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typically done by (creative) guessing, and the proofs are more or less routine calculations.

Keywords: Combinatorial matrix, LU-decomposition, Lehmer’s matrix, Fibonacci polynomials

MSC: 05A19; 15B36

1 Introduction

Combinatorial matrices often have beautiful LU-decompositions, which leads also to easy determinant eval-
uations. It has become a habit of this author to try this decomposition whenever he sees a new such matrix.
The present paper contains three independent ones collected over the last one or two years.

2 A matrix from polynomials with bounded roots

In [11] Kirschenhofer and Thuswaldner evaluated the determinant

1
Dg = det(m) 1si,lss

for t = 1. Consider the matrix M with entries 1/((21)>-t?(2i-1)?) where s might be a positive integer or infinity.
In [11], the transposed matrix was considered, but that is immaterial when it comes to the determinant; we
will treat the transposed matrix as well, but the results are slightly uglier.

The aim is to provide a completely elementary evaluation of this determinant which relies on the LU-
decomposition LU = M, which is obtained by guessing. The additional parameter ¢ helps with guessing and
makes the result even more general. We found these results:
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and

j
i+ 53 + YIG+ B
[[(@k-1¢ - @n*) = 47 U 2 )1 12 0 ;
k=1 rG+ f) IG-49)
using these formule, L; j resp. U; ; can be written in terms of Gamma functions.
The proof that indeed Zi L;;U;; = M;, is within the reach of computer algebra systems (Zeilberger’s
algorithm). An old version of Maple (without extra packages) provides this summation.
As a bonus, we also state the inverses matrices:
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the necessary proofs are again automatic.
Consequently the determinant is

j=1

For t = 1, this may be simplified:
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the last expression was given in [11]. We used the notation 2n-1)!!=1-3-5.--(2n-1).
Now we briefly mention the equivalent results for the transposed matrix:
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3 Lehmer’s tridiagonal matrix

Ekhad and Zeilberger [7] have unearthed Lehmer’s [12] tridiagonal nxn matrix M = M(n) with entries (indexed
byl<i,j<n)
1 lf l = jy
2202 gy =,
Mij=9 150 a0 ses_ s
z'q ifi=j+1,

0 otherwise.

Note the similarity to Schur’s determinant

1 Xq1+m
_1 1 Xq2+m
Schur(x) := -1 1 xg* ™
-1 1 Xq4+m

that was used to great success in [9]. This success was based on the two recursions

Schur(x) = Schur(xq) + xg**™ Schur(xg?)

and, with
Schur(x) = Z anx",
n=0
by
an = qnan + q1+mq2n—2an_1,
leading to
qn2+mn

AU -g)...a-q)

Schur’s (and thus Lehmer’s) determinant plays an instrumental part in proving the celebrated Rogers-
Ramanujan identities and generalizations.

Lehmer [12] has computed the limit for n — oo of the determinant of the matrix M(n). Ekhad and Zeil-
berger [7] have generalized this result by computing the determinant of the finite matrix M(n). Furthermore,
a lively account of how modern computer algebra leads to a solution was given. Most prominently, the cele-
brated g-Zeilberger algorithm [14] and creative guessing were used.

In this section, the determinant in question is obtained by computing the LU-decomposition LU = M.
This is done with a computer, and the exact form of L and U is obtained by guessing. A proof that this is
indeed the LU-decomposition is then a routine calculation. From it, the determinant in question is computed
by multiplying the diagonal elements of the matrix U. By telescoping, the final result is then quite attractive,
as already stated and proved by Ekhad and Zeilberger [7].

We use standard notation [2]: (x; ¢)n = (1 - x)(1 - xq) ... (1 - xg"), and the Gaussian g-binomial coef-

: _ (g;@)n
ficients [i] = Gkt

3.1 The LU-decomposition of M

Let

O<ksj/2
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It follows from the basic recursion of the Gaussian g-binomial coefficients [2] that

AG) = AG - 1) - 2/ 2AG - 2). "
Then we have 0
3= /l(j(—] Ut z'2qU 0,

and all other entries in the U-matrix are zero. Further,

ii12AG-1)
Li:=1, Li, =220 1)/27,
Jsj j+1,j =2 4 1G)

and all other entries in the L-matrix are zero.
The typical element of the product (LU); ;, that is

> LikUs;
1<ksn

is almost always zero; the exceptions are as follows: If i = j, then we get

AG) +zg/2AG - 2) _

LjjUj;+LjjaUja, = AG-D L
because of the above recursion (1). If i = j - 1, then we get
LUy + LiajoUpgy =220,

and if i =j + 1, then we get

12,G-02AG-1) AG) _ a2 G-
1 G G-n 2T

This proves that indeed LU = M. Therefore for the determinant of the Lehmer matrix M we obtain the expres-
sion

Lji1,ji1Upir,j + Lisa jU 5 = 2

n
A Aln) n-ki .k kk-1)_k
o 2 | « |[CVa
j=1 0<ksn/2
Taking the limit n — oo, leads to the old result by Lehmer for the determinant of the infinite matrix:

(_ 1)qu(k—1)Zk

nli_{rgo det(M(n)) = Z @D

k=0
Remarks.
1. For g = 1, Lehmer’s determinant plays a role when enumerating lattice paths (Dyck paths) of bounded
height, or planar trees of bounded height, see [6, 8, 10].
2. Recursions as in (1) have been studied in [3, 4, 13] and are linked to so-called Schur polynomials [15].

4 Matrices for Fibonacci polynomials

Cigler [5] introduced several matrices that have Fibonacci polynomials as determinants; we will only treat
two of them as showcases.
The Fibonacci polynomials are
Fn(X) _ Z (n ; h) Xn—Zh;
h
our answers will come out in terms of the related polynomials

fn _ Z <n2+hh> Xh
h
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where we write X = x? for simplicity. It is easy to check that

frn= X+ 2)fn1 - fr-2,

for instance by comparing coefficients.
The first matrix is

M= ((".1>X+ (’.”))
j j+1 .
Os<i,j<n

and we will determine its LU-decomposition M = LU.

We obtained . , \
LGOS G OS GhXt (N (1 5
N o ()X i) \U+1)fia
and
.. Zh (]+21}J1rh)Xh f]’+1
B = Zh (1+h)Xh f] ’
- J+1M__mfi;1_ .
= O =D (1), i<t

For a proof, we do this computation:

ZLlejl— LigUp+ Y LijUjy
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fi }
fl+1

-[6)+ 5

fl+1
fi

fi
fj+l

>

0sj<l
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6) ()
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The determinant is then Uy 0 Uj 1

@

( 1);+l+ Z ( >( 1)]+l
0sj<l
>

o

D

0sj<l

i 1+l
o

1<js<l
+ ’:) -1y - (’) -1y - (1)

.. Un-1,n-1, and by telescoping

U
Z <n2+hh> xh _ Z <2nh— h) y2n-2h _ Fon(x).
h h
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For completeness, we also factor the transposed matrix as LU = M*:
j+h
( 1)l+} Zh (Zh 1)
1+h
S Ga )X
Lii=1,

forj < i,

and l j+h \ xh (11 j+h
Ujl _ (}) Zh (Zlh l)X (]+1) Zh (1 )

3 (o) X

Now we move to the second matrix:

M:<<{)X+<l.+2>> '
] j+1
0s<i,j<n

We find i+1 1+hy yh | 1+h
+ +1+ +1+
Lo i) 2o Gr) X"+ () S (551 X"
1,) -
> G Xh
and
o, - SalE

S i) X"
Ujjs1 =1, Uj; =0 forlzj+2.
For a proof, we compute
S LU - (ir1) Xn G X" + () Son ("™ X"
L],

S (Grt) X"
L (1) n Gri) X" + (1) 2 (52)X"

S (Gast) X!

and

l+1+h)\ _p o _ (12 l+1+h)\ _p i+1 l+1+h
;<2h+1)XZL’JUI”_<I+1);<2h+1>X < >¥<2h+1>

and therefore
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as required. The determinant is then

and

n+1+h\ n_ n+1l+h 2n+1 J\ 22 _ 1 2
Z<2h+1)X ‘Z< n-h ) Z( ) =X Fana ().
h h J
For the transposed matrix LU = M!, we find
i+h
Li: 1= Z (Zl;+1)Xh
i,i-1 =

1+h
S Grir) X1
Li,izl’ Li,j:O fOI'j<i—1,

U, - Gi1) Sa Coart) X"+ () S (5" X"
i o Coper) X"

For completeness, we mention another recent paper about matrices and Fibonacci polynomials: [1].
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