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a b s t r a c t

Range Quickselect, a simple modification of the well-known Quickselect algorithm for
selection, can be used to efficiently find an element with rank k in a given range [i..j], out of
n given elements. We study basic cost measures of Range Quickselect by computing exact
and asymptotic results for the expected number of passes, comparisons and data moves
during the execution of this algorithm.

The key element appearing in the analysis of RangeQuickselect is a trivariate recurrence
that we solve in full generality. The general solution of the recurrence proves to be very
useful, as it allows us to tackle several related problems, besides the analysis that originally
motivated us.

In particular, we have been able to carry out a precise analysis of the expected number
of moves of the pth element when selecting the jth smallest element with standard
Quickselect, where we are able to give both exact and asymptotic results.

Moreover, we can apply our general results to obtain exact and asymptotic results
for several parameters in binary search trees, namely the expected number of common
ancestors of the nodes with rank i and j, the expected size of the subtree rooted at the least
common ancestor of the nodes with rank i and j, and the expected distance between the
nodes of ranks i and j.

© 2011 Elsevier B.V.

1. Introduction

Quickselect, also called Hoare’s Find algorithm, is a very flexible and easy to implement recursive algorithm to find
the element of given rank k (i.e., the kth smallest element) in a given data array A[1..n] of length n. The Quickselect
algorithm uses partitioning of the array into two subarrays around a pivot element, as in the popular Quicksort, also by
Hoare [5,6].

The behavior of fundamental quantities like the number of comparisons between data elements and the number of passes
(recursive calls of the algorithm) in Quickselect has been extensively studied; see, for instance [4,8,10,14] and references
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therein. These quantities have also been studied for many variants of the standard algorithm, for example, for the median-
of-three partitioning scheme [9]. In the present work, we consider a variant of Quickselect, that we have dubbed Range
Quickselect, which receives as input the data array and a range [i..j]. Its goal is to find an element whose rank falls in the
given range. The analysis of Range Quickselect poses several quite natural questions related to the Quickselect algorithm
that do not seem to have been treated up until now.

Range Quickselect (RQS, for short) is useful when we are not necessarily interested in an exact order statistic, but some
order statistic within a range [i..j] of ranks. For example, instead of finding the exact median we could be content with an
element whose rank is, say, between 0.48n and 0.52n. This ‘‘relaxation’’ of the Quickselect algorithm will lead, depending
on the range [i..j], to a reduction of the number of passes and of the number of comparisons between elements in the
array during the execution, and thus will lead to a faster execution time. We compute the exact average number of passes
and the exact average number of comparisons between elements when executing RQS and as a consequence we can give
results quantifying the average amount of savings compared to standard Quickselect. In particular, given some measure of
performance X , we compare the difference between Xn,i, the average value of X corresponding to Quickselect when given
an input of size n and looking for the ith smallest element, and Xn,i−d,i+d, the average value of X corresponding to Range
Quickselect when given an input of size n and looking for an element whose rank falls in the range [i − d, i + d]. The
asymptotic behavior of that difference in terms of n and d provides a clear picture of the benefits of Range Quickselect and
the trade-off between speed and accuracy.

The description of the algorithmand the analysis of the expected behavior of its fundamental performance characteristics
form the core of Section 2.

The analysis of Range Quickselect involves the solution of trivariate recurrences which we have been able to solve in full
generality. The result (Theorem 2) that we obtain in Section 2.3 turns out be very useful in the analysis of other interesting
parameters, including the number of moves of a particular element during the execution of the standard Quickselect
algorithm and the total number of moves made during the execution of Range Quickselect. In particular, we give exact
results for the average number of moves of the element with rank pmade while selecting the jth smallest element out of n,
and also for the average total number of moves during the execution of the Range Quickselect algorithm, when finding an
element with rank k ∈ [i..j] out of n (Section 3).

These parameters give a further insight into the functionality of the Quickselect algorithms and moreover, since moves
of elements correspond to variable assignments in the algorithm, these quantities appear when measuring the total cost of
the Quickselect algorithms.

We also want to mention here two recent related studies, one about the number of moves of particular elements in the
Quicksort sorting algorithm [18] and the other on the total number of moves in Quickselect, but for a randomly chosen
rank [13].

The close connection between Quickselect and random binary search trees surfaces also in this paper, like in many
previous works of the area (see, for instance [17]). We establish in Section 4 the relation between Range Quickselect and
several parameters in random binary search trees that involve two given nodes. We study the average number of common
ancestors of the nodes with ranks i and j, the average size of the subtree rooted at the least common ancestor of the nodes
with ranks i and j, and the average distance (number of edges) from the node of rank i to the node of rank j. Despite these
results can be obtained (and have been obtained) by other means, we show that all of them follow from direct application
of Theorem 2. This is a further example of the generality and usefulness of this tool, which qualifies as one of the important
contributions of this paper.

We shall insist here that in this paper we restrict our analysis to the expected value of the quantities considered. In all
cases, we shall consider that the input is an array of n distinct elements, the n! possible orderings taken equally likely. This
assumption is standard in the probabilistic analysis of comparison-based sorting and selection algorithms (see, for instance,
[11]). Furthermore, the assumption that the input is a random permutation can be removed if we consider that the pivot
of each recursive stage is picked uniformly at random among the elements of the current subarray. Indeed, whatever the
initial permutation is, if we pick pivots at random then the probability that we choose the kth smallest element out of N is
1/N for all k, 1 ≤ k ≤ N . When we assume that the source of randomness comes from the algorithm itself, expectations
are with respect the random choices made by the algorithm, not by assuming any particular distribution on the inputs.
Both approaches yield the same results, but we will talk in terms of the random permutation model for the rest of the
article.

It is also worth mentioning that, apart from the study of the number of moves of a particular element in Quickselect
where dependences between the quantities appearing in the recursive description occur (see Section 3), our analysis could,
at least in principle, be extended to highermoments, most notably to the secondmoment and thus to the variance, although
the computational effort would be considerable (see, for instance [8]).

We conclude this section with a few remarks concerning notations used in this paper. We use Iverson’s bracket notation
JQ K for a statement Q : JQ K = 1 if Q is true and JQ K = 0 otherwise [3]. The harmonic numbers are always denoted by
Hn :=

∑n
k=1

1
k , for a positive integer n. Moreover, the random variable 1E always denotes the indicator function of the event

E, which gives the value 1 when E occurs and gives the value 0 otherwise. Throughout this paper we use for all quantities
considered a calligraphic letter as P , C, etc. to denote random variables, whereas the corresponding ordinary letters denote
their expectations, e.g., P = E (P ).
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2. Range Quickselect

2.1. The algorithm

We begin with a description of the standard Quickselect algorithm for selection. The call QuickSelect(A, j, l, r) will find
the (j − l + 1)st smallest element amongst all elements in the array A[l..r], with 1 ≤ l ≤ j ≤ r ≤ n. In full rigor, the
algorithm will return an element x of A[l..r] such that there are at least j − l + 1 elements in the subarray which are less or
equal to x. To have a neat definition of rank, we shall assume that the n given elements are distinct. This will simplify the
discussion about the algorithms and their correctness along the paper,1 and it is also essential for our analysis, as we have
already pointed out in the introduction.

After executing this algorithm, it holds that A[j] stores the element of the desired rank j− l+1 in A[l..r]; in particular, the
initial call QuickSelect(A, j, 1, n) will bring the jth smallest element of A[1..n] to A[j]. Moreover, the algorithm rearranges
the contents of the array in such a way that it holds that A[m] ≤ A[j], for all l ≤ m < j, and A[j] ≤ A[m], for all j < m ≤ r .

If r ≤ l, the subarray contains at most one element, and the problem is trivially solved, since A[l]must contain the sought
element.When l < r , we perform a partitioning phase, inwhich one of the elements in the array, say A[l], is chosen as a pivot
element. By comparing this pivot element v with all remaining elements in the array and interchanging elements, the pivot
element will be brought to its correct position in the array, say A[k], such that all elements in the array A[l..k−1] are smaller
than or equal to v = A[k] and all elements in the array A[k+ 1..r] are larger than or equal to v. The partitioning algorithm is
given in full detail in Section 3.1, when we analyze the number of moves carried out by Quickselect and Range Quickselect.
For the time being, it is enough to note that the partitioning algorithmwill make exactly n−1 = r − l comparisons between
the pivot and the remaining elements in the (sub)array of size n; moreover, if the subarray contains a random permutation
of n elements, the two subarrays that we obtain after partitioning are random permutations too.

After the partitioning phase, three cases can occur: (1) if j = k we know then that v = A[k] = A[j] is the (j − l + 1)st
smallest element in A[l..r] and the algorithm terminates, (2) if j < kwe know that the required element is contained in the
left subarray and we proceed by searching for the (j − l + 1)st smallest element in the array A[l..k − 1] with a recursive
call of Quickselect, and (3) if j > kwe know that the required element is contained in the right subarray and we proceed by
searching for the (j− k)th smallest element in the array A[k+1..r], again with a recursive call of Quickselect. The algorithm
is detailed as Algorithm 1.

Algorithm 1 The Quickselect algorithm
Require: array A[l..r], integer jwith l ≤ j ≤ r
Ensure: Returns j, A[j] contains the (j − l + 1)st smallest element in the array A[l..r]

procedure Quickselect(A, j, l, r)
if r ≤ l then return l
end if
Partition(A, l, r , k)

◃ ∀m : (l ≤ m < k) ⇒ A[m] ≤ A[k], and ∀m : (k < m ≤ r) ⇒ A[k] ≤ A[m]

if j < k then return Quickselect(A, j, l, k − 1)
else if j > k then return Quickselect(A, j, k + 1, r)
else return k
end if

end procedure

Two simplemodifications of theQuickselect algorithmallowus to solve the problemof range selection. RangeQuickselect
is given the array A, the lower and upper indices l and r that delimit the subarray that contains the elements of interest, and
the values i and j that specify a range of ranks. The call RQS(A, i, j, l, r) returns a value k such that the element at A[k] has
a rank between i − l + 1 and j − l + 1 amongst all elements in the array A[l..r], for 1 ≤ l ≤ i ≤ j ≤ r ≤ n. A call to
RQS(A, i, j, 1, n) returns a value k such that A[k] has a rank k ∈ [i..j] among the elements in A[1..n]. Like in Quickselect, it
also holds that A[m] ≤ A[k], for all l ≤ m < k, and that A[k] ≤ A[m], for all k < m ≤ r .

Compared to the standard Quickselect algorithm we need only to make the following two modifications. First, we stop
if j − i ≥ r − l, since the subarray contains elements whose ranks are between i and j and any of them will do.2 The other
modification comes after the partitioning phase, that is, after the pivot element v is brought to its correct position A[k] in
the array, with all elements in the array A[l..k−1] smaller than or equal to v = A[k] and all elements in the array A[k+1..r]
larger than or equal to v. We have three cases: (1) if i ≤ k ≤ j the pivot has a rank in the range [i − l + 1..j − l + 1] and

1 Both standard Quickselect and Range Quickselect work correctly in the presence of repeated elements; they return an element such that there are at
least some number, say k, of elements smaller or equal to it.
2 Equivalently, we stop if i ≤ l and r ≤ j.
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we can return k and terminate the algorithm, (2) if j < k we know that each element of interest is contained in the left
subarray and we continue with the selection of an element with a rank between i− l+1 and j− l+1 in the array A[l..k−1]
by making a recursive call of Range Quickselect on A[i..k − 1], and (3) if i > k we know that each element of interest is
contained in the right subarray and we recursively proceed looking for an element with a rank between i − k and j − k in
the array A[k + 1..r]. An implementation of this algorithm is given as Algorithm 2.

Algorithm 2 The Range Quickselect algorithm
Require: Array A[l..r], integers i and jwith l ≤ i ≤ j ≤ r
Ensure: Returns k, with i ≤ k ≤ j, A[k] has rank between i − l + 1 and j − l + 1 in the array A[l..r]

procedure RQS(A, i, j, l, r)
if r − l ≤ j − i then return l
end if
Partition(A, l, r , k)

◃ ∀m : (l ≤ m < k) ⇒ A[m] ≤ A[k], and ∀m : (k < m ≤ r) ⇒ A[k] ≤ A[m]

if j < k then return RQS(A, i, j, l, k − 1)
else if i > k then return RQS(A, i, j, k + 1, r)
else return k
end if

end procedure

2.2. The number of passes

We start our analysis of Range Quickselect with the average behavior of the random variable Pn,i,j which counts the
number of passes, i.e., (recursive) calls, of the algorithm RQS until an element with a rank between i and j is found in an
array A[1..n]. Here, and for the rest of the paper, as we have already discussed in the introduction, we assume that the
array contains a random permutation of n distinct elements. We also assume that we choose the first element of the current
subarray as the pivot of each recursive stage.

Theorem 1. The expected number of passes Pn,i,j = E

Pn,i,j


of the algorithm Range Quickselect until an element with a rank

between i and j is found in an array of n elements is

Pn,i,j = Hj + Hn−i+1 − 2Hj−i+1 + 1, for 1 ≤ i ≤ j ≤ n
= log j + log(n − i + 1) − 2 log(j − i + 1) + O(1).

The asymptotic estimate given holds uniformly for 1 ≤ i ≤ j ≤ n and n → ∞. When i = j the formula yields the well-known
average number of passes of Quickselect (see, for instance, [17]):

Pn,j,j = Hj + Hn−j+1 − 1, for 1 ≤ j ≤ n.

In order to show this theorem we start with a recursive description of Pn,i,j. Since we assume that the input is a random
permutation of size nwe get that the probability that the pivot element v = A[1] is the kth smallest element in the array is
1/n for all k, 1 ≤ k ≤ n. After the partitioning phase the left subarray A[1..k − 1] and the right subarray A[k + 1..n] contain
random permutations of lengths k − 1 and n − k, respectively. If i ≤ k ≤ j the algorithm terminates and we only have to
count the original call to RQS. If k < iwe proceed with a recursive call of RQS for the right subarray and if k > jwe proceed
with a recursive call of RQS for the left subarray. In these latter cases we have to add the number of calls of RQS occurring
therein to the original call.

These considerations immediately lead to the following proposition (see for instance [4,20] and references therein for
background on distributional recurrences like the one below).

Proposition 1. The random variable Pn,i,j satisfies the following distributional recurrence:

Pn,i,j
(d)
= 1 + 1Un<i · P

(1)
n−Un,i−Un,j−Un

+ 1Un>j · P
(2)
Un−1,i,j, for 1 ≤ i ≤ j ≤ n,

and Pn,i,j = 0, if i < 1 or j < i or j > n, where the rank Un of the pivot element is uniformly distributed on {1, 2, . . . , n} and it is
independent of (Pn,i,j)n,i,j, (P

(1)
n,i,j)n,i,j and (P

(2)
n,i,j)n,i,j; furthermore (P

(1)
n,i,j)n,i,j and (P

(2)
n,i,j)n,i,j are independent copies of (Pn,i,j)n,i,j.

Proposition 1 immediately leads to the following recurrence for the expectation Pn,i,j of the number of passes:

Pn,i,j = 1 +
1
n

i−1−
k=1

Pn−k,i−k,j−k +
1
n

n−
k=j+1

Pk−1,i,j, for 1 ≤ i ≤ j ≤ n, (1)

and Pn,i,j = 0, if i < 1 or j < i or j > n.
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It is not difficult to show by induction that the closed form for Pn,i,j given in Theorem 1 is indeed the solution of the
recurrence above. This recurrence and others that we will find later can in principle be solved using more or less standard
techniques in an ad hoc fashion; however, the details of the derivation are already cumbersome for (1) and they get even
worse when we have to deal with more complicated recurrences.

Therefore, we will take a detour in the next section, where we will investigate the general solution of trivariate
recurrenceswhose shape is that of (1), butwith a generic non-recursive cost Tn,i,j.With this systematic and general approach
the solution of (1) will be then a by-product of the main result in the next subsection (Theorem 2). We will need only to set
Tn,i,j = 1 and apply the theorem.

The rewards of this general analysis will be manifest soon afterwards, when we use Theorem 2 to obtain the expected
number of comparisons of Range Quickselect (Section 2.4), later in Section 3 when we analyze the number of moves of
particular elementsmade by Quickselect and the total number ofmovesmade by Range Quickselect, and finally, in Section 4
when we investigate several parameters of random binary search trees.

2.3. Solving a trivariate recurrence

We consider the following recurrence for numbers Xn,i,j, which appears in our studies of the Quickselect and Range
Quickselect algorithms, and later for binary search trees:

Xn,i,j =
1
n

i−1−
k=1

Xn−k,i−k,j−k +
1
n

n−
k=j+1

Xk−1,i,j + Tn,i,j, for 1 ≤ i ≤ j ≤ n. (2)

Furthermore we define Xn,i,j = 0, if i < 1 or j < i or n < j. For the ‘‘toll function’’ Tn,i,j we also define Tn,i,j = 0, if i < 1 or
j < i or n < j. We remark that (2) is a generalization of the ‘‘ordinary Quickselect recurrence’’ which appears when studying
themoments of the number of comparisons and passes of Quickselect to select the jth smallest element in an array of size n.
Indeed, the ordinary Quickselect recurrence is the special instance of (2) where i = j. The ordinary Quickselect recurrence
was first studied by Knuth [10]; an exact solution for arbitrary toll functions has been given by Kuba in [12].

To treat recurrence (2) we introduce the following trivariate generating functions:

X(z, u1, u2) :=

−
i≥1

−
j≥i

−
n≥j

Xn,i,jznui
1u

j
2,

T (z, u1, u2) :=

−
i≥1

−
j≥i

−
n≥j

Tn,i,jznui
1u

j
2.

Multiplying (2) by nzn−1ui
1u

j
2 and summing up for all values 1 ≤ i ≤ j ≤ n leads, after straightforward computations, to

the following differential equation for the generating function X(z, u1, u2):

∂

∂z
X(z, u1, u2) =


1

1 − z
+

u1u2

1 − zu1u2


X(z, u1, u2) +

∂

∂z
T (z, u1, u2),

with initial condition X(0, u1, u2) = 0.
The solution of this first order linear differential equation, which can be obtained by standard techniques, is:

X(z, u1, u2) =
1

(1 − z)(1 − zu1u2)

∫ z

0
(1 − t)(1 − u1u2t)

 ∂

∂t
T (t, u1, u2)


dt. (3)

The numbers Xn,i,j can then be obtained by extracting coefficients from the solution (3). By taking into account that
Tn,i,j = [znui

1u
j
2]T (z, u1, u2) = 0, if i < 1 or j < i or n < j, we get then, for 1 ≤ i ≤ j ≤ n:

Xn,i,j = [znui
1u

j
2]X(z, u1, u2)

=

i−
ℓ=0

[zn−ℓui−ℓ
1 uj−ℓ

2 ]
1

1 − z

∫ z

0
(1 − t)(1 − u1u2t)

 ∂

∂t
T (t, u1, u2)


dt

=

i−
ℓ=0

n−ℓ−
k=j−ℓ

[zkui−ℓ
1 uj−ℓ

2 ]

∫ z

0
(1 − t)(1 − u1u2t)

 ∂

∂t
T (t, u1, u2)


dt

=

i−
ℓ=0

n−ℓ−
k=j−ℓ

1
k
[zk−1ui−ℓ

1 uj−ℓ
2 ](1 − z)(1 − u1u2z)

∂

∂z
T (z, u1, u2)

=

i−
ℓ=0

n−ℓ−
k=j−ℓ

1
k


kTk,i−ℓ,j−ℓ − (k − 1)Tk−1,i−ℓ,j−ℓ − (k − 1)Tk−1,i−ℓ−1,j−ℓ−1 + (k − 2)Tk−2,i−ℓ−1,j−ℓ−1


.

The expression can be simplified easily by straightforward manipulations, thus
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Xn,i,j =

i−
ℓ=1

n−i+ℓ−
k=j−i+ℓ

[
kTk,ℓ,j−i+ℓ − (k − 1)Tk−1,ℓ,j−i+ℓ

k
−

(k − 1)Tk−1,ℓ−1,j−i+ℓ−1 − (k − 2)Tk−2,ℓ−1,j−i+ℓ−1

k

]

=

i−
ℓ=1

n−i+ℓ−
k=j−i+ℓ

kTk,ℓ,j−i+ℓ − (k − 1)Tk−1,ℓ,j−i+ℓ

k
−

i−1−
ℓ=1

n−i+ℓ+1−
k=j−i+ℓ+1

(k − 1)Tk−1,ℓ,j−i+ℓ − (k − 2)Tk−2,ℓ,j−i+ℓ

k

=

i−
ℓ=1

n−i+ℓ−
k=j−i+ℓ

kTk,ℓ,j−i+ℓ − (k − 1)Tk−1,ℓ,j−i+ℓ

k
−

i−1−
ℓ=1

n−i+ℓ−
k=j−i+ℓ

kTk,ℓ,j−i+ℓ − (k − 1)Tk−1,ℓ,j−i+ℓ

k + 1

=

i−1−
ℓ=1

n−i+ℓ−
k=j−i+ℓ

kTk,ℓ,j−i+ℓ − (k − 1)Tk−1,ℓ,j−i+ℓ

k(k + 1)
+

n−
k=j

kTk,i,j − (k − 1)Tk−1,i,j

k
.

Further simplifications yield

Xn,i,j =

i−1−
ℓ=1

n−i+ℓ−
k=j−i+ℓ

kTk,ℓ,j−i+ℓ

k(k + 1)
−

i−1−
ℓ=1

n−i+ℓ−1−
k=j−i+ℓ

kTk,ℓ,j−i+ℓ

(k + 1)(k + 2)
+

n−
k=j

kTk,i,j
k

−

n−1−
k=j

kTk,i,j
k + 1

=

i−1−
ℓ=1

n−i+ℓ−1−
k=j−i+ℓ

2Tk,ℓ,j−i+ℓ

(k + 1)(k + 2)
+

i−1−
ℓ=1

Tn−i+ℓ,ℓ,j−i+ℓ

n − i + ℓ + 1
+

n−1−
k=j

Tk,i,j
k + 1

+ Tn,i,j.

We collect our results in the following theorem.

Theorem 2. Let the sequence of numbers Xn,i,j, for 1 ≤ i ≤ j ≤ n, satisfy the following recurrence:

Xn,i,j =
1
n

i−1−
k=1

Xn−k,i−k,j−k +
1
n

n−
k=j+1

Xk−1,i,j + Tn,i,j,

with Tn,i,j, 1 ≤ i ≤ j ≤ n, an arbitrary sequence, such that Tn,i,j = 0 if i < 1, j < i or n < j.
Then Xn,i,j, for 1 ≤ i ≤ j ≤ n, is given by the explicit formula

Xn,i,j =

i−1−
ℓ=1

n−i+ℓ−1−
k=j−i+ℓ

2Tk,ℓ,j−i+ℓ

(k + 1)(k + 2)
+

i−1−
ℓ=1

Tn−i+ℓ,ℓ,j−i+ℓ

n − i + ℓ + 1
+

n−1−
k=j

Tk,i,j
k + 1

+ Tn,i,j.

We remark that setting i = j above gives an exact solution of the generic Quickselect recurrence. The solution thus
obtained is slightly different from the one given in [12] and it is stated in the following corollary.

Corollary 1. Let the sequence of numbers Xn,j, for 1 ≤ j ≤ n, satisfy the following recurrence:

Xn,j =
1
n

j−1−
k=1

Xn−k,j−k +
1
n

n−
k=j+1

Xk−1,j + Tn,j, (4)

with Tn,j, 1 ≤ j ≤ n, an arbitrary sequence such that Tn,j = 0 if j < 1 or n < j.
Then Xn,j, for 1 ≤ j ≤ n, is given by the explicit formula

Xn,j =

j−1−
ℓ=1

n−j+ℓ−1−
k=ℓ

2Tk,ℓ
(k + 1)(k + 2)

+

j−1−
ℓ=1

Tn−j+ℓ,ℓ,

n − j + ℓ + 1
+

n−1−
k=j

Tk,j
k + 1

+ Tn,j.

Recurrence (1) studied in Section 2.2 is the instance of recurrence (2) for the particular toll function Tn,i,j = 1, 1 ≤ i ≤

j ≤ n. We can then obtain the exact solution of (1) applying Theorem 2, which gives after easy summations:

Pn,i,j =

i−1−
ℓ=1

n−i+ℓ−1−
k=j−i+ℓ

2
(k + 1)(k + 2)

+

i−1−
ℓ=1

1
n − i + ℓ + 1

+

n−1−
k=j

1
k + 1

+ 1

=

i−1−
ℓ=1

n−i+ℓ−1−
k=j−i+ℓ

2
 1
k + 1

−
1

k + 2


+ Hn − Hn−i+1 + Hn − Hj + 1

=

i−1−
ℓ=1

2
 1
j − i + ℓ + 1

−
1

n − i + ℓ + 1


+ 2Hn − Hn−i+1 − Hj + 1

= Hj + Hn−i+1 − 2Hj−i+1 + 1, for 1 ≤ i ≤ j ≤ n.

This proves Theorem 1.
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2.4. The number of comparisons

Next we study the average behavior of the random variable Cn,i,j, with 1 ≤ i ≤ j ≤ n, which counts the number of
comparisons in the partitioning phase between elements in the array and the pivot element, when executing the algorithm
Range Quickselect until an element with a rank between i and j is found in the array A[1..n].

Theorem 3. The expected number of element comparisons Cn,i,j = E

Cn,i,j


made while executing the algorithm Range

Quickselect until an element with a rank between i and j is found in an array of size n is:

Cn,i,j = 2(n + 1)Hn + 2(j − i + 4)Hj−i+1 − 2(j + 2)Hj

− 2(n − i + 3)Hn−i+1 + 2n − j + i − 2
∼ 2n log n + 2(j − i + 1) log(j − i + 1) − 2j log j − 2(n − i + 1) log(n − i + 1)

+ O(log2 n), for 1 ≤ i ≤ j ≤ n.

The asymptotic equivalence holds uniformly for 1 ≤ i ≤ j ≤ n and n → ∞.
Setting i = j above, we obtain the average number of comparisons to select the jth smallest element out of n [10]:

Cn,j,j = 2

(n + 1)Hn + n + 3 − (j + 2)Hj − (n − j + 3)Hn−j+1


, for 1 ≤ j ≤ n.

Another immediate consequence of the theorem is that the value Cn,i,j is always Θ(n), namely,

Cn,i,j = c(i/n, j/n)n + o(n),

with c(a, b) = −2(1 − a) log(1 − a) − 2b log b + 2(b − a) log(b − a) + 2 − (b − a).
The proof of this theorem is fully analogous to that of Theorem 1 in Section 2.2. First we obtain a distributional recurrence

for Cn,i,j, which has the same structure as the one given in Proposition 1. Here, we only have to take into account that during
the partitioning phase and independently of the actual rank of the pivot, we perform exactly n − 1 comparisons between
the pivot element and the other elements in the array.

Proposition 2. The random variable Cn,i,j satisfies the following distributional recurrence:

Cn,i,j
(d)
= n − 1 + 1Un<i · C

(1)
n−Un,i−Un,j−Un

+ 1Un>j · C
(2)
Un−1,i,j, for 1 ≤ i ≤ j ≤ n,

and Cn,i,j = 0, if i < 1 or j < i or j > n, where the rank Un of the pivot element is uniformly distributed on {1, 2, . . . , n} and
independent of (Cn,i,j)n,i,j, (Cn,i,j

(1))n,i,j and (C
(2)
n,i,j)n,i,j; the last two are independent copies of (Cn,i,j)n,i,j.

Proposition 2 gives then the following recurrence for the expectation Cn,i,j of the number of comparisons:

Cn,i,j = n − 1 +
1
n

i−1−
k=1

Cn−k,i−k,j−k +
1
n

n−
k=j+1

Ck−1,i,j, for 1 ≤ i ≤ j ≤ n, (5)

and Cn,i,j = 0, if i < 1 or j < i or j > n.
This recurrence is exactly the recurrence studied in Section 2.3 for the particular toll function Tn,i,j = n − 1, for

1 ≤ i ≤ j ≤ n. Applying Theorem 2 easily leads then, for 1 ≤ i ≤ j ≤ n, to an exact formula for Cn,i,j and proves
Theorem 3:

Cn,i,j =

i−1−
ℓ=1

n−i+ℓ−1−
k=j−i+ℓ

2(k − 1)
(k + 1)(k + 2)

+

i−1−
ℓ=1

n − i + ℓ − 1
n − i + ℓ + 1

+

n−1−
k=j

k − 1
k + 1

+ n − 1

=

i−1−
ℓ=1

n−i+ℓ−1−
k=j−i+ℓ


−

4
k + 1

+
6

k + 2


+

i−1−
ℓ=1


1 −

2
n − i + ℓ + 1


+

n−1−
k=j


1 −

2
k + 1


+ n − 1

=

i−1−
ℓ=1


−4(Hn−i+ℓ − Hj−i+ℓ) + 6(Hn−i+ℓ+1 − Hj−i+ℓ+1)


+ i − 1 − 2(Hn − Hn−i+1) + n − j − 2(Hn − Hj) + n − 1

= 2(n + 1)Hn + 2(j − i + 4)Hj−i+1 − 2(j + 2)Hj − 2(n − i + 3)Hn−i+1 + 2n − j + i − 2.

To obtain the final result we just used the basic summation formula

n−1−
k=1

Hk = n

Hn − 1


. (6)
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2.5. Savings and grand averages

Given anymeasure of performanceXn,i,j of Range Quickselect when looking for an element whose rank falls in the range
[i..j], out of n elements, it is quite obvious that

Xn,i,j ≤ Xn,k,k,

for any k ∈ [i..j]. In other words, no matter what measure we consider, Range Quickselect will never perform worse than
Quickselect when the sought rank k belongs to the range [i..j] given as input to Range Quickselect. The inequality above of
course carries over expectations, thus Xn,i,j ≤ Xn,k,k for k ∈ [i..j].

It makes sense then to introduce the difference

1Xn,i,d = Xn,i,i − Xn,i−d,i+d, d < i < n + 1 − d, 0 ≤ d ≤ ⌊(n − 1)/2⌋

which measures the savings of Range Quickselect over Quickselect when looking for the ith smallest element and Range
Quickselect is given a range of size 2d+1 around i. As we shall see, in some cases,1Xn,i,d does not depend (or its main order
term does not depend) on i, so using the ‘‘size’’ d of the range to express the savings yielded by Range Quickselect turns out
to be a relevant choice. Obtaining both explicit and asymptotic formulaæ for 1Pn,i,d and 1Cn,i,d is straightforward from the
explicit expressions given by Theorems 1 and 3, and the well-known asymptotic expansion of the harmonic numbers

Hn = log n + γ + O(n−1),

with γ ≈ 0.577215 . . . denoting the Euler–Mascheroni constant.
Another interesting set of quantities that we study in this section (and on those forthcoming) are the grand averages.

We fix a size 2d + 1 for the range given to Range Quickselect and then average over all possible i, i.e., we are interested
in the expected value of Xn,i−d,i+d when i is uniformly distributed in [d + 1..n − d]. Such quantities are often called grand
averages [14,19]. Thus,

Xn,d =
1

n − 2d

−
d<i≤n−d

Xn,i−d,i+d, 0 ≤ d ≤ ⌊(n − 1)/2⌋.

Notice that Xn,0 is the expected value for quickselect with random rank.
As before, we will also be interested in the ‘‘grand average savings’’

1Xn,d = Xn,0 − Xn,d, 0 ≤ d ≤ ⌊(n − 1)/2⌋.

In the case of passes and comparisons, explicit and asymptotic expressions for the grand averages and the average savings
follow easily from the explicit formulæ available for thesemeasures of cost. The following corollary summarizes the relevant
results.

Corollary 2. Let d and i be such that 0 ≤ d ≤ ⌊(n − 1)/2⌋ and d < i < n + 1 − d. The asymptotic estimates below hold
uniformly for all d > 0, unless explicitly stated otherwise, when n → ∞.

(1) Let 1Pn,i,d = Pn,i,i − Pn,i−d,i+d be the average number of passes saved if we use Range Quickselect with range [i − d..i + d]
instead of Quickselect with rank i. Then

1Pn,i,d = (Hi − Hi+d) + (Hn+1−i − Hn+1−i+d) + 2H2d+1 − 2
∼ 2 log d + Θ(1).

(2) Let

Pn,d =
1

n − 2d

−
d<i<n+1−d

Pn,i−d,i+d

be the average number of passesmade by Range Quickselect for a range of size 2d+1 centered around a rank chosen uniformly
at random. Then

Pn,d = 2
n + 1
n − 2d

(Hn − H2d+1) − 1 +
2

n − 2d

∼

2 log(n/d) + O(1), if 0 < d = o(n),
2

1 − 2δ
log(1/2δ) − 1 + O(1/n), if d = δ · n + o(n), with 0 < δ < 1/2.

Furthermore, the grand average of the savings is

1Pn,d = Pn,0 − Pn,d ∼ 2 log d + O(1).
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(3) Let 1Cn,i,d = Cn,i,i − Cn,i−d,i+d be the average number of element comparisons that we save if we use Range Quickselect with
range [i − d..i + d] instead of Quickselect with rank i. Then

1Cn,i,d = 8 − 2(i + 2)Hi − 2(n − i + 3)Hn+1−i − 2(2d + 4)H2d+1 + 2(i + d + 2)Hi+d

+ 2(n − i + 3 + d)Hn+1+d−i + 2d

∼


4d log

n
d


+ Θ(d), if 0 < d = o(n),

2c(α, δ)n − 8 log n + O(1), if d = δ · n + o(n), with 0 < δ < 1/2,

where

c(α, δ) = δ + (1 − α + δ) log(1 − α + δ) + (α + δ) log(α + δ)

− α logα − (1 − α) log(1 − α) − 2δ log(2δ).

The second asymptotic estimate holds uniformly for i = αn + o(n) and n → ∞.
(4) Let

Cn,d =
1

n − 2d

−
d<i<n+1−d

Cn,i−d,i+d

be the average number of comparisons made by Range Quickselect for a range of size 2d + 1 centered around a rank chosen
uniformly at random. Then

Cn,d = 3n −
4(d + 2)(n + 1)

n − 2d
(Hn − H2d+1) + 5 −

4(d + 2)
n − 2d

∼


3n − 4(d + 2) log

n
d


+ Θ(d), if 0 < d = o(n),

3 +
4δ log(2δ)
1 − 2δ


n + Θ(1), if d = δ · n + o(n), with 0 < δ < 1/2.

Furthermore, the grand average of the savings is

1Cn,d = Cn,0 − Cn,d ∼

4d log(n/d) + Θ(d), if 0 < d = o(n),
4δ log(1/2δ)

1 − 2δ
n − 8 log n + Θ(1), if d = δ · n + o(n), 0 < δ < 1/2.

To conclude, a fewwords on the practical significance of these findings. For instance, we can find an element whose rank
is n/2±

√
n and save up toΘ(

√
n log n) comparisons, or find an element of rank αn(1± δ), for some δ > 0 and save a linear

number of comparisons. Savings of the order Θ(
√
n log n) might seem too small to bother with, since the algorithm runs in

linear time; however, for moderate sizes of the array, savings such as these are noticeable in practice. For instance, with a
range of size 2

√
n+ 1 around the desired rank, the algorithm allows us to save ≈1555 comparisons on average for an array

of size 10 000 (the range around the sought rank is of size 201), and we save ≈2400 comparisons on the average when the
size is 20 000 (the range is then of size ≈283).

3. Moves in Quickselect and Range Quickselect

We start with the definition of the quantities in our study of moves of elements in the standard Quickselect and Range
Quickselect algorithms.

The random variable Mn,p,j, with 1 ≤ p, j ≤ n, counts the number of moves of the element with rank p, i.e., assignments
appearing in line 8, line 13 or 17 where the right-hand side contains the pth element, in the Partition procedure (given as
Algorithm 3 in next page) while executing the algorithm Quickselect to find an element with rank j in an array A[1..n].

The random variable Vn,i,j, with 1 ≤ i ≤ j ≤ n, counts the total number of moves, i.e., assignments appearing in line 8,
line 13 or 17), of array elements in the procedure Partition when executing the algorithm RQS to find the element with
rank k ∈ [i..j] in an array A[1..n].

We conclude this introduction by stating the following well-known randomness preservation property (see, e.g., [11]) of
the partition algorithm Partition as described in Section 3.1 (we remark that this property also holds for other commonly
used partition procedures). When starting with a random permutation of distinct values al < al+1 < · · · < ar as input data
A[l..r] for the partition algorithm Partition(A, l, r, k) it holds that after executing this procedure the left subarray A[l..k−1]
is itself a random permutation of al < al+1 < · · · < ak−1, and the right subarray A[k + 1..r] is itself a random permutation
of ak+1 < ak+2 < · · · < ar .

This randomness preservation property allows a recursive description of the parameters studied in this paper and is thus
heavily used in the analysis carried out in what follows.
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3.1. The partition procedure

There are several standard implementations of the partitioning phase used in practice for the algorithmQuickselect (and,
of course, also for Quicksort). The procedure Partition given as Algorithm 3 is just one particular implementation, which
we assume to be used in both Quickselect and Range Quickselect. While for the analysis of moves, we continue assuming
that all elements are distinct, the implementation of Partition contemplates the more general case where repetitions may
occur. At this point, we want to point out that other standard implementations of the partitioning procedure will likely lead
to similar, although slightly different, results for the quantities studied here. After executing Partition(A, l, r, k) a pivot
element v is brought to its correct position v = A[k] in the array, such that all elements in the array A[l..k − 1] are smaller
than or equal to v and all elements in the array A[k + 1..r] are larger than or equal to v.

To do this the procedure starts by choosing as pivot element v the first element A[l] in the array A[l..r], which is stored.
Then, by using two pointers a and b that are initialized by a = l and b = r , the array is scanned in an alternating way from
right and from left, where each element is compared with the pivot element v. When scanning from right we search for
the first element A[b], which is smaller than or equal to v; this element is then stored at position A[a] and one continues
with scanning from left. When scanning from left we search for the first element A[a], which is larger than or equal to v;
this element is then stored at position A[b] and one continues with scanning from right. The scan stops if a = b, i.e., if the
two pointers a and b meet each other. Then it remains to store the pivot element v at its correct place A[a] in the array and
return this final location of the pivot element.

Algorithm 3 The Partition procedure
Require: Array A[l..r]
Ensure: ∀m : (l ≤ m < k) ⇒ A[m] ≤ A[k], and ∀m : (k < m ≤ r) ⇒ A[k] ≤ A[m]

1: procedure Partition(A, l, r , k)
2: if l > r then return ◃ Nothing will be done
3: end if
4: a := l; b := r; v := A[a]
5: while a < b do
6: while A[b] > v do b := b − 1 ◃ Scan from right
7: end while
8: A[a] := A[b]
9: a := a + 1

10: if a < b then
11: while A[a] < v do a := a + 1 ◃ Scan from left
12: end while
13: A[b] := A[a]
14: b := b − 1
15: end if
16: end while
17: A[a] := v
18: k := a ◃ Task finished
19: end procedure

3.2. The number of moves of particular elements in Quickselect

We study here the average behavior of the random variableMn,p,j, with 1 ≤ p, j ≤ n, which counts the number ofmoves,
i.e., assignments A[.] := ap of the elementwith rank p in the Partition procedurewhen executing the algorithmQuickselect
to find the element with rank j in an array of size n. The following theorem provides an exact formula for the expectation
Mn,p,j := E


Mn,p,j


.

Theorem 4. The expected number of moves Mn,p,j = E

Mn,p,j


of the element with rank p during the execution the algorithm

Quickselect to find the element with rank j in an array of size n, is

Mn,p,j =
1
3
Hn +

1
6
Hj +

1
6
Hn−p+1 −

2
3
Hj−p+1 +

1
2

−
(p − 1)2

3n
+

(p − 1)(p − 2)
3(n − 1)

−
(p + 2)(p − 1)

6j
+

(p − 1)(p − 2)
6(j − 1)

+
1

j − p + 1
, for 1 ≤ p < j ≤ n,
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Mn,p,j =
1
3
Hn +

1
6
Hp +

1
6
Hn−j+1 −

2
3
Hp−j+1 −

(p − 1)2

3n
+

(p − 1)(p − 2)
3(n − 1)

−
(p − j)(p − j − 3)

6(n − j + 1)
+

(p − j)(p − j − 1)
6(n − j)

+
1
3p

+
2

3(p − j + 1)
, for 1 ≤ j < p ≤ n,

Mn,p,j =
1
3
Hn +

1
6
Hj +

1
6
Hn−j+1 +

1
6

−
(j − 1)2

3n
+

(j − 1)(j − 2)
3(n − 1)

+
1
3j

+
1
12

· Jj = 1K −
1
12

· Jj = nK, for p = j, 1 ≤ j ≤ n and n ≥ 2,

M1,1,1 = 1.

Despite the formulæ for Mn,p,j when p < j and Mn,p,j when p > j seem to be related via the substitution p ↔ n − p + 1,
j ↔ n − j + 1, this is not the case, as the reader can readily convince herself by substituting a few values. The difference
between the formula Mn,p,j for p > j, call it M(2)

n,p,j, and the formula Mn,p,j for p < j, call it M(1)
n,i,j, when we substitute p by

n + 1 − p and j by n + 1 − j is very small, namely, M(2)
n,p,j = M(1)

n,p,j + O(1). For completeness, we will later give separate
asymptotic formulæ in Corollary 3 for Mn,p,j when p < j and when p > j, although that should be not necessary because of
the relation just noted.

To prove this theoremwe startwith a recursive description ofMn,p,j, which is obtained by considering a call of Quickselect
for an array A[1..n]. We assume now that the pivot element v = A[1] is the kth smallest element in the array; since our
input data are forming a random permutation of length n it holds that the probability that the pivot element has rank k is
1/n, for 1 ≤ k ≤ n.

Now we study whether the element with rank p will be moved, i.e., an assignment A[·] := . . . where the right-hand
side contains the element with rank i is performed, during the execution of the partition procedure Partition. We have
to distinguish three cases: (1) if k = p then the element with rank p (in this case this is the pivot element) will always
be moved, (2) if k < p the element with rank p will be moved only if it is located in the subarray A[2..k]; the probability
that this happens is thus k−1

n−1 , and (3) if k > p the element with rank p will be moved only if it is located in the subarray
A[k..n]; the probability that this happens is then n−k+1

n−1 . After the partitioning phase the left subarray A[1..k − 1] and the
right subarray A[k + 1..n] are each forming a random permutation of lengths k − 1 and n − k, respectively.

Next we observe that if the pivot element has a rank between p and j, i.e., depending on the order of the considered
elements either p ≤ k ≤ j or j ≤ k ≤ p, the final number of moves of the element with rank p during the execution of
Quickselect is already reached. This holds since then either the Quickselect algorithm terminates (k = j) or it continues
executing in a subarray that does not contain the element with rank p. Only if k < p ≤ j or k < j ≤ p we proceed with
a recursive call of Quickselect for the right subarray, and if k > j ≥ p or k > p ≥ j we proceed with a recursive call
of Quickselect for the left subarray. In these latter cases we have to add the number of moves of the element with rank p
during the execution of Quickselect occurring therein.

These considerations immediately lead to the following proposition.

Proposition 3. The random variable Mn,p,j satisfies, for 1 ≤ p, j ≤ n, the following distributional recurrence:

Mn,p,j
(d)
= 1Un<p · M

(1)
n−Un,p−Un,j−Un

+ 1Un>j · M
(2)
Un−1,p,j + Tn,p,Un , for 1 ≤ p ≤ j ≤ n,

Mn,p,j
(d)
= 1Un<j · M

(1)
n−Un,p−Un,j−Un

+ 1Un>p · M
(2)
Un−1,p,j + Tn,p,Un , for 1 ≤ j < p ≤ n,

and Mn,p,j = 0, if min(p, j) < 1 or max(p, j) > n. The rank Un of the pivot element is uniformly distributed on {1, 2, . . . , n}
and independent of (Mn,p,j)n,p,j, (M

(1)
n,p,j)n,p,j and (M

(2)
n,p,j)n,p,j, which are independent copies of (Mn,p,j)n,p,j.

Here the random variable Tn,p,k is the indicator function of the event that the elementwith rank p ismoved during the execution
of the partition procedure Partition for a randomly chosen permutation of length n leading to a pivot element of rank k. It holds
then, for 1 ≤ p, k ≤ n:

P

Tn,p,k = 1


=


k − 1
n − 1

, k < p,
n − k + 1
n − 1

, k > p,

1, k = p,

and P

Tn,p,k = 0


= 1 − P


Tn,p,k = 1


.

We remark here that in the distributional recurrence given as Proposition 3 the random variables Tn,p,k and M
(1)
n−k,p−k,j−k

(and also Tn,p,k and M
(2)
k−1,p,j) are dependent as can be checked easily for concrete examples (e.g., for n = 3 and i = j = 1).

Thus Proposition 3will only allow to treat the expectationMn,p,j of the number ofmoves, whereas a study of highermoments
would require a more refined description of Mn,p,j.
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However, Proposition 3 immediately leads to a recurrence for the expected value Mn,p,j. It is here advantageous to
distinguish between the cases p < j, p = j and p > j.

We start with the case p < j, where we obtain, for 1 ≤ p < j ≤ n:

Mn,p,j =
1
n

p−1−
k=1

Mn−k,p−k,j−k +
1
n

n−
k=j+1

Mk−1,p,j +
1
n

n−
k=1

E

Tn,p,k


=

1
n

p−1−
k=1

Mn−k,p−k,j−k +
1
n

n−
k=j+1

Mk−1,p,j +
1
n


1 +

p−1−
k=1

k − 1
n − 1

+

n−
k=p+1

n − k + 1
n − 1



=
1
n

p−1−
k=1

Mn−k,p−k,j−k +
1
n

n−
k=j+1

Mk−1,p,j +
(p − 1)(p − 2)

2n(n − 1)
+

(n − p)(n − p + 1)
2n(n − 1)

+
1
n
.

To get an exact solution ofMn,p,j we can thus apply Theorem 2 for the particular toll function

Tn,p,j =
(p − 1)(p − 2)

2n(n − 1)
+

(n − p)(n − p + 1)
2n(n − 1)

+
1
n
, 1 ≤ p < j ≤ n.

We omit here the computations leading to the exact formula of Mn,p,j, 1 ≤ p < j ≤ n, given in Theorem 4, since nothing
more is required than basic summation formulæ.

For the case p = j we obtain, for 1 ≤ j ≤ n:

Mn,p,j =
1
n

j−1−
k=1

Mn−k,p−k,j−k +
1
n

n−
k=j+1

Mk−1,p,j +
1
n

n−
k=1

E

Tn,p,k


=

1
n

i−1−
k=1

Mn−k,p−k,j−k +
1
n

n−
k=j+1

Mk−1,p,j

+


(j − 1)(j − 2)
2n(n − 1)

+
(n − j)(n − j + 1)

2n(n − 1)
+

1
n
, for n ≥ 2,

1, for n = 1.

Thus, an exact solution of Mn,p,j with p = j can be obtained by introducing M ′

n,j := Mn,p,j and applying Corollary 1 for the
particular toll function

Tn,j :=


(j − 1)(j − 2)
2n(n − 1)

+
(n − j)(n − j + 1)

2n(n − 1)
+

1
n
, for 1 ≤ j ≤ n and n ≥ 2,

1, for j = n = 1.

After carrying out the computations occurring, which are omitted here, we obtain the exact formula of Mn,j,j, 1 ≤ j ≤ n,
given in Theorem 4.

Finally we consider the case p > j, where we obtain, for 1 ≤ j < p ≤ n:

Mn,p,j =
1
n

j−1−
k=1

Mn−k,p−k,j−k +
1
n

n−
k=p+1

Mk−1,p,j +
1
n

n−
k=1

E

Tn,p,k


=

1
n

j−1−
k=1

Mn−k,p−k,j−k +
1
n

n−
k=p+1

Mk−1,p,j +
(p − 1)(p − 2)

2n(n − 1)
+

(n − p)(n − p + 1)
2n(n − 1)

+
1
n
.

When introducingM ′

n,p,j := Mn,j,p this recurrence can be written as follows, with 1 ≤ p < j ≤ n:

M ′

n,p,j =
1
n

p−1−
k=1

M ′

n−k,p−k,j−k +
1
n

n−
k=j+1

M ′

k−1,p,j +
(j − 1)(j − 2)
2n(n − 1)

+
(n − j)(n − j + 1)

2n(n − 1)
+

1
n
.

An exact solution ofM ′

n,p,j, 1 ≤ p < j ≤ n, can be obtained by applying Theorem 2 for the particular toll function

Tn,p,j =
(j − 1)(j − 2)
2n(n − 1)

+
(n − j)(n − j + 1)

2n(n − 1)
+

1
n
, 1 ≤ p < j ≤ n.

After back substitution we thus obtain an exact solution of Mn,p,j, with 1 ≤ j < p ≤ n, which is given in Theorem 4. Again
the straightforward computations are omitted.

Last but not least, we can obtain asymptotic equivalents with little effort.
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Corollary 3. The expected number of moves Mn,p,j = E

Mn,p,j


of the element with rank p when executing the algorithm

Quickselect to find the element with rank j in an array of size n has the following asymptotic equivalents, which hold for n → ∞

and uniformly for the given range of p and j:

Mn,p,j =
1
3
log n +

1
6
log j +

1
6
log(n − p + 1) −

2
3
log(j − p + 1) + O(1), 1 ≤ p < j ≤ n,

Mn,p,j =
1
3
log n +

1
6
log p +

1
6
log(n − j + 1) −

2
3
log(p − j + 1) + O(1), 1 ≤ j < p ≤ n,

Mn,j,j =
1
3
log n +

1
6
log j +

1
6
log(n − j + 1) + O(1), 1 ≤ j ≤ n.

In particular, we get the following important estimates when j = βn + o(n), 0 < β < 1:

Mn,p,j ∼
1
6
logβ +

1
6
log(1 − α) −

2
3
log(β − α) +

α2

6β2
−

2α
3β

+
1
2

−
α

3
+

α2

3
,

for p = αn + o(n), and 0 < α < β < 1,

Mn,p,j ∼
1
6
logα +

1
6
log(1 − β) −

2
3
log(α − β) +

(1 − α)2

6(1 − β)2
−

2(1 − α)

3(1 − β)
+

1
2

−
α

3
+

α2

3
,

for p = αn + o(n), and 0 < β < α < 1,

Mn,p,j ∼
2
3
(1 − κ) log n, for |j − p| ∼ Knκ , with 0 < κ < 1 and K ≠ 0,

Mn,p,j ∼
2
3
log n, for |j − p| = O((log n)κ) for some κ > 0.

3.3. The total number of moves in Range Quickselect

Now we study the average behavior of the random variable Vn,i,j, with 1 ≤ i ≤ j ≤ n, which counts the total number
of moves, i.e., assignments A[·] := ∗ of array elements, in the partition procedure Partition when executing the algorithm
RQS to find the element with rank k ∈ [i..j] in an array A[1..n].

Theorem 5. The expected total number of moves Vn,i,j = E

Vn,i,j


of array elements in the partition procedure Partitionwhen

executing the algorithm RQS to find the element with rank k ∈ [i..j] in an array A[1..n] filled with a random permutation of length
n, for 1 ≤ i ≤ j ≤ n, is given by the following exact formula:

Vn,i,j =
2
3
(n + 1)Hn −

1
6
(4j + 1)Hj −

1
6
(4n − 4i + 5)Hn−i+1 +

2n
3

+
1
3
(2j − 2i + 1)Hj−i+1 −

j
3

+
i
3

+
1
2
, for 1 ≤ i < j ≤ n,

Vn,j,j =
2
3
(n + 1)Hn −

1
6
(4j + 1)Hj −

1
6
(4n − 4j + 5)Hn−j+1 +

2n
3

+
7
9

−
1
36

Jj = 1 ∨ j = nK, for 1 ≤ j ≤ n and n ≥ 2,

V1,1,1 = 1.

Asymptotically, for i = αn + o(n) and j − i = δn + o(n),

Vn,i,j ∼
n
3


2δ log δ − 2(1 − α) log(1 − α) − 2(α + δ) log(α + δ) + 2 − δ


, 0 < δ < 1 − α.

We derive this theorem from a recursive description of Vn,i,j, which is again obtained by considering a call of RQS for an
array A[1..n]. We assume that the pivot element v = A[1] is the kth smallest element in the array; the probability that this
happens is 1/n, for 1 ≤ k ≤ n.

Now we want to count the total number of moves, i.e., an assignment A[.] := ∗ (appearing in line 8, line 13 or 17), of
array elements in the partition procedure Partition. We distinguish between two cases:

(1) if k = 1 then there is exactly one move during the partitioning phase, namely the assignment of the pivot element in
line 17,

(2) if k ≥ 2 then there may occur the following two situations:
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• Element A[k] has a rank in the range 1..(k− 1) and exactly ℓ elements with a rank in the range 1..(k− 1) are located
in the subarray A[k..n]. It follows then that exactly ℓ − 1 elements with a rank in the range (k + 1)..n are located
in the subarray A[2..k − 1]. In this situation we obtain then that exactly 2ℓ, i.e., ℓ (line 8) + ℓ − 1 (line 13) + 1
(line 17), moves are carried out during the partitioning phase. By elementary combinatorial considerations we get
the following probability that this event occurs:

1
(n − 1)!


k − 2
ℓ − 1


n − k
ℓ − 1


(k − 1)!(n − k)! =

k−2
ℓ−1

n−k
ℓ−1

n−1
k−1

 , for 1 ≤ ℓ ≤ k − 1.

(3) Element A[k] has a rank in the range (k+ 1)..n and exactly ℓ elements with a rank in the range 1..(k− 1) are located
in the subarray A[k + 1..n]. It follows then that exactly ℓ elements with a rank in the range (k + 1)..n are located in
the subarray A[2..k]. In this situation we obtain then that exactly 2ℓ + 1, i.e., ℓ (line 8) + ℓ (line 13) + 1 (line 17),
moves are carried out during the partitioning phase. This gives the following probability that this event occurs:

1
(n − 1)!


k − 2
ℓ − 1


n − k

ℓ


(k − 1)!(n − k)! =

k−2
ℓ−1

n−k
ℓ

n−1
k−1

 , for 1 ≤ ℓ ≤ k − 1.

Of course, after the partitioning phase the left subarray A[1..k − 1] and the right subarray A[k + 1..n] are each forming
a random permutation of lengths k − 1 and n − k, respectively. But as can be shown easily (permuting the elements with
a rank in the range 1..(k − 1) and of the elements with a rank in the range (k + 1)..n, respectively, in the input data array
leads to easy-describable permutations of the elements in the subarrays A[1..k − 1] and A[k + 1..n] after the partitioning
phase) even more is true. Namely, if we consider only those permutations, such that the number of moves in the procedure
Partition is exactly ℓ̃, with an arbitrary ℓ̃, then it also holds that after the partitioning phase the left subarray A[1..k − 1]
and the right subarray A[k + 1..n] are each forming a random permutation of lengths k − 1 and n − k, respectively.

Thus the number of moves during the partitioning phase is independent of the number of moves, which are made during
a recursive call of RQS for the right subarray A[k + 1..n] (if k < i) or the left subarray A[1..k − 1] (if k > j) and that have to
be added to get the total number of moves. This independence property appearing in the distributional recurrence stated in
the following proposition would allow also to study higher moments of Vn,i,j or could be a starting point for considerations
concerning the limiting distributional behavior ofVn,i,j (see, e.g., [4,7] for limiting distribution results studying the parameter
‘‘number of comparisons’’ in Quickselect).

Proposition 4. The random variable Vn,i,j satisfies, for 1 ≤ i ≤ j ≤ n, the following distributional recurrence:

Vn,i,j
(d)
= 1Un<i · V

(1)
n−Un,i−Un,j−Un

+ 1Un>j · V
(2)
Un−1,i,j + Tn,Un , for 1 ≤ i ≤ j ≤ n,

and Vn,i,j = 0, if i < 1, j < i or j > n, where the sequences (Un)n, (Tn,k)n,k, (V
(1)
n,i,j)n,i,j and (V

(2)
n,i,j)n,j of random variables

are all independent. Here V
(1)
n,i,j and V

(2)
n,i,j are independent copies of Vn,i,j , whereas Un is uniformly distributed on {1, 2, . . . , n}.

Furthermore, Tn,k is, for 1 ≤ k ≤ n, distributed as follows:

P

Tn,1 = 1


= 1,

P

Tn,k = 2ℓ


=

k−2
ℓ−1

n−k
ℓ−1

n−1
k−1

 , for k ≥ 2 and 1 ≤ ℓ ≤ k − 1,

P

Tn,k = 2ℓ + 1


=

k−2
ℓ−1

n−k
ℓ

n−1
k−1

 , for k ≥ 2 and 1 ≤ ℓ ≤ k − 1.

Proposition 4 immediately gives the following recurrence for the expectation Vn,i,j of the total number of moves:

Vn,i,j =
1
n

i−1−
k=1

Vn−k,i−k,j−k +
1
n

n−
k=j+1

Vk−1,i,j +
1
n

n−
k=1

E

Tn,k


, for 1 ≤ i ≤ j ≤ n, (7)

and Vn,i,j = 0, if i < 1, j < i or j > n.
It holds that E


Tn,1


= 1, whereas for k ≥ 2 we obtain:

E

Tn,k


=

1n−1
k−1

 k−1−
ℓ=1


k − 2
ℓ − 1


n − k
ℓ − 1


2ℓ +

1n−1
k−1

 k−1−
ℓ=1


k − 2
ℓ − 1


n − k

ℓ


(2ℓ + 1)

=
(n − k + 1)(2k − 1) − 1

n − 1
,
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where we used the Chu–Vandermonde identity (see, e.g., [3]). Easy computations give then

1
n

n−
k=1

E

Tn,k


=


n
3

+
5
6
, for n ≥ 2,

1, for n = 1.

Thus (7) can be written as follows:

Vn,i,j =
1
n

i−1−
k=1

Vn−k,i−k,j−k +
1
n

n−
k=j+1

Vk−1,i,j + Tn,i,j, for 1 ≤ i ≤ j ≤ n, (8)

with T1,1,1 = 1 and Tn,i,j =
n
3 +

5
6 , for 1 ≤ i ≤ j ≤ n and n ≥ 2.

An exact solution of this recurrence can be obtained by simply applying Theorem 2, which shows Theorem 5; the
straightforward computations are omitted here.

We remark here that setting i = j leads to results concerning the total number of moves in standard Quickselect, e.g.,
Vn,j,j is the random variable that counts the total number of moves made by Quickselect when selecting the jth smallest
element out of n.

As we have done for passes and comparisons, we can compare the savings of Range Quickselect relative to Quickselect.
The following corollaries provide the exact and asymptotic formulæ for the savings and the grand average.

Corollary 4. Let 1Vn,i,d = Vn,i,i − Vn,i−d,i+d, that is, the average number of data moves that we save if we use Range Quickselect
with range [i − d..i + d] instead of Quickselect with rank i, for d < i < n + 1 − d and 0 ≤ d ≤ ⌊(n − 1)/2⌋. Then

1Vn,i,d =
1
6
(4i + 1)(Hi+d − Hi) +

1
6
(4n − 4i + 5)(Hn+1+d−i − Hn+1−i)

+
2d
3

(Hi+d + Hn+1+d−i + 1 − 2H2d+1) +
5
8

Jd > 0K

∼


4
3
d log

n
d


+ Θ(d), if 0 < d = o(n),

2
3
c(α, δ)n − 8 log n + O(1), if d = δ · n + o(n), with 0 < δ < 1/2,

where

c(α, δ) = δ + (1 − α + δ) log(1 − α + δ) + (α + δ) log(α + δ)

− α logα − (1 − α) log(1 − α) − 2δ log(2δ).

The first asymptotic estimate holds uniformly for all d = o(n) and n → ∞. The second asymptotic estimate holds uniformly for
i = αn + o(n) and n → ∞.

Observe that for any valid i and d, 1Vn,i,d ∼
1
31Cn,i,d; actually, Vn,i,j ∼

1
3Cn,i,j +

7
6Pn,i,j + O(1).

Corollary 5. Let

V n,d =
1

n − 2d

−
d<i<n+1−d

Vn,i−d,i+d, 0 ≤ ⌊(n − 1)/2⌋,

that is, V n,d is the average total number of moves made by Range Quickselect for a range of size 2d + 1 centered around a rank
chosen uniformly at random. Then

V n,d = n −
(4d + 1)(n + 1)

3(n − 2d)


Hn − H2d+1


+

1
2

−
4d + 1

3(n − 2d)
, for d ≥ 1,

V n,0 = n −
n + 1
3n

Hn +
7
9

−
1

18n
, for n ≥ 2,

V 1,0 = 1.

Moreover, it holds

V n,d ∼


n −

(4d + 1)
3

log
n
d


+ Θ(d) if 0 < d = o(n),

1 +
4δ log(2δ)
3(1 − 2δ)


n + Θ(1), if d = δ · n + o(n), with 0 < δ < 1/2.
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Fig. 1. An example of the parameters An,i,j , Sn,i,j and Dn,i,j .

The first asymptotic estimate holds uniformly for all d = o(n), when n → ∞. Furthermore, the grand average of the savings is

1V n,d = V n,0 − V n,d ∼


4d
3

log(n/d) + Θ(d), if 0 < d = o(n),
4δ log(1/2δ)
3(1 − 2δ)

n −
1
3
log n + Θ(1), if d = δ · n + o(n), 0 < δ < 1/2.

4. Some parameters in binary search trees

Binary search trees are binary trees generated by successively inserting elements into an originally empty tree via a
simple recursive algorithm (see for instance [21]). If element x has to be inserted into an empty tree one creates a new node
containing x. If element x has to be inserted into a non-empty tree one has to compare x with the element k of the root: if
x < k then xwill be inserted into the left subtree, whereas if x ≥ k then xwill be inserted into the right subtree.

For the average-case analysis of the quantities considered for binary search trees we also always use the ‘‘random
permutation model’’, i.e., we assume that all n! permutations of a sequence of distinct values a1 < a2 < · · · < an are
chosen with equal probability as input data to generate a binary search tree of size n.

We define now the three parameters for random binary search trees we will consider in this paper.
The random variable An,i,j, with 1 ≤ i ≤ j ≤ n, counts the number of common ancestors (in a rooted tree B a node v is

an ancestor of node w if v is lying on the unique path from the root of B to w) of the nodes with rank i and j in a random
binary search tree of size n.

The random variable Sn,i,j, with 1 ≤ i ≤ j ≤ n, counts the size of the subtree rooted at the least common ancestor of the
nodes with rank i and j in a random binary search tree of size n (i.e., the size of the smallest subtree containing the nodes
with rank i and j).

Finally, the random variable Dn,i,j, with 1 ≤ i ≤ j ≤ n, is the distance (number of edges) in the unique path from the ith
node to the jth node in a random BST of size n.

An example of a binary search tree together with the quantities considered in this paper is given as Fig. 1. The binary
search tree depicted is of size 16 and was generated by inserting the elements [15, 5, 10, 16, 8, 2, 13, 12, 1, 14, 6, 4, 7, 9,
3, 11], in that order. The nodes i = 8 and j = 12 have A16,8,12 = 3 common ancestors (nodes 15, 5, and 10). The size of
the subtree rooted at the least common ancestor of nodes i = 8 and j = 12 (which is node 10) is S16,8,12 = 9. The distance
between the two nodes is D16,8,12 = 3.

Both An,i,j and Dn,i,j have received attention in the literature [19,22,2]. The corresponding results in the following
subsections are thus alternative derivations, using Theorem 2, of the formulæ that were already known. Other authors
have also investigated the number of common ancestors and the distance between two randomly chosen nodes in a random
binary search tree [15]. The results given here (Section 4.2) about the size of the subtree rooted at the least common ancestor
of two given nodes are new, to the best of our knowledge.

4.1. Common ancestors

We consider now the random variable An,i,j, with 1 ≤ i ≤ j ≤ n, which counts the number of common ancestors of the
nodes with rank i and j in a random binary search tree of size n.

We find that the distribution of An,i,j has been dealt with already in Section 2.

Theorem 6. The random variable An,i,j and the number of passes made by Range Quickselect Pn,i,j, which has been defined in
Section 2.2, are equally distributed, i.e.,

An,i,j
(d)
= Pn,i,j.
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Therefore, the expected number of common ancestors An,i,j = E

An,i,j


of the nodes with rank i and j in a random binary search

tree of size n is, for 1 ≤ i ≤ j ≤ n, given by the following exact and asymptotic formula (which uniformly holds for 1 ≤ i ≤ j ≤ n
and n → ∞):

An,i,j = Hj + Hn−i+1 − 2Hj−i+1 + 1 = log n + log(n − i + 1) − 2 log(j − i + 1) + O(1).

This can be shown easily, where we use a recursive description of An,i,j, which is obtained via the decomposition of a
binary search tree of size n ≥ 1 into the root node and its left and right subtree. Assuming the random permutation model
we get that with probability 1/n the root node has rank k, for all 1 ≤ k ≤ n. In any case the root node is a common ancestor
of the nodes with rank i and j. If i ≤ k ≤ j then there are no further common ancestors, since the nodes with rank i and j are
lying in different subtrees of the root. Only if k < i or k > j the nodes with rank i and j are lying in the same subtree and one
has to add the common ancestors contained in the left subtree (k > j) or the right subtree (k < i), respectively.

We get then the following proposition.

Proposition 5. The random variable An,i,j satisfies, for 1 ≤ i ≤ j ≤ n, the following distributional recurrence:

An,i,j
(d)
= 1 + 1Un<i · A

(1)
n−Un,i−Un,j−Un

+ 1Un>j · A
(2)
Un−1,i,j, for 1 ≤ i ≤ j ≤ n,

and An,i,j = 0, if i < 1 or j < i or j > n, where Un is uniformly distributed on {1, 2, . . . , n} and independent of (A(1)
n,i,j)n,i,j and

(A
(2)
n,i,j)n,i,j, which are independent copies of (An,i,j)n,i,j.

Since it follows from the proposition above and Proposition 1 that An,i,j and Pn,i,j satisfy the same distributional recur-
rence, the first part of Theorem 6 follows. The remaining part is an immediate consequence of Theorem 1.

4.2. The size of the subtree rooted at the least common ancestor

Now we study the random variable Sn,i,j, with 1 ≤ i ≤ j ≤ n, which counts the size of the subtree rooted at the least
common ancestor of the nodes with rank i and j in a random binary search tree of size n.

We show the following theorem concerning an exact formula for the expectation

Sn,i,j := E

Sn,i,j


.

Theorem 7. The expected size Sn,i,j = E

Sn,i,j


of the subtree rooted at the least common ancestor of the nodes with rank i and j

in a random binary search tree of size n, for 1 ≤ i ≤ j ≤ n, is given by the following exact and asymptotic formulæ (which holds
uniformly for 1 ≤ i ≤ j ≤ n and n → ∞):

Sn,i,j = (j − i + 1)

Hj + Hn−i+1 − 2Hj−i+1 + 1


= (j − i + 1)


log j + log(n − i + 1) − 2 log(j − i + 1) + O(1)


.

To show this theorem we start with a recursive description of Sn,i,j, which follows easily from the decomposition of a
binary search tree of size n ≥ 1 into the root node and its left and right subtree. We only have to take into account that if
the root node has rank k, with i ≤ j ≤ k, then the least common ancestor of the nodes with rank i and j is the root itself
and thus the size of the subtree is the size n of the whole tree, whereas if k < i or k > j the least common ancestor of the
nodes with rank i and j is contained in the right subtree or the left subtree, respectively, and one has to consider them. This
immediately leads to the following proposition.

Proposition 6. The random variable Sn,i,j satisfies, for 1 ≤ i ≤ j ≤ n, the following distributional recurrence:

Sn,i,j
(d)
= 1Un<i · S

(1)
n−Un,i−Un,j−Un

+ 1Un>j · S
(2)
Un−1,i,j + n · 1i≤Un≤j, for 1 ≤ i ≤ j ≤ n,

and Sn,i,j = 0, if i < 1 or j < i or j > n, where Un is uniformly distributed on {1, 2, . . . , n} and independent of (S(1)
n,i,j)n,i,j and

(S
(2)
n,i,j)n,i,j, which are independent copies of (Sn,i,j)n,i,j.

Proposition 6 leads then to the following recurrence for the expectation Sn,i,j:

Sn,i,j =
1
n

i−1−
k=1

Sn−k,i−k,j−k +
1
n

n−
k=j+1

Sk−1,i,j + n ·
1
n

j−
k=i

1

=
1
n

i−1−
k=1

Sn−k,i−k,j−k +
1
n

n−
k=j+1

Sk−1,i,j + j − i + 1, for 1 ≤ i ≤ j ≤ n, (9)

and Sn,i,j = 0, if i < 1 or j < i or j > n.
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An exact solution of Sn,i,j, 1 ≤ i < j ≤ n, can be obtained by applying Theorem 2 for the particular toll function
Tn,i,j = j − i + 1, for 1 ≤ i ≤ j ≤ n. Straightforward computations lead then to the exact formula given in Theorem 7.
The results for Sn,i,j given there follows immediately from Theorem 6, since it holds

Sn,i,j = (j − i + 1)An,i,j, (10)

which can be easily proved by induction using (9); note however that Sn,i,j

(d)
≠ (j − i + 1)An,i,j.

4.3. Distance

Finally, we consider the parameter Dn,i,j. As in previous subsections, let us begin with the main result, which gives the
expected value of Dn,i,j.

Theorem 8. The expected distance Dn,i,j = E

Dn,i,j


from the node with rank i to the node with rank j in a random binary search

tree of size n, for 1 ≤ i ≤ j ≤ n, is given by the following exact and asymptotic formula (which holds uniformly for 1 ≤ i ≤ j ≤ n
and n → ∞):

Dn,i,j = 4Hj−i+1 − (Hj − Hi) − (Hn+1−i − Hn+1−j) − 4
= 4 log(j + 1 − i) − (log j − log i) − (log(n + 1 − i) − log(n + 1 − j)) + O(1).

To prove the theorem, wewill first deduce the distributional recurrence thatDn,i,j satisfies. If both nodes i and j lie on the
same subtree, the value of Dn,i,j is defined recursively inside that subtree. But when the root is occupied by the kth element,
with i ≤ k ≤ j, then the distance is given by the sum of the depth of i in a random BST of size k − 1 plus the depth of j
(actually the (j− k)th element) in a random BST of size n− k plus 2. Since An,i,i is the depth of the ith node in a random BST
of size n plus 1, we have the next proposition.

Proposition 7. The random variable Dn,i,j satisfies, for 1 ≤ i ≤ j ≤ n, the following distributional recurrence:

Dn,i,j
(d)
= 1Un<i · D

(1)
n−Un,i−Un,j−Un

+ 1Un>j · D
(2)
Un−1,i,j

+1i≤Un≤j ·


A

(1)
Un−1,i,i + A

(2)
n−Un,j−Un,j−Un


, for 1 ≤ i ≤ j ≤ n,

and Dn,i,j = 0, if i < 1 or j < i or j > n, where Un is uniformly distributed on {1, 2, . . . , n} and independent of (An,i,j)n,i,j,
(D

(1)
n,i,j)n,i,j, (D

(2)
n,i,j)n,i,j, (A

(1)
n,i,j)n,i,j, (A

(2)
n,i,j)n,i,j, which are independent of each other. Also, the (D

(1)
n,i,j)n,i,j and (D

(2)
n,i,j)n,i,j are

independent copies of (Dn,i,j)n,i,j, and the (A
(1)
n,i,j)n,i,j and (A

(2)
n,i,j)n,i,j are also independent copies of (An,i,j)n,i,j.

Standard manipulation of the distributional recurrence above yields the following recurrence for the expectations Dn,i,j:

Dn,i,j =
1
n

i−1−
k=1

Dn−k,i−k,j−k +
1
n

n−
k=j+1

Dk−1,i,j +
1
n

j−
k=i


Ak−1,i,i + An−k,j−k,j−k


=

1
n

i−1−
k=1

Dn−k,i−k,j−k +
1
n

n−
k=j+1

Dk−1,i,j

+
1
n


(j − i)(Hi + Hn−j+1 − 4) + 2(j − i + 1)Hj−i+1 − 2


, for 1 ≤ i ≤ j ≤ n, (11)

and Dn,i,j = 0, if i < 1 or j < i or j > n.
The last step is to use Theorem 2 with the toll function Tn,i,j = ((j − i)(Hi + Hn−j+1 − 4) + 2(j − i + 1)Hj−i+1 − 2)/n to

obtain the closed form for Dn,i,j given in Theorem 8. It is worth mentioning that this result may be obtained in a more direct
manner by noticing that

Dn,i,j
(d)
= Pn,i,i + Pn,j,j − 2Pn,i,j.

5. Final remarks

The results in the paper are witnesses to the power of generating functions as tools for the solution of many recurrences,
in particular, divide-and-conquer recurrences such as those arising in the analysis of Quicksort and Quickselect.

The explicit solution of the general trivariate recurrence for Xn,i,j (Theorem 2) has allowed us to obtain exact formulæ for
the expected value of several parameters describing the performance of RangeQuickselect; thatwas our originalmotivation.
But as we have shown it is also very useful to analyze several other parameters, including some in connection to random
binary search trees, like commonancestors of twogivennodes, size of the subtree rooted at the least commonancestor of two
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given nodes, or the distance between two given nodes. These quantities had received some attention in past literature, and
here our machinery has provided an alternative way to derive the corresponding formulæ. Theorem 2 is also fundamental
in the analysis of the number of moves in which a particular element i gets involved during the execution of Quickselect to
select the jth smallest element out of n.

Using other techniques not presented in this paper, we have also been able to analyze Multiple Range Quickselect, the
obvious extension of Range Quickselect to the problem of multiple selection. We have preliminary results on the average
number of passes and comparisons ofMultiple Range Quickselect, andwe are currentlyworking in the computation of grand
averages and in the comparison of Multiple Range Quickselect with Multiple Quickselect.

Several open problems remain. For instance, higher order moments and distributional properties of the number of
comparisons or the number of passes in Range Quickselect, as well as other parameters like the number of moves of
particular elements. The analysis of expectedworst-case quantities of the type X̂n,d := E


maxd<i<n+1−d Xn,i−d,i+d


is also of

interest; this type of parameters (with d = 0) has received often attention in the literature; see for instance [1,4]. However,
the analysis of X̂n,d seems at least as difficult as the previous existing analysis and worth a full length paper.

Other interesting questions concern the performance of Range Quickselect in the presence of repeated elements, or
variations of the algorithm where the pivot is not chosen at random, but from small samples [16].
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