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Abstract

This paper complements the analysis of Louchard and Prodinger [LP08] on the number of
rounds in a coin-flipping selection algorithm that occurs in the presence of a demon. We
precisely analyze a very different aspect of the selection algorithm, using different methods of
analysis. Specifically, we obtain precise descriptions of the distribution and all moments of the
number of participants ultimately selected during the algorithm. The selection algorithm is
robust in at least two significant ways. The presence of a demon allows for the precise analysis
even when errors may occur between the rounds of the selection process. (The analysis also
handles the more traditional case, in which no demon is involved.) The selection algorithm
can also use either biased or unbiased coins.
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1. Introduction

We precisely analyze the number of survivors in a selection process that occurs in the presence
of a demon. Louchard and Prodinger [LP08] recently utilized a different methodology (for
extreme value distributions, a.k.a. “Gumbel distributions”) to analyze the number of rounds
required to perform the selection algorithm.
The inclusion of a “demon” can be viewed as a generalization of traditional selection al-
gorithms. The demon represents errors which might occur between rounds of the process.
Another interpretation is that participants might be likely to drop out of the selection process
for reasons unrelated to the coin flips in the selection process itself. In any case, a traditional
selection algorithm (with no demon involved) is just a special case (using ν = 0) of our very
general analysis. The special case ν = 0 (i.e., with no demon involved) is a selection process
using a traversal of binary retrieval trees (tries), where a coin flip of “heads” is analogous
to descending one direction in the trie, and a flip of “tails” corresponds to descending in the
other direction. The involvement of a demon makes the present algorithm more complicated
and realistic than the traditional trie algorithm. As another feature of the generality of our
analysis, the coins used in the selection can be either unbiased (i.e., p = q = 1/2) or biased
(p, q 6= 1/2).
We are able to give the complete distribution and all moments of the number of survivors in
a selection algorithm that occurs in the presence of a demon.

2. Selection Algorithm

At the start of the selection algorithm, n people are present. Each person flips a coin with
probability q of heads and p of tails. If all n people flip tails, then they are all selected by the
algorithm and the selection process is finished. If j > 0 people flip heads, then these j people
remain in play, and the other n− j (who flipped tails) are eliminated from further play.
Then a demon arrives and, with probability ν, removes exactly one of the survivors, so j − 1
remain; he leaves the j survivors alone with probability µ = 1− ν. If he leaves the j survivors
alone, then these j survivors begin another round of coin flipping. If he removes a survivor
and j − 1 = 0 (i.e., no survivors remain) then the selection process is finished and nobody is
selected. If he removes a survivor and j − 1 > 0 (i.e., some survivors remain) then these j − 1
survivors begin another round of coin flipping.
The end of the algorithm can occur in two possible ways:
(1.) During a round of coin flipping, one or more people remain. All of the remaining people
simultaneously flip tails at this stage, and the algorithm ends. All of the people at this last
stage are selected by the algorithm.
(2.) During a visit by the demon, only one person is present, and this person is removed by
the demon. In this case, zero people are selected by the algorithm.
Here is a pseudocode interpretation of the selection process:
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begin round with n people

all n people flip coins

if all n get tails, then

all n are selected, and the algorithms ends;

else if j > 0 get heads and n− j get tails, then

with probability µ = 1− ν:
the demon leaves the j survivors alone;

begin a new round with j people

otherwise (i.e., with probability ν):
the demon removes one of the j survivors;

if j − 1 = 0 then 0 people are selected, and the algorithm ends;

else (i.e., if j − 1 > 0) then begin a new round with j − 1 people

end if

end round

All of the coin flips are conducted independently. Each person’s flips are independent of every
other person’s flips, and subsequent flips by each person are independent too.

Example 2.1. Suppose that the probability of heads is q = 1/3 and the probability of tails
is p = 2/3. Suppose that the demon appears with probability ν = 1/5. Then the selection
algorithm might proceed as follows:
Initially 100 people are present. Exactly 31 of them flip heads (happens with probability(
100
31

)
q31p69), and then the demon arrives (happens with probability 1/5) and removes one of

the 31 survivors. So the next round begins with 30 people.
Exactly 12 of the remaining 30 people flip heads (happens with probability

(
30
12

)
q12p18), and

then the demon leaves the survivors alone (happens with probability 4/5). So the next round
begins with 12 people.
Exactly 3 of the remaining 12 people flip heads (happens with probability

(
12
3

)
q3p9), and then

the demon leaves the survivors alone (happens with probability 4/5). So the next round begins
with 3 people.
All 3 remaining people flip tails (happens with probability

(
3
0

)
q0p3), and all three are selected

by the algorithm.

3. Notation Table

Most of the following definitions are already embedded at the appropriate places in the analysis.
For the reader’s convenience, we also summarize many of the terminologies used, in one succinct
location. For the convenience of someone who already read [LP08], we preserve some of
Louchard and Prodinger’s earlier notation.

n := number of people present at the start of the selection algorithm

q := probability that a coin flip shows heads,

so the corresponding person advances

p := 1− q,probability that a coin flip shows tails,

so the corresponding person is eliminated

ν := probability that, during a visit by the demon, one survivor is removed
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µ := 1− ν, probability that the demon does not remove a survivor during a visit

Xn := number of people selected by the algorithm, with n initial participants

π(n,m, j) := probability the algorithm selects m of the initial n people and requires j rounds

by convention, π(0, 0, 1) = 1, and otherwise π(0,m, j) = 0; thus F0(u, v) = v

π(n,m) := P(Xn = m)

= probability that the algorithm selects m of the initial n people;

by convention, π(0, 0) = 1, and π(0,m) = 0 for m 6= 0; thus F0(u) = 1

Fn(u, v) :=

∞∑
m=0

∞∑
j=0

π(n,m, j)umvj

Fn(u) := Fn(u, 1) =

∞∑
m=0

π(n,m)um =

∞∑
m=0

P(Xn = m)um

Q := 1/q

L := lnQ

χl := 2lπi/L

Hj :=

j∑
k=1

1

k
is the jth harmonic number

xj :=

j−1∏
l=0

(x− l) = (x)(x− 1)(x− 2) · · · (x− j + 1) is the jth falling power of x

E[X
j
n] := E

[
j−1∏
l=0

(Xn − l)

]
= E[(Xn)(Xn − 1)(Xn − 2) · · · (Xn − j + 1)]

is the jth factorial moment of the random variable Xn

i.e., the expected value of the jth falling power of Xn

We utilize some concepts from the theory of q-analysis. Since the value of q is fixed, we
suppress the dependence on q. For positive integers n, we use the q-Pochhammer symbol

(x)n :=

n−1∏
j=0

(1− xqj) = (1− x)(1− xq)(1− xq2) · · · (1− xqn−1).

We also define (x)∞ :=
∏∞
j=0(1− xqj) = limn→∞(x)n. For complex-valued z, we define

(x)z :=
(x)∞

(xqz)∞
.

4. Results

The sth factorial moment E[X
s
n] of the number of people selected at the end of the selection

algorithm has the form ∼ const + δ(logQ n) + o(1), where δ is a fluctuating function.
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Theorem 4.1. The sth factorial moment of the number of people Xn selected by the algorithm,
when beginning with n participants, is

E[Xs
n] =

(Qp)s

L

[
(µq)∞
(q)∞

(s− 1)! + s(−1)s−1
∑
j≥s−1

js−1
[
L

(µq)j
(q)j

(∑
l≥1

µqj+l

1− µqj+l
−
∑
l≥1

qj+l

1− qj+l

)

+

(
(µq)∞
(q)∞

− (µq)j
(q)j

)
(Hj −Hj−s+1)

]]
+
∑
l 6=0

φs,l(n) +O(n−1),

where

φs,l(n) =
(Qp)s(−1)s

L

(
(µq)∞
(q)∞

χ
s
l + s

∑
j≥0

(
(µq)j
(q)j

− (µq)∞
(q)∞

)(
js−1 − (j + χl)

s−1
))

× Γ(−χl)e2lπi logQ n.

Note that e2lπi logQ n is fluctuating, with |e2lπi logQ n| = 1.
The distribution P (Xn > r) of the number of people selected at the end of the selection
algorithm also has the form ∼ const + δ(logQ n) + o(1), where δ is a fluctuating function.

Theorem 4.2. The distribution of the number of people Xn selected by the algorithm, when
beginning with n participants, is

P (Xn > r) =
(µq)∞
L(q)∞

[
L−

r∑
s=1

ps

s
− νpr

r + 1
−Q(−p)r+1

∑
m≥2

(1/µ)m(µq)m

(q)m

×
( r∑
s=1

(−1)s

s

q(m−1)(r−s)

(1− qm−1)r−s+1
+
q(m−1)r(m− 1)L

(1− qm−1)r+1

)]
+
∑
l 6=0

Φr,l(n) +O(n−1),

where

Φr,l(n) =
Q

L

(µq)∞
(q)∞

(
−q

r∑
s=1

χ
s
l

s!
(−p)s + (−p)rνq

χ
r+1

l

(r + 1)!

+ (−p)r+1
∑
m≥2

(1/µ)m(µq)m

(q)m

(
q(m−1)r

(1− qm−1)r+1
−

r∑
s=0

χ
s
l

s!

q(m−1)(r−s)

(1− qm−1)r−s+1

))
× Γ(−χl)e2lπi logQ n.

Note that e2lπi logQ n is fluctuating, with |e2lπi logQ n| = 1.

5. Asymptotic Moments Of The Number Of Survivors

5.1. Derivation of Generating Functions. We next establish an exact formula for the bi-
variate generating function Fn(u, v) that describes the probabilities associated with the number
of survivors and the number of rounds in the entire algorithm.

Lemma 5.1. Let Fn(u, v) be a bivariate generating function such that the coefficient of umvj

is the probability that, in the algorithm, exactly m people are ultimately selected and exactly j
rounds are used to complete the election. Then

(1) Fn(u, v) =

n∑
k=0

(
n

k

)(
v(−q)k (v)k

(µvq)k
+ (−q)k−1 (vq)k−1

(µqv)k

k−1∑
j=0

(1− pu)jpv(u− 1)(µqv)j
qj(vq)j

)
.
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The proof of Lemma 5.1 utilizes some recurrences associated with Fn(u, v). The proof is given
in Section 7.

Corollary 5.2. Setting u = 1 in Lemma 5.1, we obtain

(2) Fn(1, v) =

n∑
k=0

(
n

k

)
v(−q)k (v)k

(µvq)k
.

This verifies that our results about the number of rounds agrees with the results from our
previous paper.

During the remainder of the paper, we no longer pay attention to the number of rounds. We
focus exclusively on the number of survivors.

Lemma 5.3. The sth factorial moment of Xn is

(3) E[Xs
n] =

n∑
k=1

(
n

k

)
(−1)k−1ϕs(k),

with

(4) ϕs(z) = qz
(q)z−1
(µq)z

s(Qp)s(−1)s−1ψs(z),

and

ψs(z) =
(µq)∞
(q)∞

zs

s
+
∑
j≥0

[(
(µq)j
(q)j

− (µq)∞
(q)∞

)
js−1 −

(
(µq)j+z
(q)j+z

− (µq)∞
(q)∞

)
(j + z)s−1

]
.

5.2. Asymptotics. Now we turn our attention to the asymptotic moments of the number
of survivors in the algorithm as the number n of initial participants grows large. We note

that (q)z−1 = (q)∞
(1−qz)(qz+1)∞

, so ϕs(z) has a simple pole at each of the locations of the form

z = m + 2lπi
L for l,m ∈ Z with m ≤ 0. By Theorem 2 of [FS95], we can restrict attention to

the poles where m = 0, i.e., where z = χl for l ∈ Z. Thus

E[Xs
n] =

∑
l∈Z

Res
z=χl

[
ϕs(z)

n!(−1)n

(z)(z − 1) · · · (z − n)

]
+O(n−1).

We need the local expansion of ϕs(z) and thus ψs(z) around z = 0 to two terms, since
ϕs(z)

n!
(z)(z−1)···(z−n) has a double pole at z = 0, but only a simple pole at z = χl for l 6= 0. As

z → 0,

(µq)j+z
(q)j+z

∼ (µq)j
(q)j

[
1− zL

∑
l≥1

µqj+l

1− µqj+l
+ zL

∑
l≥1

qj+l

1− qj+l

]
,

and

(j + z)s−1 ∼ js−1 [1 + z(Hj −Hj−s+1)] .
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Thus

ψs(z) ∼
(µq)∞
(q)∞

(−1)s−1(s− 1)!

s
z +

∑
j≥s−1

[(
(µq)j
(q)j

− (µq)∞
(q)∞

)
js−1

−
(

(µq)j
(q)j

[
1− zL

∑
l≥1

µqj+l

1− µqj+l
+ zL

∑
l≥1

qj+l

1− qj+l

]
− (µq)∞

(q)∞

)

× js−1 [1 + z(Hj −Hj−s+1)]

]
.

More simply, as z → 0,

ψs(z) ∼ z
[

(µq)∞
(q)∞

(−1)s−1(s− 1)!

s
+
∑
j≥s−1

js−1
[
L

(µq)j
(q)j

(∑
l≥1

µqj+l

1− µqj+l
−
∑
l≥1

qj+l

1− qj+l

)

+

(
(µq)∞
(q)∞

− (µq)j
(q)j

)
(Hj −Hj−s+1)

]]
.

Notice the absence of the constant term! Substituting into the definition of ϕs(z) in (4), it
follows that

ϕs(z) ∼ qz
(q)z−1
(µq)z

s(Qp)s(−1)s−1 × z
[

(µq)∞
(q)∞

(−1)s−1(s− 1)!

s

+
∑
j≥s−1

js−1
[
L

(µq)j
(q)j

(∑
l≥1

µqj+l

1− µqj+l
−
∑
l≥1

qj+l

1− qj+l

)

+

(
(µq)∞
(q)∞

− (µq)j
(q)j

)
(Hj −Hj−s+1)

]]
as z → 0. Also z(q)z−1 ∼ 1/L and (µq)z ∼ 1, so

ϕs(z) ∼
(Qp)s

L

[
(µq)∞
(q)∞

(s− 1)! + s(−1)s−1
∑
j≥s−1

js−1
[
L

(µq)j
(q)j

(∑
l≥1

µqj+l

1− µqj+l
−
∑
l≥1

qj+l

1− qj+l

)

+

(
(µq)∞
(q)∞

− (µq)j
(q)j

)
(Hj −Hj−s+1)

]]
as z → 0. Also n!(−1)n

(z−1)···(z−n) ∼ 1 as z → 0. Therefore

Res
z=0

[
ϕs(z)

n!(−1)n

(z)(z − 1) · · · (z − n)

]
= lim
z→0

ϕs(z)

=
(Qp)s

L

[
(µq)∞
(q)∞

(s− 1)! + s(−1)s−1
∑
j≥s−1

js−1

×
[
L

(µq)j
(q)j

(∑
l≥1

µqj+l

1− µqj+l
−
∑
l≥1

qj+l

1− qj+l

)

+

(
(µq)∞
(q)∞

− (µq)j
(q)j

)
(Hj −Hj−s+1)

]]
.
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So the sth factorial moment E[X
s
n] of the number of people selected by the algorithm, when

the algorithm begins with n participants, is

E[Xs
n] =

(Qp)s

L

[
(µq)∞
(q)∞

(s− 1)! + s(−1)s−1
∑
j≥s−1

js−1
[
L

(µq)j
(q)j

(∑
l≥1

µqj+l

1− µqj+l
−
∑
l≥1

qj+l

1− qj+l

)

+

(
(µq)∞
(q)∞

− (µq)j
(q)j

)
(Hj −Hj−s+1)

]]
+
∑
l 6=0

φ̃s,l(n) +O(n−1),

where

φ̃s,l(n) = Res
z=χl

[
ϕs(z)

n!(−1)n

(z)(z − 1) · · · (z − n)

]
= Res
z=χl

[(q)z−1]
qχlsps

(µq)χl
qs

(−1)s−1ψs(χl)
n!(−1)n

(χl)(χl − 1) · · · (χl − n)

=
(Qp)s(−1)s

L

(
(µq)∞
(q)∞

χ
s
l + s

∑
j≥0

(
(µq)j
(q)j

− (µq)∞
(q)∞

)(
js−1 − (j + χl)

s−1
))

× Γ(−χl)e2lπi logQ n
(
1 +O(n−1)

)
.

Note that e2lπi logQ n is fluctuating, with |e2lπi logQ n| = 1. This completes the proof of Theo-
rem 4.1.

6. Asymptotic Distribution Of The Number Of Survivors

6.1. Derivation of the Distribution of the Number Of Survivors. Now we derive
an exact formula for the distribution of the number of survivors selected at the end of the
algorithm.

Lemma 6.1. Let r ≥ 0. The probability that strictly more than r out of n initial participants
are selected at the end of the algorithm is
(5)

P (Xn > r) =

n∑
k=1

(
n

k

)
(−q)k−1 (q)k−1

(µq)k
pr+1(−1)r

(µq)∞
(q)∞

∑
m≥0

(1/µ)m(µq)m

(q)m

k−1∑
j=0

(
j

r

)(
qj
)m−1

.

The proof of Lemma 6.1 utilizes the q-binomial theorem; see Section 7.

Lemma 6.2. The distribution of Xn has the form

(6) P (Xn > r) =

n∑
k=1

(
n

k

)
(−1)k−1%r(k),

with

(7) %r(z) = qz−1
(q)z−1
(µq)z

pr+1(−1)rΨr(z),
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and

Ψr(z) =
(µq)∞
(q)∞

(
q

(−p)r+1

(
1−

r∑
s=0

zs

s!
q−z(−p)s

)
+

(µ− 1)q

p

zr+1

(r + 1)!

+
∑
m≥2

(1/µ)m(µq)m

(q)m

(
q(m−1)r

(1− qm−1)r+1
−

r∑
s=0

zs

s!

q(m−1)(z+r−s)

(1− qm−1)r−s+1

))
.

6.2. Asymptotics. Now we turn our attention to the asymptotic distribution of the number
of survivors in the algorithm as the number n of initial participants grows large. We follow

the derivation for the Rice Method discussed in Section 5. As before, (q)z−1 = (q)∞
(1−qz)(qz+1)∞

,

so %r(z) has a simple pole at each of the locations of the form z = m+ 2lπi
L for l,m ∈ Z with

m ≤ 0. Again, by [FS95], we focus on the poles z = χl for l ∈ Z. Thus

P (Xn > r) =
∑
l∈Z

Res
z=χl

[
%r(z)

n!(−1)n

(z)(z − 1) · · · (z − n)

]
+O(n−1).

Similar to the derivation in Section 5, we need the local expansion of %r(z) and thus Ψr(z)
around z = 0 to two terms, since %r(z)

n!
(z)(z−1)···(z−n) has a double pole at z = 0, but only a

simple pole at z = χl for l 6= 0. As z → 0,

r∑
s=0

zs

s!
q−z(−p)s ∼ 1− z

r∑
s=1

ps

s
+ zL,

zr+1

(r + 1)!
∼ z (−1)r

(r + 1)
,

and

r∑
s=0

zs

s!

q(m−1)(z+r−s)

(1− qm−1)r−s+1
∼ q(m−1)r

(1− qm−1)r+1

+ z

r∑
s=1

(−1)s−1

s

q(m−1)(r−s)

(1− qm−1)r−s+1
− z q

(m−1)rL(m− 1)

(1− qm−1)r+1
.

Thus

Ψr(z) ∼
(µq)∞
(q)∞

(
q

(−p)r+1

(
z

r∑
s=1

ps

s
− zL

)
+

(µ− 1)q

p
z

(−1)r

(r + 1)

+
∑
m≥2

(1/µ)m(µq)m

(q)m

(
−z

r∑
s=1

(−1)s−1

s

q(m−1)(r−s)

(1− qm−1)r−s+1
+ z

q(m−1)rL(m− 1)

(1− qm−1)r+1

))
.

More simply, as z → 0,

Ψr(z) ∼ z
(µq)∞
(q)∞

[
q(−1)r

pr+1

(
L−

r∑
s=1

ps

s

)
− (1− µ)q

p

(−1)r

(r + 1)

+
∑
m≥2

(1/µ)m(µq)m

(q)m

( r∑
s=1

(−1)s

s

q(m−1)(r−s)

(1− qm−1)r−s+1
+
q(m−1)r(m− 1)L

(1− qm−1)r+1

)]
.
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As before, notice the absence of the constant term. Substitution into (7) yields

%r(z) ∼ qz−1
(q)z−1
(µq)z

pr+1(−1)r

× z (µq)∞
(q)∞

[
q(−1)r

pr+1

(
L−

r∑
s=1

ps

s

)
− (1− µ)q

p

(−1)r

(r + 1)

+
∑
m≥2

(1/µ)m(µq)m

(q)m

( r∑
s=1

(−1)s

s

q(m−1)(r−s)

(1− qm−1)r−s+1
+
q(m−1)r(m− 1)L

(1− qm−1)r+1

)]
as z → 0. Also z(q)z−1 ∼ 1/L and (µq)z ∼ 1, so

%r(z) ∼
(µq)∞
L(q)∞

[
L−

r∑
s=1

ps

s
− νpr

r + 1

−Q(−p)r+1
∑
m≥2

(1/µ)m(µq)m

(q)m

( r∑
s=1

(−1)s

s

q(m−1)(r−s)

(1− qm−1)r−s+1
+
q(m−1)r(m− 1)L

(1− qm−1)r+1

)]
as z → 0. Also n!(−1)n

(z−1)···(z−n) ∼ 1 as z → 0. Therefore

Res
z=0

[
%r(z)

n!(−1)n

(z)(z − 1) · · · (z − n)

]
= lim
z→0

%r(z)

=
(µq)∞
L(q)∞

[
L−

r∑
s=1

ps

s
− νpr

r + 1
−Q(−p)r+1

∑
m≥2

(1/µ)m(µq)m

(q)m

×
( r∑
s=1

(−1)s

s

q(m−1)(r−s)

(1− qm−1)r−s+1
+
q(m−1)r(m− 1)L

(1− qm−1)r+1

)]
.

So

P (Xn > r) =
(µq)∞
L(q)∞

[
L−

r∑
s=1

ps

s
− νpr

r + 1
−Q(−p)r+1

∑
m≥2

(1/µ)m(µq)m

(q)m

×
( r∑
s=1

(−1)s

s

q(m−1)(r−s)

(1− qm−1)r−s+1
+
q(m−1)r(m− 1)L

(1− qm−1)r+1

)]
+
∑
l 6=0

Φ̃r,l(n) +O(n−1),

where

Φ̃r,l(n) = Res
z=χl

[
%r(z)

n!(−1)n

(z)(z − 1) · · · (z − n)

]
= Res
z=χl

[(q)z−1]
qχl−1pr+1

(µq)χl

(−1)rΨr(χl)
n!(−1)n

(χl)(χl − 1) · · · (χl − n)

=
Q

L

(µq)∞
(q)∞

(
−q

r∑
s=1

χ
s
l

s!
(−p)s + (−p)rνq

χ
r+1

l

(r + 1)!

+ (−p)r+1
∑
m≥2

(1/µ)m(µq)m

(q)m

(
q(m−1)r

(1− qm−1)r+1
−

r∑
s=0

χ
s
l

s!

q(m−1)(r−s)

(1− qm−1)r−s+1

))
× Γ(−χl)e2lπi logQ n

(
1 +O(n−1)

)
.
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Note that e2lπi logQ n is fluctuating, with |e2lπi logQ n| = 1. This completes the proof of Theo-
rem 4.2

7. Proofs

Proof. (Proof of Lemma 5.1.)
When starting with n participants, if all n participants are simultaneously eliminated by
coin flipping, then these n participants are selected by the algorithm; this corresponds to
the term

(
n
0

)
q0pnunv in recurrence (8) below. If exactly j participants obtain heads, with

1 ≤ j ≤ n, then the demon arrives and removes one additional participant with probability ν,
or leaves the j remaining participants alone with probability µ. This phenomenon corresponds
to v

∑n
j=1

(
n
j

)
qjpn−j(νFj−1(u, v) + µFj(u, v)) in formula (8). (Note that, since F0(u, v) = v,

the recurrence below also holds when n = 0.) So the recurrence

(8) Fn(u, v) =

(
n

0

)
q0pnunv + v

n∑
j=1

(
n

j

)
qjpn−j(νFj−1(u, v) + µFj(u, v))

holds for all integers n ≥ 0. More simply,

(9) Fn(u, v) = v

(
pnun +

n∑
j=1

(
n

j

)
qjpn−j(νFj−1(u, v) + µFj(u, v))

)
.

Next we define the exponential generating function

G(z, u, v) :=

∞∑
n=0

Fn(u, v)
zn

n!
.

From the recurrence in (9), it follows that

G(z, u, v) = v

∞∑
n=0

(
pnun +

n∑
j=1

(
n

j

)
qjpn−j(νFj−1(u, v) + µFj(u, v))

)
zn

n!

= v

(
epuz +

∞∑
j=1

qjzj(νFj−1(u, v) + µFj(u, v))

∞∑
n=j

(
n

j

)
pn−j

zn−j

n!

)

= v

(
epuz + epz

∞∑
j=1

(qz)j

j!
(νFj−1(u, v) + µFj(u, v))

)

= v

(
epuz + epz

(
νq

∫
G(qz, u, v) dz + µG(qz, u, v)− µv

))
.(10)

The generating function G(z, u, v) becomes simpler if we replace the fixed number n of people
present at the start of the algorithm by a Poisson number of participants with mean z. For
this reason, we replace G(z, u, v) by the Poissonized exponential generating function,

D(z, u, v) := G(z, u, v)e−z =

∞∑
n=0

Dn(u, v)
zn

n!
.

From (10), it follows that

(11) D(z, u, v) = ve(pu−1)z + ve−qz
(
νq

∫
G(qz, u, v) dz + µG(qz, u, v)− µv

)
.
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We use a succinct notation for differentiation with respect to the first of three variables:

D′(z, u, v) :=
d

dz
D(z, u, v)

and

G′(z, u, v) :=
d

dz
G(z, u, v).

Differentiating both sides of (11) with respect to z yields

D′(z, u, v) = (pu− 1)ve(pu−1)z − vqe−qz
(
νq

∫
G(qz, u, v) dz + µG(qz, u, v)− µv

)
+ ve−qz (νqG(qz, u, v) + µqG′(qz, u, v)) .

It follows that

D′(z, u, v) + qD(z, u, v) = µqvD′(qz, u, v) + qvD(qz, u, v) + e(pu−1)zpv(u− 1).

For n ≥ 1, extracting the coefficient of zn−1

(n−1)! from D(z, u, v) =
∑∞
n=0Dn(u, v) z

n

n! yields

Dn(u, v) + qDn−1(u, v) = µqvDn(u, v)qn−1 + qvDn−1(u, v)qn−1 + (pu− 1)n−1pv(u− 1),

or equivalently,

Dn(u, v) = Dn−1(u, v)
vqn − q

1− µvqn
+

(pu− 1)n−1pv(u− 1)

1− µvqn
.

Iterating this recurrence yields

Dn(u, v) = v(−q)n (v)n
(µvq)n

+

n−1∑
j=0

(pu− 1)jpv(u− 1)
∏n
k=j+2(vqk − q)∏n

l=j+1(1− µvql)

= v(−q)n (v)n
(µvq)n

+ (−q)n−1 (vq)n−1
(µqv)n

n−1∑
j=0

(1− pu)jpv(u− 1)(µqv)j
qj(vq)j

.

Note that Fn(u, v) =
∑n
k=0

(
n
k

)
Dk(u, v), so Lemma 5.1 follows. �

Proof. (Proof of Lemma 5.3.) Setting v = 1 in Lemma 5.1, it follows that

Fn(u) = Fn(u, 1)

=

n∑
k=0

(
n

k

)(
(−q)k (1)k

(µq)k
+ (−q)k−1 (q)k−1

(µq)k

k−1∑
j=0

(1− pu)jp(u− 1)(µq)j
qj(q)j

)

= 1 +

n∑
k=1

(
n

k

)
(−q)k−1 (q)k−1

(µq)k

k−1∑
j=0

(1− pu)jp(u− 1)(µq)j
qj(q)j

.(12)

It follows that, for s ≥ 1,

(13) F (s)
n (1) =

n∑
k=1

(
n

k

)
(−1)k−1qk

(q)k−1
(µq)k

s(Qp)s(−1)s−1
k−1∑
j=0

(µq)j
(q)j

js−1.

12



Dissecting the summation over j in (13), we obtain

k−1∑
j=0

(µq)j
(q)j

js−1 =
(µq)∞
(q)∞

k−1∑
j=0

js−1 +

k−1∑
j=0

[
(µq)j
(q)j

− (µq)∞
(q)∞

]
js−1

=
(µq)∞
(q)∞

ks

s
+
∑
j≥0

[
(µq)j
(q)j

− (µq)∞
(q)∞

]
js−1 −

∑
j≥k

[
(µq)j
(q)j

− (µq)∞
(q)∞

]
js−1

=
(µq)∞
(q)∞

ks

s
+
∑
j≥0

[
(µq)j
(q)j

− (µq)∞
(q)∞

]
js−1 −

∑
j≥0

[
(µq)j+k
(q)j+k

− (µq)∞
(q)∞

]
(j + k)s−1

=
(µq)∞
(q)∞

ks

s
+
∑
j≥0

[(
(µq)j
(q)j

− (µq)∞
(q)∞

)
js−1 −

(
(µq)j+k
(q)j+k

− (µq)∞
(q)∞

)
(j + k)s−1

]
.

Finally, we observe that, since Fn(u) =
∑∞
m=0 π(n,m)um, then F

(s)
n (1) =

∑∞
m=0m

sπ(n,m) =
E[X

s
n]. Thus E[X

s
n] has the representation given in the statement of Lemma 5.3. �

Proof. (Proof of Lemma 6.1.) First of all,

P (Xn > r) =
∑
m>r

π(n,m) = 1−
r∑

m=0

π(n,m).

Note that
∑r
m=0 π(n,m) = [ur]Fn(u)

1−u , and of course 1 = [ur] 1
1−u , so

P (Xn > r) = [ur]
1− Fn(u)

1− u

= [ur]
Fn(u)− 1

u− 1

= [ur]

n∑
k=1

(
n

k

)
(−q)k−1 (q)k−1

(µq)k

k−1∑
j=0

(1− pu)jp(µq)j
qj(q)j

by equation (12)

=

n∑
k=1

(
n

k

)
(−q)k−1 (q)k−1

(µq)k
pr+1(−1)r

k−1∑
j=0

(
j

r

)
(µq)j
qj(q)j

.(14)

We focus on the second summation in (14). Recall that (x)z := (x)∞/(xq
z)∞, so

(15)
(µq)j
(q)j

=
(µq)∞
(q)∞

(qj+1)∞
(µqj+1)∞

.

Also, the q-binomial theorem states (az)∞
(z)∞

=
∑
m≥0

(a)m
(q)m

zm. Specifying z = µqj+1 and a =

1/µ,

(16)
(qj+1)∞

(µqj+1)∞
=
∑
m≥0

(1/µ)m
(q)m

(
µqj+1

)m
.
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Combining (15) and (16) yields

k−1∑
j=0

(
j

r

)
(µq)j
qj(q)j

=

k−1∑
j=0

(
j

r

)
q−j

(µq)∞
(q)∞

∑
m≥0

(1/µ)m
(q)m

(
µqj+1

)m
=

(µq)∞
(q)∞

∑
m≥0

(1/µ)m(µq)m

(q)m

k−1∑
j=0

(
j

r

)(
qj
)m−1

.(17)

Thus

P (Xn > r) =

n∑
k=1

(
n

k

)
(−q)k−1 (q)k−1

(µq)k
pr+1(−1)r

(µq)∞
(q)∞

∑
m≥0

(1/µ)m(µq)m

(q)m

k−1∑
j=0

(
j

r

)(
qj
)m−1

,

as claimed in the Lemma. �

Proof. (Proof of Lemma 6.2.) Let r ≥ 0. The probability that strictly more than r out of n
initial participants are selected at the end of the algorithm is
(18)

P (Xn > r) =

n∑
k=1

(
n

k

)
(−q)k−1 (q)k−1

(µq)k
pr+1(−1)r

(µq)∞
(q)∞

∑
m≥0

(1/µ)m(µq)m

(q)m

k−1∑
j=0

(
j

r

)(
qj
)m−1

.

We handle the sum over m in Lemma 6.1 in three parts, m = 0, m = 1, or m ≥ 2, as follows∑
m≥0

(1/µ)m(µq)m

(q)m

k−1∑
j=0

(
j

r

)(
qj
)m−1

=

k−1∑
j=0

(
j

r

)
q−j +

(1− 1/µ)(µq)

(1− q)

k−1∑
j=0

(
j

r

)
+
∑
m≥2

(1/µ)m(µq)m

(q)m

k−1∑
j=0

(
j

r

)(
qj
)m−1

=

k−1∑
j=0

(
j

r

)
q−j +

(µ− 1)q

p

kr+1

(r + 1)!
+
∑
m≥2

(1/µ)m(µq)m

(q)m

k−1∑
j=0

(
j

r

)(
qj
)m−1

.(19)

Now we focus attention on the sums of the form
∑k−1
j=0

(
j
r

)
xj . Writing D = d

dx , we note

(20)

k−1∑
j=0

(
j

r

)
xj =

xr

r!

k−1∑
j=0

jrxj−r =
xr

r!

k−1∑
j=0

Drxj =
xr

r!
Dr

k−1∑
j=0

xj =
xr

r!
Dr 1− xk

1− x
.

The remainder of the analysis does not depend on k being an integer. We have

xr

r!
Dr 1− xk

1− x
=
xr

r!

r∑
s=0

(
r

s

)
Ds(1− xk) ·Dr−s

(
1

1− x

)

=
xr

r!
(1− xk) · r!

(1− x)r+1
− xr

r!

r∑
s=1

(
r

s

)
ksxk−s · (r − s)!

(1− x)r−s+1

=
xr

(1− x)r+1
− xrxk

(1− x)r+1
−

r∑
s=1

ks

s!

xk+r−s

(1− x)r−s+1

=
xr

(1− x)r+1
−

r∑
s=0

ks

s!

xk+r−s

(1− x)r−s+1
.(21)
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Thus, combining (20) and (21) with x = qm−1, we can simplify the “m ≥ 2” term of (19), as
follows:

(22)

k−1∑
j=0

(
j

r

)(
qj
)m−1

=
q(m−1)r

(1− qm−1)r+1
−

r∑
s=0

ks

s!

q(m−1)(k+r−s)

(1− qm−1)r−s+1
.

For m = 0, the analogous equation is

k−1∑
j=0

(
j

r

)
q−1 =

q−r

(1− q−1)r+1
−

r∑
s=0

ks

s!

q−(k+r−s)

(1− q−1)r−s+1

=
q

(−p)r+1

(
1−

r∑
s=0

ks

s!
q−k(−p)s

)
.(23)

Plugging the results from (22) and (23) into (19), we get∑
m≥0

(1/µ)m(µq)m

(q)m

k−1∑
j=0

(
j

r

)(
qj
)m−1

=
q

(−p)r+1

(
1−

r∑
s=0

ks

s!
q−k(−p)s

)
+

(µ− 1)q

p

kr+1

(r + 1)!

+
∑
m≥2

(1/µ)m(µq)m

(q)m

q(m−1)r

(1− qm−1)r+1

−
r∑
s=0

ks

s!

q(m−1)(k+r−s)

(1− qm−1)r−s+1
.

Finally, a substitution into the form of P (Xn > r) in Lemma 6.1 yields Lemma 6.2. �

8. Future Problems

A key problem for future analysis involves a more robust demon, who might be able to remove
more than one participant at a time. Another problem to be studied in the future might
involve replacing the 2-outcome coins (heads versus tails) with a coin that itself involves some
uncertainty. Another interpretation of this extension is that the parameters p and q are
unknown before the coin is flipped. Many other possibilities exist for generalizing the present
algorithm.
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