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Abstract
In this paper, we give exact and asymptotic approximations for the variance of the external path length in a

symmetric Patricia trie . The problem was open up to now . We prove that for the binary Patricia trie, the variance
is asymptotically equal to 0.37 . . . •n + n P (loge n) where n is the number of stored records and P (x) is a periodic
function with a very small amplitude . This result is next used to show that from the practical (average)
viewpoint, the Patricia the does not need to be restructured in order to keep it balanced. In general, we ask to
what extent simpler and more direct algorithms (for digital search tries) can be expected in practice to match the
performance of more complicated, worst-case asymptotically better ones .

1. INTRODUCTION

Most algorithmic designs are finalized to the optimization of asymptotic worst-case performance . Insight-

ful, elegant and generally useful constructions have been set up in this endeavor . Along these lines, however, the

algorithmic design has often to be targeted at coping efficiently with quite unrealistic, if not pathological, inputs
and the possibility is neglected that a simpler algorithm might perform just as well, or even better, in practice . A

remedy to this situation is to reconsider the algorithm from the (more natural) average complexity viewpoint .

This approach can give a more realistic picture of the overall behavior of an algorithm . In this paper, we apply

this strategy to study digital search tries (Patricia tries) and ask how well on the average these trees are balanced .

We will argue that the variance of the external path length in digital search trees is a good measure of the balanc-

ing property of the trees .

In 1979, Fagin et al [2] proposed extendible hashing as a fast access method for dynamic files . In the origi-

nal version of this method, radix search trees (tries in short) have been used to access digital keys (records) . In

addition, another procedure was used to balance the tree in order to achieve good worst case performance . Do we

really need to balance the tree ? Before we answer this question, let us first consider another, more efficient data

structure, namely the Patricia tries for accessing the keys . The Patricia the was discovered by D .R. Morrison (see

[1], [4], [9]), who suggested how to avoid an annoying flaw of regular tries, namely, one-way branching on inter-

nal nodes . To recall, a regular the is a data structure that uses the digital properties of keys . It consists of internal

nodes and external nodes. The internal nodes are used to branch a key (e .g., "go left", if the next digit of a key is

0, and "go right" if the next digit is 1), while external nodes contain the minimal prefix information of a key

(record) - see below an example of a regular the with a ternary alphabet .

* The research was supported in part by the National Science Foundation under grant NCR-8702115 .
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In the Patricia trie, all one-way branches are collapsed on internal nodes [9) . For example, in the figure above

there is one-way branching on the path from the root to the keys E and F . Collapsing it on an appropriate internal
node leads to the Patricia shown below .

0

As with regular tries, the Patricia must be accompanied with an additional procedure in order to balance it, and to
achieve good worst case performance. This restructuring generally changes the entire tree and is rather an expen-
sive operation (compare also binary search trees and AVL trees) . Again, the question is whether we really need to
balance the Patricia trie . We answer that question from the average complexity viewpoint. Finally, we note that

digital search tries find many other applications in computer science and telecommunications such as partial
match retrieval of multidimensional data, conflict resolution algorithms for broadcast communications [10], radix
exchange sort, polynomial factorization, simulation [4], [9], lexicographical sorting [1], [14], etc.

Two quantities of a digital tnie are of special interest : depth of a leaf (search time) and the external path

length . The average depth of a leaf for regular tries and Patricia trie has been studied in [3], [6], [9], [11], [13],

the variance in [6], [11], [13] and the higher moments in [11], [13] . The average value of the external path length



is closely related to the average depth of a leaf, but not the variance . The first attempt to compute the variance

was reported in [6], however, it turned out that the variance of the successful search time was estimated, not the

variance of the external path length. This was rectified by Kirschenhofer, Prodinger and Szpankowski in [8], who

obtained the correct value for the variance in the symmetric regular tries . In this paper, we propose how to evalu-

ate the appropriate variance for the Patricia trie, which was an open problem up to now . We shall argue that the

variance of the external path length is responsible for a good balance property of the Patricia tries . . In addition, we
note that the external path length analysis finds directly important applications in such algorithms as modified lex-

icographical sorting [14], conflict resolution algorithms for broadcast communications [10], etc .

This paper is organized as follow . In the next section, we define our model, establish general methodology
to attack the problem and present our main results . In particular, we show that the variance of the external path

length for the binary symmetric Patricia trie is 0.37 . ..-n + n P (loge n) where n is the number of records and P

(loge n) is a periodic function with small amplitude . Finally, Section 3 contains the proof of our main result .

2. STATEMENT OF THE PROBLEM AND MAIN RESULTS

Let T„ be a family of Patricia tries built from n records with keys from random bit streams. A key consists
of 0's and l's (binary case), and we assume that the probability of appearance of 0 and 1 in a stream is equal to

p and q = 1 - p respectively . The occurrence of these two elements in a bit stream is independent of each other .
This defines the so called Bernoulli model.

Let LR denote the external path length (random variable) in T ., that is, the sum of the lengths of all paths
from the root to all external nodes . We are interested in the average value of L,, and the variance var L,, . Let the
probability generating function of L„' be denoted as Ln (z ), that is, L:(z) = Ez t . Note that in the Bernoulli model
the n records are split randomly into left subtree and right subtree of the root . If X denotes the number of keys in
the left subtree, then X is Bernoulli distributed with parameters n and p . Then, for X = k, the following holds

n + L t + L„_k for k # 0, n
Ln = L„

	

for k =0,k = n

	

(2.1)

where L k , L„_k represent the external path length in the left and right subtrees . Note, that if either left or right
subtree is degenerate (i .e ., k = 0 or k = n) then in the Patricia an appropriate internal node is "skipped " . Using
(2.1) we immediately prove, after some elementary algebra

Lemma 1 . The probability generating function ,,*,P) satisfies the following recurrence

Lo (z) = LP (z) = 1

	

(2.2a)
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LIP(Z) = z" ~ l k) pkgn-k Lk(z) LRk(z) - (zR - 1)L,P(z)(p" + q"), n >- 2

O

The appropriate recurrence for the generating function, Lj(z ), of the external path length, Lj, in a family of
regular ( radix search) tries is given by (2.2) except that the last term in (2 .2b) is dropped (see [8]) . This reflects
the fact that in regular tries, empty subtrees are allowed (one-way branching nodes) . In other words, the
equivalent recurrence to (2.1) in regular tries is simolv L_ = n + L k + L„_ k for all k = 0 . 1	n .

(2.2b)



Then

L,P = 2n 1,P(1 - p" - q") - n (n + 1)(1 -

k=o 1
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Let now 1,P =l ELn and EP, = EL,P(L,P - 1), that is, I,P is the average value of the external path length in the

Patricia trie and EP, is the second factorial moment of L,P . Note that lk = Ln '(1) and LR = L„(1), where L„(1) and
L„'(1) denote the first and the second derivative of LP(Z) at z = 1. Simple algebra applied to (2.2) reveals that I,P

and L,P satisfy the following recurrences

If = If = 0

(2.3)

l,P=n(1 - P n - q")+ kZ=O
( k) P kg n-k (Ik+hk) n >t2

and

La = LP = 0

P kg n-k (Lk +Z-k)

Knowing 1: and L,', one immediately obtains the variance of L,', as

var LP. = L,P + 1: _ (1f) 2

The recurrence (2.4) is a linear one . Hence, let us define three quantities v,P, u,' and wP as

v0 =vi -0

v,'=n(n+1)(1-p"-qn)+(k) p kgn-k (vk+VPk ) n?2
k-0

up = UP = 0

u,P=n l,P(1-P" - q")+

	

( k) P k q" -k(uk+unk) n >-2

WP = WP = 0

P=

	

n

	

k n-k P P

	

n

	

k n-k P

	

Pwn ~, k P 4

	

If In-k {

	

k) P q

	

(wk + wn-k) n 2
k-O

	

k-O

n - n)+2

	

n)P kg n-k lk In +~( k k

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

L,P = 2un - v,P + 2w,P

	

(2.9)



(ii) The inverse relations z" of x" satisfies

k=2

k=2

xn =
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We note here that regular tries are analyzed in a similar manner [8] . The average path length, 1 .T, satisfies

recurrence like (2 .3), except that the first tern, i .e, n (1 - p" - q"), is replaced simply by n . If one drops the fac-

tor (1 - p" - q" ) in (2 .4), (2 .6), (2 .7), we obtain equivalent quantities for the regular tries, that is, EIT., yr , u,r .

The quantity w, for tries satisfies (2.8) with 11P, 1n k replaced by In and 1,T k. This suggests that there is a close

relationship between the appropriate parameters of regular tries and Patricia tries . We explore this fact in the

derivation of our main result.

In order to find a uniform approach to solve the recurrence (2 .3)-(2.8), we note that all of these recurrences

are of the same type and they differ only by the first term which we call the additive term . Let in general, the

additive term be denoted by a., where an is any sequence of numbers . Then the pattern for recurrences

(2.3) -(2 .8) is

(2.10)
"

X" = an +

	

k pkq"-k(xk +x"_k) n > 2km0 .

To solve (2.10), we define a sequence d" (binomial inverse relations [9], [151) as

n
71 (-1)k [ k) ak

	

k) dk

	

(2.11)
k=0

	

kO

Note that the exponential generating functions of d" and an are related by A (-z) = A(z)e' . Using this, in [11] it

is proved that

Lemma 2. (i) The recurrence (2.10) possesses the following solution

X,. =

	

(-1)k ( n) dl +~ ' qa0

	

(2.12)

do + na t - a o
n > 2

	

(2.13)
1 -pn -q"

O

Finally, to find asymptotic approximations for x,,, we apply a general approach proposed either in [3]

(Rice's method) or in [ 12] (Mellin like approach, see also Knuth [9]) . Namely, we consider an alternating sum of

the form

	

(-1)k ( k ) f (k) where f (k) is any sequence . This sum appears in our Lemma 2 . Then

Lemma 3. (i) [Rice's method, see [31, [6] ]. Let C be a curve surrounding the points 2, 3 , . . . , n, and f (z) be

an analytical continuation of f (k) inside C . Then



with

(ii) [Mellin like approach ; see 1121 ] . Let
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k ) (-1) kf (k) =1 j [n ; z ] f (z )dz
k=2

	

2ni c

[n ;Z] _	 (-1)n-t n

z(z - 1) . . . (z - n)

Sm,r (n)

	

(-1)k [ k] (
k
l f (k )

k=

	

J
m

and f (z) be an analytical continuation of f (k) left to the line ('h - [m - r ]+ - i oe, 'h - [m - r ]+ + i oe),

a+ = max{O,a } . Under certain conditions on the growth off (z) at infinity( compare [12] )

Sm , (n+r ) _

	

1

)r

	

j

	

T(z)f (r - z )nr'Z dz + e„

	

(2.15)

C +im

where f stands for 1

	

J ; F(z) is the gamma function 11), [4] and

e,, = 0 (n-1)

	

J

	

z T'(z )f (r - z )nr-Z dz
(/ - [m - r 1)

that is, en = o (n ) .

Proof. Both formulas are a consequence of Cauchy's Theorem (5). The proof of (2 .14) is given in [3], while
(2.15) is established in [12] .

0

To apply Lemma 3(i) for asymptotic analysis, we change C to a larger curve around which the integral is
small, and take into account residues at poles in the larger enclosed area . To apply 3(ii), we find residues right to
the line (c - i oe, c + i oe) where c = 'h - [m - r ]+. Hence, by the residue theorem and Lemma 3 (for simpli-
city r = 0 is assumed in (2.15))

n
(-1)k [ k

]

	

-

	

-
f (k)= 2: res {[n ;zkIf (zk)}+ 0(n -M )= I res {T(zk)f (-zk)n-Z`}+e„ +0 (n-")(2.16)

k=2

for any M > 0 and the sums are taken over all poles, zk , kJ,±1, • • • , of the functions under the integrals (2 .14)
and (2 .15) in the appropriate regions respectively . By (2.16), the asymptotics of the alternative sum of type (2 .12)
(Lemma 2) is reduced to compute the residues of the functions under the integrals, which is usually an easy task .
In [8] we have mainly used a Mellin like approach to prove our results for the regular (radix) tries . Therefore, in
this paper, we exclusively adopt Rice's method approach .

In this preliminary report, we concentrate on the analysis of binary symmetric Patricia tries, that is,
p = q = 0.5. Note, however, that using our general approach (i .e ., Lemma 2 and 3), we can easily produce exact

(2.14)



308

solutions to an asymmetric V-ary Patricia tries . In the following analysis, we shall extensively use the appropri-

ate results obtained by the authors in [8] for the binary symmetric radix search tries . We summarize these results

in the next theorem.

Theorem . For binary symmetric radix tries the following holds

(i) [ Knuth [9] ] The average of the external path length, l,T, is

and the inverse, In of I,T is given by

For large n the following also holds

I,T = n loge n + n ['y/L +' + S(log2 n)] - 1/2L + S1(log2 n)

where L=log2 ( log means natural logarithm ), y= 0.577 . . ., S(x) and 51(x) are periodic functions with small

amplitude and mmean zero.

(ii) [ Kirschenhofer, Prodinger and Szpankowski [8] ] For large n the variance, var L,T of the external path length
is equal to

n

	

k
I! = F, (-I)k ( k I - 21-k

k=2

1~=	 n
1 - 21

	

n?2-"

where

var L,T = n [A + P 1(log2 n )] + 0 (loge n )

A = 1 + 2IL - 2 + 2 ( .i+v)+'C

(-I)k-I

	

_

	

(-1)k-1
k

	

v

	

ku- 1 k(2 -1)

	

- 2 -1

4102

	

°°

	

k
log' 2 k=1 sinh (2k n-2/log 2 )

(2.17a)

(2.17b)

(2.18)

(2.19)

(2.20)

(2.21 a)

(2 .21b)

and P 1(x) is a continuous periodic function with period I and very small amplitude and mean zero (the contribu-

tion from t is also very small) . ~,

0 `>

Using this result, we prove in Section 3 our main result of this paper .
'
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Proposition . For binary symmetric Patricia tries, the following holds

(i) The exact solution for the average of the external path length is

P

	

rn	 12" _ 7l"

	

1 l k, 1 -2 1-k
- l" - n + S", 1

k-2

and

(ii) The variance, var L P of the external path length is

where

with v and c defined in (2 .21 a,b), and 8 is

1"
In = n 2

	

= 21-n 1,T, n >_ 2
1-2 1 "

var LR =var Ln - n [A 1 + P (loge n)] + O (loge n) = n A 2 + n 'P (loge n) + 0 (loge n),

A1=l - 2- L(v+8)-3 .9785

	

;

	

A2=1+L- 2 -T=0.37 . .

(2.22b)

(2.23a)

(2.23b)

8 - i (-1y-12I	j	- 1 = 3-loge-2v-µ .

	

(2.24)J=2 j (2~ - 1)

	

2(2J-1 - 1)

	

)

Numerical evaluation reveals that var L,I = 4.37 . . .•n + n P 1(log2 n) and var LP = 0.37. . . •n + n P (loge n) .
0

Before we proceed to the proof of the proposition, we first offer some remarks and extension of the main result.

Remarks

(i) Extension to V-ary Patricia tries. Using our general approach (Lemma 2 and 3), we are able to present exact
solutions to the variance of the external path length in the V-ary asymmetric case (see [8],[9], [13] for definitions,
and figures in Section 1 ). Unfortunately, the asymptotic analysis cannot be easily extended to the asymmetric
case, since we are not able to find an analytical continuation of the solution of wk (see [8] for more detailed com-
ments). Nevertheless, the asymptotics of var Ln in the symmetric V -ary case is easy to obtain from our analysis
(see Section 3) .

(ii) The covariance analysis . The proposition and the results from [6], [13], where the variance of the depth of a
leaf in the Patricia was established, provide asymptotics for the covariance between two different depths of leaf in
the Patricia . Let D" be a depth of a (randomly selected) leaf and let D„0 be a path from the root to the i -th exter-

nal node. Note that the external path length LR is defined in terms of D„i) as La _

	

D,,(' ) . Then

"

	

n
var LR = E { [ F, D„i) ] 2 } - {EY, D,(i> }2

(2.22a)



and this implies (see [ 11))

3 1 0

var L." = n var D„ + 2

	

cov{D('), D,(' ))

	

(2.25)
i tj

The variance of the depth, var D„ was analyzed in (6), [13] . In particular, it was proved that for binary symmetric

tries var D„ = 1 .000 . . . ( see also [6] ) . Using our main result and (2.25) we find

2

	

cov{D r>} , DU'} _ - 0.63 . . . n

	

(2.26)

This also implies, in the symmetric case, that cov{D„') , D,' } - - 0.63 . ./n . Note that the equivalent quantity for

regular tries is approximately equal to +0.84 . ./n .

(iii) How well is the Patricia balanced? Oh, the Patricia is a very well balanced tree . The random shape of the

Patricia is on the average very close to a complete binary tree (the ultimate balance tree). Indeed , note that by

remark (ii) any two depths of leaf, say D„' ) and DU', are negatively correlated . This means, that D„ i > > ED„ and

DU) < ED„ tend to occur together and DU ) < ED„ and DU' > ED„ also tend to occur together. Thus, for nega-

tively correlated random variables D„' ) and DU ), if one is large, the other is likely to be small . This indicates a

good balance property for the Patricia . Note, that in the regular tries cov{Ds'), DU>} - 0.84/n > 0 and DU 0 and

DU' in that case are positively correlated . This means that if D,~0 is large, the DU ) is likely to be large, too .

The second reason for the well-balanced feature of the Patricia follows from Chebyshev's inequality . It is

known that for a random variable X, Pr fl X - EX i > c} 5 varzX , hence the smaller the variance is, the more
C

balanced X is . In our case Pr { J L: - In J > c} 5 0 .37/e2. In addition, it seems to us that the external path
length is a better measure of the balance property of a tree than the depth of a leaf. To "prove" our claim, con-

sider a three nodes Patricia tree . Two possible shapes may occur as shown below :

. .

Both possible trees are ultimately well balanced, since they represent different complete binary trees . Note, how-
ever, that the variance of the depth of (randomly) chosen leaf is positive while the variance of the external path
length is equal to zero . This heuristic can be extended to more than three node trees and this suggests that the
variance of the external path length can be treated as a measure of how well a tree is balanced .
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(iv) The path length LM converges to ELM in probability ! Applying our theorem and proposition it is not difficult

to prove that LM/ELM ( as well as L1/EL, tends to one in probability as n -o. Indeed, by Chebyshev's inequal-

ity one obtains

L"

	

var L"
Pr { EL" -1 ? c} <_ t

2 (EL" ) 2

But, by (2 .22b) and (2 .23a)

LP
"

	

0.37 . . .
Pr{j

	

-1 1-ar} 5

	

-40.
ELM

	

e2 n logzn

Hence, LM/EL,, --+ I in probability as n

3. THE ANALYSIS

In this section, we the present sketch of the proof of our Proposition for symmetric binary Patricia tries (i .e .,

p = q = 0.5) . To simplify the derivations, we shall -use extensively our previous results from the binary sym-

metric regular tries given in (8) (see Theorem), that is, we represent all quantities for the Patricia in terms of

equivalent quantities for the regular tries .

Let us start with the average of the external path length, 1M, which is given by (2 .3). This equation falls into
our general recurrence (2 .10) with the additive term a" = n(1 - 2 t'") (symmetric case). Hence, by (2 .12) we
need d" which is d" = 6 . 1 + n21-', where 5, 1 is the Kronecker delta (see [15]) . Then, by Lemma 2

and

Comparing (3.1) with (2 .17) one immediately shows that

In = In - n + 8. 1

	

(3.2a)

which proves Proposition (i) .

The variance, var Ln, of the external path length is given by

var LM = EP + lM - (IM)2

where EP is given by (2.4) . Hence, using (3 .2) and (2.18) one proves

"

	

k2 1-k

i" = I (-1)k ( k, i - 21-k

	

(3.la)
k=2

p

	

k 21-k
1n =

		

(3 .1b)
1-2 1-k

1n = 2 1-" ill n >- 2

	

(3.2b)
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2n
var LP = En + 1" - (11)2 +

2n
L

21092 n + L - n (1 + L-t) + P Oog2 n )

where L = log2. We shall show that Ln =R + g (n) for some g (n), and we represent the variance of the Patri-

cia in terms of the variance of the regular tries var L,T = Ln + l," - ( l,T) 2 .

We focus now on the computation of Ln which is given by (2.4), that is, Ln = 2un - vn + 2w,? (see (2.9))

where the appropriate components, up , VP and wn are given by recurrences (2.6)-(2.8) . Let us first consider v,?,

that is,

VP =vi =0

(3.4)

vn = n (n + 1)(1 - 2 1-") + 2 1-n

	

( k ] VP n > 2
k=O

The equivalent quantity, v,T, for regular tries satisfies (3.4) with the adaptive term replaced by a n = n (n + 1). We
can write

vn
P = v T

n - Zn

where

zn = n (n + 1)21-" + 21-n
k [ k ] zk n >- 2

	

(3.5b)

and z o = z 1 = 0. Note that (3.5b) falls into our general recurrence (2.10) with an = n (n + 1)2", hence

f" = 4 ( 2 ] 2-" - 4 n2-" [15], and by Lemma 2

n •

	

4 [ k ] 2-k - 4k 2-k + 2k

Zn = Z
(-1)k [ k ]	

2

	

1 - 21-k

	

(3.6)
k-2

We need asymptotics for (3.6), and Lemma 3 can be applied . Before we deal with (3.6) we first present one more
general result from [ 11). Let for some real c and integer r

(3.5a)

k-2

Then in [11], using our Lemma 3, we have proved after some simple algebra, the following asymptotic approxi-
mation for Tn , (c).

Lemma 4 . For any r, c and large n, the following holds

Tn, (c ) _

	

(-1)k[kJ Cr] 1 c2 1-k

T",(c)= nc 1092 nc + L - SL° + 2 + (-1)r Pr0092 nc) + 0(1) , r=0,l

	

(3.8a)



where P, (x) is given by

P, (z)

	

2:L
k = -m

kmo

3 1 3

I
T",,(c)= (-1)' C

	

r

	

1)L + P,(log2 nc) + 0(1) , r 22

	

(3.8b)

r(r + 2ttik /L)exp(-2itik loge x ]

	

(3.9)

and r(z) is the gamma function [5] . The function P, (x) is periodic with very small amplitude and can be safely

ignored in most practical cases .

Using Lemma 4 we immediately obtain

z" = n
L

+ 2 + n510092 n) + 0 (1)

	

(3.10)

where 8 1 (x) is a linear combination of P7(x) and P 1 (x ) . Therefore, we finally find

v,"=vn-n(L -1 +2)-n5l(log2 n)+0(1)

	

(3.11)

Now we turn to a relationship between up and u., where ua = u i =up = ui = 0 and

u: = n 1:(l - 21-") + 21~°
k

( k, up n >- 2

	

(3 .12a)

u,T = n 1,T + 21-" E [ k ]
UT n 2 2

	

(3 .12b)

Therefore, the following holds

where

P

	

Tun = un - xn - Yn

xn = n 1nT2 1'" +21-"
k-O

( n , xk~, k

Yn =n2(1-21-n)+21-n i
k-O

(
n
k] Yk

	

(3.14b)

with zero initial conditions . The recurrence (3 .14b) on y" is easy to analyze noting that it falls into (2.10) with

a" = 2 [ n ] + n - 22-" [
2,

- n 21-" and hence d, = 2S n 2 - Sn 1 - ( 2, 22-" + n 2 1-n . We have used here

the result from Knuth [91 which says

(3.13)

(3.14a)



Applying Lemma 2 and 4, we immediately obtain

31 4

a n = ( n ] c" = do = l r ) (-c Y (1 - c )n-'

	

(3 .15)

yn = 2n 2 - 2n + n [loge n + L - 2 - L I + 82(log2 n) + O (1)

	

(3 .16)

The analysis of x" is more difficult, however, after some algebra one proves

n

	

1-k

	

n

	

1-k

	

k
xn = 8 Z (-1)k ( k) C 2 )	 1

2
21-k +I (-1)k ( k ) 1	

-21
	 -k

	

( 1 ) ~T

	

(3.17)
j=3

The asymptotics for the first term of (3.17) readily follows from Lemma 4 . To obtain the asymptotics for the

second term of (3.17) we apply Lemma 2, and finally after some algebra we prove

where

and

xn = n 4 L 6 + n [483(log2 n) + 840092 n)) + O (1)

8 -

	

(-1
Y-1

2i

	

- 1
j=2 j (2J - 1)

	

2(2j -1 - 1)

84(x) =
L

	

t(-y, )exp[2nikx ]

	

j

	

1 12-

	

2(2J-1 1 - 1

	

(3 .20)
k~ -°°

	

j=2

	

!

	

)
k sO

and 83(log2 n) is given in (3 .9) after some natural modifications . Now, (3 .13), (3.16) and (3 .18) finally imply

ur=uT -2n2 -n log2n-n

	

3+L-B -

	

-n a(log2 n)+O (1)

	

(3 .21)

where a(x) is a linear combination of 82(x), 83(x) and 53(x) .

The most intricate analysis is required for w . which is given by the following recurrence

wn = 2-" F [ kn ] ik hk. + 2 1-"

	

[ nk] wk n > 2

	

(3.22)
k-0

	

k-

We appeal again to our analysis of regular tries . The appropriate recurrence for wn replaces 1P and Ink with IT

and Ink . The inverse relation to the additive term an in (3.29) can be computed as (we use here (2.22b)

and this implies

do = 22-" . 2-
Z (

k ] 1k In--k = 2
2-n

!fn

k=3

(3 .18)

(3 .19)

(3.23)

w,: =2w,1-2OE (- k [k ] dk

	

(3 .24)
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where B.T is given in [8) . We need to estimate the second term in (3.24), which we denote as B„ . Using the

results from (8) one immediately proves that

	 k		1

	

°° r1	1	
Bn+i = (n + 1) I (-1)* [ nk 2k _ i - 1

	

1 - 2
k-2

	

1 -

	

l
k-1

J1k-2

	

~

	

j-2

Therefore, Rice's method (Lemma 3) can be applied to find asymptotics of B„ . After some tedious algebra we get

B
„ = 2L2

loge n +
L2

Y- 2 j
n2 log n +

L2
Rl - 2L2 loge n

	

(3 .26)

n Y+ 3 - L log n -n Y + 1 - L + Rr + y- L +0(loge n)L 2

	

2 2

	

L2 2 2 4

	

2

where

Y 7c2 L . y -

	

L2

Rr 2 + 12

	

2

	

3

Comparing the above with w,' given in (8) we finally obtain

n 2

	

n 2w,P = WT + (wR - B„) = w. -
L

log n + L2 (R2 - ar)

(3.27)

+ L logo +n 4L + L + L -2 + 0 0092n)

where

~2=3 L2 - 32 Y -Lµ+ 2 + 12
Now we are ready to put all results together and prove our proposition. Note that L? = 2uR - vR+ 2wn, so

and by (3.3)

with A t given by (2 .23b), which completes the proof of our proposition .

(3.25)

E,P, = LT - 2n2 log n - n 9 - 3 - 2v 28 + O (log2 n)

	

(3.28)L

	

2L

	

L L

var L,P = var L T - n [A I + P (log n)] + 0 (loge n )
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