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Abstract. A generalized Filbert matrix is introduced, sharing properties of the Hilbert
matrix and Fibonacci numbers. Explicit formulæ are derived for the LU-decomposition
and their inverses, as well as the Cholesky decomposition. The approach is to use q-
analysis and to leave the justification of the necessary identities to the q-version of Zeil-
berger’s celebrated algorithm.

1. Introduction

The Filbert (=F ibonacci-Hilbert) matrix Hn =
(
ȟij

)n

i,j=1
is defined by ȟij = 1

Fi+j−1
as an

analogue of the Hilbert matrix where Fn is the nth Fibonacci number. It has been defined
and studied by Richardson [6].

In [1], Kilic and Prodinger studied the generalized matrix with entries 1
Fi+j+r

, where

r ≥ −1 is an integer parameter. They gave its LU factorization and, using this, computed
its determinant and inverse. Also the Cholesky factorization was derived. After this
generalization, Prodinger [5] defined a new generalization of the generalized Filbert matrix
by introducing 3 additional parameters. Again, explicit formulæ for the LU-decomposition,
their inverses, and the Cholesky factorization were derived.

In this paper we will consider a further generalization of the generalized Filbert Matrix
F with entries 1

Fi+j+r
, where r ≥ −1 is an integer parameter. We define the matrix Q with

entries hij as follows

hij =
1

Fi+j+rFi+j+r+1 . . . Fi+j+r+k−1

,

where r ≥ −1 is an integer parameter and k ≥ 0 is an integer parameter.
When k = 1, we get the generalized Filbert Matrix F, as studied before.
In this paper we shall derive explicit formulæ for the LU-decomposition and their in-

verses. Similarly to the results of [1], the size of the matrix does not really matter, and we
can think about an infinite matrix Q and restrict it whenever necessary to the first n rows
resp. columns and write Qn. All the identities we will obtain hold for general q, and results
about Fibonacci numbers come out as corollaries for the special choice of q. The entries of
the inverse matrix Q−1

n are not closed form expressions, as in our previous paper, but can
only be given as a (simple) sum. We also provide the Cholesky decomposition.

Our approach will be as follows. We will use the Binet form

Fn =
αn − βn

α− β
= αn−1 1− qn

1− q
,

with q = β/α = −α−2, so that α = i/
√

q.
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Throughout this paper we will use the following notations: the q-Pochhammer symbol
(x; q)n = (1− x)(1− xq) . . . (1− xqn−1) and the Gaussian q-binomial coefficients[

n

k

]
=

(q; q)n

(q; q)k(q; q)n−k

.

Considering the definitions of the matrix Q and q-Pochhammer symbol, we rewrite the
matrix Q = [hij] as

hij = i−
k(k−1)

2
−k(i+j+r−1)q

k(k−1)
4

+
k(i+j+r−1)

2

(1− q)k (q; q)i+j+r−1

(q; q)i+j+k+r−1

.

We call the matrix Hn the q-Pilbert (=Pochhammer-Hilbert) matrix.
Furthermore, we will use Fibonomial coefficients{

n

k

}
=

FnFn−1 . . . Fn−k+1

F1 . . . Fk

.

The link between the two notations is{
n

k

}
= αk(n−k)

[
n

k

]
with q = −α−2.

In the sequel, we list all our results. Proofs are given in the following section, and they are
all applications of the q-version of Zeilberger’s algorithm. This link between mathematics
and computer proofs makes this article an appropriate choice for the present journal.

We will obtain the LU-decomposition Q = L · U :

Theorem 1. For 1 ≤ d ≤ n we have

Ln,d = ik(d−n)q
k(n−d)

2

[
n− 1

d− 1

][
2d + k + r − 1

d + r

][
n + d + r + k − 1

n + r

]−1

and its Fibonacci corollary

Ln,d =

{
n− 1

d− 1

}{
2d + k + r − 1

d + r

}{
n + d + k + r − 1

n + r

}−1

.

Theorem 2. For 1 ≤ d ≤ n we have

Ud,n = i
k
2
(3−k)−k(n+r+d)q

k
2 (d+n+r− 3

2
+ k

2 )−r−d+dr+d2 (1− q)k

(1− qn) (q; q)k−1

×
[
2d + r + k − 2

d + r

]−1[
n + d + r + k − 1

n

]−1[
n + r

d + r

]
and its Fibonacci corollary

Ud,n = (−1)r(d+1)

{
2d + r + k − 2

d + r

}−1{
n + d + r + k − 1

n

}−1{
n + r

d + r

}
× 1

Fn

(k−1∏
i=1

Fi

)−1

.

We could also determine the inverses of the matrices L and U :
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Theorem 3. For 1 ≤ d ≤ n we have

L−1
n,d = i(k+2)(d−n)q

1
2
(d−n)(d−k−n+1)

[
n− 1

d− 1

][
n + d + r + k − 2

d + r

]
×

[
2n + r + k − 2

n + r

]−1

and its Fibonacci corollary

L−1
n,d = (−1)(n+1)d+

n(n+1)
2

+
d(d+1)

2

{
n− 1

d− 1

}{
n + d + r + k − 2

d + r

}
×

{
2n + r + k − 2

n + r

}−1

.

Theorem 4. For 1 ≤ d ≤ n we have

U−1
d,n = (−1)

k(d+n+r)
2

−d+
k(k−3)

4
+n2

q−
n(n−1)

2
+r− k(d+n+r)

2
−n(d+r)+

d(d+1)
2

− k(k−3)
4

×
[
2n + r + k − 1

n

][
n + d + r + k − 2

d + r

][
n− 1

d− 1

]
(1− qn) (q; q)k−1

(1− q)k

and its Fibonacci corollary

U−1
d,n = (−1)

n(n+1)
2

+
d(d−1)

2
−n(d+r)+rFn

(k−1∏
v=1

Fv

)
×

{
2n + r + k − 1

n

}{
n + d + r + k − 2

d + r

}{
n− 1

d− 1

}
.

As a consequence, we can compute the determinant of Qn, since it is simply evaluated
as U1,1 · · ·Un,n (we only state the Fibonacci version):

Theorem 5.

det Qn =
(−1)

1
2
nr(n+3)(

k−1∏
v=1

Fv

)n

n∏
d=1

{
2d + k + r − 2

d + r

}−1{
2d + k + r − 1

d

}−1
1

Fd

.

Many similar (and most of them much deeper) determinant evaluations can be found
in [2]; not surprisingly, LU-decomposition is one of the important tools in this impressive
survey paper.

Now we compute the inverse of the matrix Q. This time it depends on the dimension,
so we compute (Qn)−1.

Theorem 6. For 1 ≤ i, j ≤ n:

(Qn)−1
i,j =

(q; q)k−1q
i2

2
− (k−1)i

2
− kr

2
+r− k2

4
+ 3k

4 (−1)i+jikr+ik+ k2

2
− 3k

2
+ j2

2
+

j(k+1)
2

(q; q)i+r(q; q)i−1(q; q)j−1(q; q)j+r(1− q)k

×
∑

max{i,j}≤h≤n

(1− q2h+r+k−1)(q; q)h−1(q; q)i+h+r+k−2(q; q)h+r

(q; q)h−i(q; q)h−j(q; q)h+r+k−1(q; q)h+k−2

q−hi−hj−hr.

Finally, we provide the Cholesky decomposition.
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Theorem 7. For i, j ≥ 1:

Ci,j =
(q; q)i+r(q; q)i−1

(q; q)i+j+k+r−1(q; q)i−j

(1− q)
k
2 q

j(j−1)
2

+ ki
2

+
k(k−3)

8
+ rj

2
+ kr

4
− r

2

× i−
k(k−3)

4
+ 3rk

2
−ik

√
(1− q2j+k+r−1)(q; q)j+k−2(q; q)j+k+r−1

(q; q)k−1(q; q)j−1(q; q)j+r

.

2. Proofs

In order to show that indeed Q = L · U , we need to show that for any m, n:∑
d

Lm,dUd,n = Qm,n = α−(m+n+r−1)k− k(k−1)
2

(q; q)m+n+r+k−1

(q; q)m+n+r−1 (1− q)k
.

In rewritten form the formula to be proved reads∑
d

q(d−1)(d+r)

[
m− 1

d− 1

][
2d + k + r − 1

d + r

][
m + d + r + k − 1

m + r

]−1

×
[
2d + r + k − 2

d + r

]−1[
n + d + k + r − 1

n

]−1[
n + r

d + r

]
=

[
m + n + k + r − 1

k

]−1
1− qn

1− qk
. (1)

For the verification of the last equation, let us denote the LHS of the equation (1) by SUMm,
then the Mathematica version of the q-Zeilberger algorithm [3] produces the recursion

SUMm =
1− qm+n+r−1

1− qk+m+n+r−1
SUMm−1.

(For m 6= 1, k + m + n + r − 1 6= 0.) So we compute (directly from the definition)

SUM1 = q(1+r)

[
r + k

1 + r

]−1[
n + k + r

n

]−1[
n + r

1 + r

]
=

(1− qn)(q; q)k−1(q; q)n+r

(q; q)n+k+r

and get

SUMm =
(q; q)m+n+r−1(q; q)k+n+r

(q; q)n+r(q; q)k+m+n+r−1

(1− qn)(q; q)k−1(q; q)n+r

(q; q)n+k+r

=
(q; q)m+n+r−1

(q; q)k+m+n+r−1

(1− qn)(q; q)k−1

=

[
m + n + k + r − 1

k

]−1
1− qn

1− qk
.

Note that nowadays, such identities are a routine verification using the q-Zeilberger
algorithm, as described in the book [4].
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For interest, we also state (as a corollary) the corresponding Fibonacci identity:∑
d

(−1)r(d+1)

{
m− 1

d− 1

}{
2d + k + r − 1

d + r

}{
m + d + r + k − 1

m + r

}−1

×
{

2d + r + k − 2

d + r

}−1{
n + d + k + r − 1

n

}−1{
n + r

d + r

}
=

Fn

Fk

{
m + n + k + r − 1

k

}−1

.

Now we move to the inverse matrices. Since L and L−1 are lower triangular matrices,
we only need to look at the entries indexed by (m, n) with m ≥ n:∑

n≤d≤m

Lm,dL
−1
d,n =

∑
n≤d≤m

(−1)d+n ik(3m+n)q
(n−d)2+k(m−n)+(n−d)

2

×
[
m− 1

d− 1

][
2d + k + r − 1

d + r

][
m + d + r + k − 1

m + r

]−1

×
[
d− 1

n− 1

][
n + d + r + k − 2

n + r

][
2d + r + k − 2

d + r

]−1

= (−1)n ik(n−m) (q; q)m−1

(q; q)n−1

(q; q)m+r

(q; q)n+r

×
∑

n≤d≤m

(−1)d q
(n−d)2+k(m−n)+(n−d)

2

×
(1− q2d+k+r−1) (q; q)d+k+n+r−2

(q; q)m−d (q; q)d−n (q; q)d+k+m+r−1

.

For the sum in the last expression, that is,∑
n≤d≤m

(−1)d q
(n−d)2+k(m−n)+(n−d)

2
(1− q2d+k+r−1) (q; q)d+k+n+r−2

(q; q)m−d (q; q)d−n (q; q)d+k+m+r−1

,

the q-Zeilberger algorithm evaluates it and give us 0 for m 6= n. For m = n, it is easy:

(−1)n(1− q2n+k+r−1)
(q; q)2n+k+r−2

(q; q)2n+k+r−1

= (−1)n.

In that case, the equality is valid as well and so the proof is complete.
Its Fibonacci corollary is

(−1)
(n+1)n

2

∑
n≤d≤m

(−1)
(d+1)d

2
F2d+r+k−1

Fd+k−1

{
m− 1

d− 1

}{
d− 1

n− 1

}

×
{

n + d + r + k − 2

n + r

}{
m + d + k + r − 1

m + r

}−1

= δn,m

where δn,m stands for the Kronecker delta.
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A similar argument for U · U−1 is as follows:∑
m≤d≤n

Um,dU
−1
d,n = (−1)n ik(n−m)q−m+ 1

2
n+ 1

2
km− 1

2
kn+mr−nr+m2− 1

2
n2

(1− qn)

×
[
2n + r + k − 1

n

][
2m + r + k − 2

m + r

]−1

×
∑

m≤d≤n

(−1)d q
1
2
d(d+1)−dn 1

1− qd

[
d + m + r + k − 1

d

]−1

×
[
n− 1

d− 1

][
d + r

m + r

][
n + d + r + k − 2

d + r

]
.

We evaluate the sum in the last equation∑
m≤d≤n

(−1)d q
1
2
d(d+1)−dn 1

1− qd

[
d + m + r + k − 1

d

]−1[
n− 1

d− 1

]
×

[
d + r

m + r

][
n + d + r + k − 2

d + r

]
,

using the Mathematica version of the q-Zeilberger algorithm. We get that the sum is = 0
provided that m 6= n and k + m + n + r 6= 1. If m = n, it is easy to evaluate:

(−1)n q
1
2
n(n+1)−n2 1

1− qn

[
2n + r + k − 1

n

]−1[
n− 1

n− 1

][
n + r

n + r

][
2n + r + k − 2

n + r

]
,

or simpler

(−1)n q−
1
2
n(n−1) (q; q)n−1(q; q)n+r+k−1

(1− q2n+r+k−1)(q; q)n+r(q; q)n+k−2

.

Now we turn to the inverse matrix. Since

L−1
ij =

(q; q)i+j+r+k−2(q; q)i−1(q; q)i+r

(q; q)2i+r+k−2(q; q)j−1(q; q)j+r(q; q)i−j

q
i2

2
+ j2

2
+

(i−j)(k−1)
2

−ij

i(i−j)(k−2)

and

U−1
ij =

(q; q)2j+r+k−1(q; q)i+j+r+k−2(q; q)k−1

(q; q)j−i(q; q)j+r+k−1(q; q)i+r(q; q)j+k−2(q; q)i−1(1− q)k

× q
i2

2
− j2

2
−ij−jr− (k−1)j

2
− (k−1)i

2
− kr

2
+r− k2

4
+ 3k

4 ikr+(i+j)(k+2)+ k2

2
− 3k

2 ,

we write(
(Qn)−1

)
i,j

=
∑

h

U−1
ih L−1

hj

=
∑

h

(q; q)2h+r+k−1(q; q)i+h+r+k−2(q; q)k−1

(q; q)h−i(q; q)h+r+k−1(q; q)i+r(q; q)h+k−2(q; q)i−1(1− q)k

× q
i2

2
+ j2

2
−h(i+j+r)− (k−1)i

2
− kr

2
+r− k2

4
+ 3k

4
+ j

2
− jk

2 (−1)i−j ik(i+j+r)+
k(k−3)

2

× (q; q)h+j+r+k−2(q; q)h−1(q; q)h+r

(q; q)2h+r+k−2(q; q)j−1(q; q)j+r(q; q)h−j

.
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The final formula as given in the theorem follows from some straightforward simplifications.
Unfortunately, the sum cannot be evaluated in closed form.

For the proof of the Cholesky decomposition, we need this formula:∑
1≤j≤min{i,l}

Ci,jCl,j =
(q; q)i+l+r−1(1− q)kq

(i+l+r)k
2

+
k(k−3)

4

(q; q)i+l+k+r−1i
(i+l+r)k+

k(k−3)
2

.

After some straightforward simplifications, it means that we must show that∑
1≤j≤min{i,l}

q(j+r)(j−1)

× (1− q2j+k+r−1)(q; q)j+k−2(q; q)j+k+r−1

(q; q)j−1(q; q)j+r(q; q)i+j+k+r−1(q; q)i−j(q; q)l+j+k+r−1(q; q)l−j

=
(q; q)i+l+r−1(q; q)k−1

(q; q)i+l+k+r−1(q; q)i+r(q; q)i−1(q; q)l+r(q; q)l−1

.

Denoting the LHS by SUMi, the q-Zeilberger algorithm gives the answer

SUMi =
(1− qi+l+r−1)

(1− qi−1)(1− qi+r)(1− qi+k+l+r−1)
SUMi−1

for i 6= 1, i + k + l + r 6= 1.
Now we compute SUM1:

SUM1 =
(q; q)k−1

(q; q)r+1(q; q)l+k+r(q; q)l−1

.

Therefore

SUMi =
(q; q)i+l+r−1(q; q)r+1(q; q)k+l+r

(q; q)l+r(q; q)i−1(q; q)i+r(q; q)i+k+l+r−1

(q; q)k−1

(q; q)r+1(q; q)l+k+r(q; q)l−1

=
(q; q)i+l+r−1(q; q)k−1

(q; q)l+r(q; q)i−1(q; q)i+r(q; q)i+k+l+r−1(q; q)l−1

,

as claimed.
Acknowledgment. Thanks are due to two referees who spotted small inaccuracies and

made suggestions towards a better presentation.
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