1 1 . twq7m+k
1 k=1 1—tq—mtk

— [w™ - ot
Hk:l (1 o 1—vqk>

(tg™™/v; @)m
k1

—m+1

km—m

13

B 1 Z Vg tgt 1 vghm tq
(v @), L—wvgh  1—tgh=t) " \1—vghn 1 —tghn—m

1<km<--<ki<n

)
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B 1 T vg" (1 —tg~t/v) vgt (1 —tq~™/v)
= (f—m /- _ ki1 — k) (1 — tokm—mm o km

g™ /v @m | Sty o, (=871 —wgh) (1 —tgh=m)(1 — vghn)

qkl k

——m Y ¢

1<km<--<ki1<n (1 - tqk1_1>(1 - qul) o (1 - tqkm—m)<1 - qum> .

We read off the coefficient of w™ as we did in the proof of Theorem 2.2.
According to (3.10), we get Theorem 3.6. O
Setting v = 1 in Theorem 3.6, we get Theorem 2.2.
Setting v = 0 in Theorem 3.6, we have
“n—1 k1) _
; L{; ~ J (~1)fgl" ) =,

which is a special case of the ¢g-binomial theorem [9, Appendix I1.4]
100 l “ ;qu} = (247" @Q)n-

Setting v = ¢ in Theorem 3.6, we have the following result.

Corollary 3.7. For m,n > 1, we have

3 (% )n(q™ 2/t Qrer (t @ @i NS
= (3)
(tq

k=1 —m+1. Q)m+n_1(q; q)k_l(q; Q>n—k(1 _ qk+1)m+1 5

k1—1 km—1

— q . e q
R N v R D ()

1<km<--<ki<n

Letting n — oo in Theorem 3.6, we have

Corollary 3.8. For m > 1, we have

- (vg™ '/t Qe (t) =

— (g @1 (4 Qr-1(1 — vgh)m

(q; Q)oo(t;Q)oo Z q qkm—l

et/ v, S, (L= tgr (L —vgh) (1= tghnm) (1= vghe)

Setting m = 1 in Theorem 3.6, we get the following generalization of [10, Corollary
3.3].

Corollary 3.9. Forn > 1, we have

b (0q (0P Qe ek (T 7
> ()

= (£ Q) (G Os1(¢; Di(1 — vg¥)> \ v (1 —tg"1)(1 —vg¥)

()

Now we give the following theorem which is a generalization of Theorem 2.3.
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Theorem 3.10. For m,n > 1, we have

n

(vg; D (0™ /8 D1 (tg" /03 Qi A
z ()

— (tg ™ Qmn—2(@ Q-1 (G @)n-r(1 — vg")™ 1 \v
n _ km— _
= (1 —tgm=2)(1 — vghr) M (1 — tgkm—1—m)(1 — vgkm-1)
k’m_ _ k?m— -1 —m—
y 1 qkm 1 B Zl: tqkm 1
1 — vghm v — toghm=—m )
k'mzl km:1

We perform partial fraction decomposition on

(vq; @)tz ™ @) mn—2

Flz) = (v2¢; D (tq™™ /V; Q-1 (Eq ™5 @)rgn—2(z — 1)

15

Similarly to the proof of Theorem 2.3, we can prove the above theorem. Here we omit

the proof.
When we set v = 1 in Theorem 3.10, we get Theorem 2.3.

Setting v = ¢ in Theorem 3.10, we have

Corollary 3.11. For m,n > 1, we have

zn: (0% Qn (@™ 2/t k1 (t725 Q)i <t)k1

q

— (g Qmn-2(4 D145 On-r(1 — ¢FH)mH
n _ fepr B
=) ¢ i gkm-171
oy (F 1) (L= ghrt) e (L= tghmmm) (1= g
k‘mfl k., —1 km71—1 ko —m—2
q™ tqg
- <Z 1 ghmtl ) m)

kem=1 kem=1
Letting n — oo in Theorem 3.10, we obtain

Corollary 3.12. For m > 1, we have
- (vg™ !/t @) (3)“ NN GINS
(tqg™ ™Y @) m-1(¢; Q)1 (1 — vgk)m+L \ v (v¢; @)oo (tq™1 /v @) o

~1 kom—2 Fom—1—1

k=1

0o k1
> ! Y :
= (1 _ tqkl*Q)(l _ qul) N (1 _ tqkm—rm)(l _ /qum—l)

k-1 g1 km—1-1 Ky —m—1

m t m
(3TN ey
1 — vghm v — toghm—m
=1 Em=1

Setting m = 1 in Theorem 3.10, we have the following generalization of the [ = 1

case of [10, Corollary 3.2].
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Corollary 3.13. Forn > 1, we have

n

Z((UQ§Q>n(Uq2/t;Q)k—l(tq_l/U§Q)n—k <t>k_1: ~ ¢! "Z_i tq*~?

6 Qn1(4 Ok1(¢; k(1 — v¥)> \v f1—vgh v —tugh L

k=1
4. TwWO IDENTITIES OF FANG

We notice that by using partial fraction decomposition technique, we can also give
new proofs of two identities found by Fang in [§].

Theorem 4.1. /8, Corollary 3.4] We have
M

3] e [EIRC R T

J 1 —zq (23 Q)Mﬂ

Jj=0 J=0

Proof. Set
(G &N, »
F(z) =~ (20);¢

(2 Qa1 4=

Performing partial fraction decomposition on F'(z), we have

F(z)=)Y b (4.1)
k=0

1— zgF

For 0 < k < M, we have
b = lim (1 — 2¢")F(2)

z—qk

The last equation of this chain of equalities follows from the ¢g-Chu-Vandermonde iden-
tity [9, Appendix I1.6]

" a (¢/a; q)n
¢ { 7 q] = a" 4.2
- ¢ (¢ @)n “2)

by setting a = ¢ and ¢ = 0.
According to (4.1), we get Theorem 4.1. O
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Theorem 4.2. [8, Corollary 4.1] We have

S = (—1)7q@)+¥

= (%0)m - = (1= 2¢)(¢:9)i(@ @)m-

Proof. Set
M
j=

Performing partial fraction decomposition on F'(z), we have

ZQJ+1

M

by

F(z) = :
(Z> — 1 _ qu

(4.3)

For 0 < k < M, we have
by = lim (1 — z¢")F(z)

—k

2—q~
M
= lim (1-— 2q"
Z=q j;o Z q J+1
M
= hm (1-— 2q* Z
z—q~ ik Z q j+1

M

. ¢
= lim
- ; (25 )r(24"15 q);

g P

— (7 )rl(d Q) j-r

(_1)kq(’§)+2k M-k ¢
(@Ge = (G9);

<

(—1)kgle)
(@GOG @) ar-n

The last equation follows from the ¢-Chu-Vandermonde identity (4.2) by setting a = 0
and ¢ =q™"

According to (4.3), we complete the proof of Theorem 4.2. O
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