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Additive irreducibles in α-expansions

By Peter J. Grabner† and Helmut Prodinger*

Abstract. The Bergman number system uses the base α = 1+
√

5
2

, the digits 0 and

1, and the condition that adjacent ones are forbidden. We are interested in those positive

integers such that replacing one or more of the ones never results again in a positive

integer; they are called (additively) irreducible. These numbers are characterised in

terms of the positions of their ones. Further, the number of irreducible positive integers

below a given bound is considered and evaluated asymptotically, as the bound goes to

infinity. The periodic function that appears is analysed in detail.

1. Introduction

Let α = 1+
√
5

2 be the golden ratio. It is well known that each natural number

n has a unique α-expansion

n =
∑

k∈Z

εkα
k (1)

with the digits εk ∈ {0, 1}, such that no nonzero digits are adjacent to each other,

and only a finite number of digits is different from 0 (cf. [1, 4]). It is sometimes

called Bergman’s number system.

If one considers a standard q-ary expansion
∑

k≥0

εkq
k (2)
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of a natural number, with digits εk in the set {0, . . . , q − 1} then one still gets a

natural number if one replaces some of the digits by zero.

We are interested in positive integers

I =

L∑

k=−K

εkα
k,

such that all the numbers

L′∑

k=−K′

εkα
k for K ′ < K and L′ < L

are no integers (if they are not zero). The integers I with this property can be

seen as the additive building blocks of the integers in the Bergman-representation.

Positive integers that cannot be decomposed any further in the above sense

will be called additive irreducibles, or α-irreducibles for short. It is easy to see

that the decomposition into α-irreducibles is unique. Here is a short list of the

first few natural numbers, decomposed into additive irreducibles:

1, 2, 3, 4 = 1 + 3, 5, 6, 7, 8 = 1 + 7, 9 = 2 + 7, 10 = 3 + 7, 11 = 4 + 7, 12,

13, 14, 15 = 1 + 14, 16, 17, 18, 19 = 1 + 18, 20 = 2 + 18, 21 = 3 + 18,

22 = 4 + 18, 23 = 5 + 18, 24 = 6 + 18, 25 = 7 + 18, 26 = 1 + 7 + 18, . . . ,

7.000.000 = 16 + 767 + 267.872+ 1.860.498 + 4.870.847, . . . .

The original motivation for studying these integers was that every positive

integer n can be decomposed uniquely into a sum of Is; n = I1 + · · · + Ik. The

sum-of-digits function in Bergman-representation of integers

sB

(
L∑

ℓ=−K

εℓα
ℓ

)
=

L∑

ℓ=−K

εℓ

is additive with respect to this decomposition

sB(I1 + · · ·+ Ik) = sB(I1) + · · ·+ sB(Ik).

The sum-of-digits function sB has been studied in [2].

In this paper, we will prove the following theorems, a characterisation of

the α-irreducibles m in terms of the α-expansion, and an irreducible number

(counting) theorem, giving an asymptotic formula for the number of α-irreducibles

below a given number n.
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Theorem 1. An integer m > 1 with α-expansion m = αe1 + · · · + αeℓ +

αf1 + · · ·+ αfh with e1 > · · · > eℓ ≥ 1, and 0 > f1 > · · · > fh is an α-irreducible,

iff e1, . . . , eℓ−1 are odd. Equivalently, m is an α-irreducible, iff f1, . . . , fh−1 are

odd and fh is even.

(In words, the positive exponents must all be odd, with the possible exception

of the smallest one. Since m = 1 is α-irreducible by definition, α0 cannot occur

in the Bergman-expansion of an α-irreducible.)

Theorem 2. The number A(n) of α-irreducibles among the numbers 1, . . . , n

satisfies for n → ∞ an asymptotic formula

A(n) = Φ
(1
2
logα n

)
nρ +O(log n),

with ρ = log 2
2 logα

= 0.72021 . . . and Φ a continuous periodic function of period 1.

Primes.eps Fourier50.eps

Figure 1. Plot of the function Φ compared to the first 50 terms of its

Fourier series.

2. Proofs

Lemma 1. Let ε−K , . . . , εL ∈ {0, 1} be a sequence of digits satisfying the

condition that no two consecutive digits are both 1 and assume that

n =
L∑

ℓ=−K

εℓα
ℓ ∈ N (with ε−K = εL = 1).

Then K = 2⌈L
2 ⌉ holds.
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Proof. Since n is an integer, it is not changed by applying the conjugation

α 7→ − 1
α
in the ring Z[α]. This gives

n =
L∑

ℓ=−K

εℓ(−α)−ℓ =
K∑

ℓ=−L

(−1)ℓεℓα
ℓ.

The highest occurring power in this sum has to be even, since otherwise the

number represented by the sum would be negative. For even K we have

αK − αK−3 − αK−5 − · · · = αK−1 < n < αK + αK−2 + · · · = αK+1.

On the other hand αL < n < αL+1, which gives the inequalities L < K + 1 and

L+ 1 > K − 1. Thus we have L ≤ K ≤ L+ 1, which together with the fact that

K is even implies K = 2⌈L
2 ⌉. �

The following Lemma explains how the positive powers in the expansion of

an integer determine the negative powers.

Lemma 2. Let ε0, . . . , εL ∈ {0, 1} be a sequence of digits satisfying the

condition that no two consecutive digits are both 1. Let 0 < 2ℓ1 < 2ℓ2 < . . . <

2ℓm be the strictly positive even indices of non-zero digits (set m = 0, if there are

none) and set ℓ0 = 0 and ℓm+1 = ∞. Furthermore, let 2ℓj < 2kj+1 < 2ℓj+1 (0 ≤
j ≤ m) be the largest odd index of a non-zero digit between the two consecutive

even indices 2ℓj and 2ℓj+1. Set kj = ℓj − 1, if all digits ε2ℓj+1, . . . , ε2ℓj+1−1 are

zero.

Then

⌈ L∑

ℓ=0

εℓα
ℓ

⌉

=

L∑

ℓ=0

εℓα
ℓ +

m∑

j=0

( kj∑

ℓ=ℓj

(1− ε2ℓ+1)α
−2ℓ−1 + α−2kj−2

)
−
{
1 for k0 = −1,

0 otherwise,
(3)

where the sum in the first parenthesis is 0 if k0 = −1.

Proof. We first notice that the sum over the negative powers of α is an

admissible expansion (no two consecutive digits are 1) and therefore less than 1.
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Let Lk = αk + (−α)−k denote the k-th Lucas-number. Then we have

ε2ℓjα
2ℓj +

kj∑

ℓ=ℓj

ε2ℓ+1α
2ℓ+1 +

kj∑

ℓ=ℓj

(1 − ε2ℓ+1)α
−2ℓ−1 + α−2kj−2

= ε2ℓjα
2ℓj +

kj∑

ℓ=ℓj

ε2ℓ+1

(
α2ℓ+1 − α−2ℓ−1

)
+

kj∑

ℓ=ℓj

α−2ℓ−1 + α−2kj−2

= ε2ℓjL2ℓj +

kj∑

ℓ=ℓj

ε2ℓ+1L2ℓ+1 ∈ N

for j > 0; a slight modification is necessary for j = 0. Thus the number in (3) is

an integer which is at most 1 larger than
∑L

ℓ=0 εℓα
ℓ, which proves the lemma. �

Proof of Theorem 1. The decomposition of an integer given in Lemma 2

shows that the only possibility for an integer to be additively irreducible is that

there is only one summand in the decomposition (3). Notice that by Lemma 1

every expansion of an integer has to end with the digit 1 in an even position.

Thus the summands in (3) cannot be decomposed any further.

The only possibilities to have only one summand in the decomposition (3)

is to either have m = 0 and therefore no non-zero digit in an even position, or

m = 1 and k0 = −1. The first possibility is the case when e1, . . . , eℓ are all odd,

the second possibility is the case when e1, . . . , eℓ−1 are odd and eℓ is even. �

Proof of Theorem 2. Let

A′ =

{ L∑

ℓ=0

ε2ℓ+1α
2ℓ+1 | ∀ℓ : ε2ℓ+1 ∈ {0, 1}

}
.

Then define the set A′′ by

A′′ =
∞⋃

k=1

α2k(α2A′ + 1) ∪ {1}, (4)

where the union is disjoint. Furthermore, we define A = (A′ ∪ A′′) \ {0}. The

set of α-irreducibles is then formed by completing A with appropriate digits after

the comma by Theorem 1 and Lemma 2.

We now count the number of elements of A less than

X =

2L+1∑

ℓ=0

εℓα
ℓ, (5)
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where we assume that either ε2L+1 = 1 or ε2L = 1. We denote

Xk =

2L+1∑

ℓ=k

εℓα
ℓ

and define

M = max {ℓ ≥ 1 | ε2ℓ = 1}

(set M = 0 if the set is empty). Then we have

# {a ∈ A | a < X} =

2L+1∑

k=2M

# {a ∈ A | Xk+1 ≤ a < Xk} .

The condition Xk+1 ≤ a < Xk implies that

a =
k∑

ℓ=0

δℓα
ℓ +

2L+1∑

ℓ=k+1

εℓα
ℓ

and
k∑

ℓ=0

δℓα
ℓ < εkα

k.

Thus a ∈ A can only hold if the digits ε2L+1, . . . , εk+1 have the property that all

non-zero digits have odd index, except possibly for the index k+1. This explains

why the sum starts with k = 2M .

For k ≥ 2M all non-zero digits in ε2L+1, . . . , εk+1 have odd index; then the

digits δk, . . . , δ0 can be chosen so that all non-zero digits have odd index, except

possibly for the index of the last non-zero digit. For k ≥ 1 the number of possible

choices for δk, . . . , δ0 is then

εk

(⌊ k
2
⌋−1∑

ℓ=1

2
k
2
−ℓ−1 + 2⌊

k
2
⌋
)

= εk

(
3 · 2⌊ k

2
⌋−1 − 1

)
,

where each summand in the sum corresponds to those choices of digits, which end

with a non-zero digit at the even position 2ℓ, whereas the second term counts the

choices which only have non-zero digits in odd positions. For k = 0 the number

of possible choices is ε0; this can only occur, if M = 0.

For

x =

∞∑

k=1

εkα
−k ∈ [α−2, 1]
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define

p(x) = min {k | εk = 1 and k even}

and

φ(x) =

p(x)∑

k=1

εk2
−⌊ k+1

2
⌋.

Then the number of α-irreducibles less than X = α2L+2y (with y ∈ [α−2, 1])

equals

min{p(y),2L}∑

k=1

ε2L+1−k

(
3 · 2L−⌊k

2
⌋−1 − 1

)
+ ε2L+1 = 2L3φ(y) +O(L).

Defining

Φ(t) = 2−t3φ(α2t−2)

for 0 ≤ t ≤ 1 and writing

# {a ∈ A | a < X} = 2L3φ(Xα−2L−2) +O(L)

= Xρ
(
Xα−2L−2

)−ρ
3φ(Xα−2L−2) +O(L)

= XρΦ
(1
2
logα X − L

)
+O(logX)

gives the number of (truncated) irreducibles.

The function φ is continuous on the interval [α−2, 1]: we only have to check

that two different representations of a number x give the same value for φ(x). For

that let

x =

L∑

ℓ=1

εℓα
−ℓ =

L−1∑

ℓ=1

εℓα
−ℓ +

∞∑

k=1

α−(L+2k−1),

where εL = 1. Then we have

p(x) < L: φ(x) =
∑p(x)

ℓ=1 εℓ2
−⌊ ℓ+1

2
⌋, since the digits with index < L are the same

for both representations

p(x) = L: in this case we have

φ(x) =

L∑

ℓ=1

εℓ2
−⌊ ℓ+1

2
⌋ =

L−1∑

ℓ=1

εℓ2
−⌊ ℓ+1

2
⌋ +

∞∑

k=1

2−⌊L+2k
2

⌋,

since the last sum equals 2−⌊L
2
⌋ = 2−⌊L+1

2
⌋, because L is even.
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p(x) > L: in this case we have

φ(x) =

L∑

ℓ=1

εℓ2
−⌊ ℓ+1

2
⌋ =

L−1∑

ℓ=1

εℓ2
−⌊ ℓ+1

2
⌋ + 2−⌊L+1

2
⌋,

because L+ 1 is even.

Let x, y be two real numbers with α−k−1 ≤ |x − y| < α−k. Then either the

digital expansions of x and y to base α agree up to the k-th digit, which yields

|φ(x) − φ(y)| < 2−
k
2 ; or the two numbers have less than k digits in common. In

this case there exists a number ξ between x and y which has two different repre-

sentations to base α, which have k digits in common with x and y respectively.

Then

|φ(x) − φ(y)| ≤ |φ(x) − φ(ξ)|+ |φ(ξ) − φ(y)| ≤ 2−
k
2
+1

and we have

|φ(x) − φ(y)| ≤ 2|x− y|ρ. (6)

We now have for N = ⌈X⌉ and X as in (5)

A(N) = # {n < N | n irreducible}
= # {a ∈ A | a < X}+O(1)

= XρΦ
(1
2
logα X

)
+O(logX)

=
(
N + (X −N)

)ρ
Φ
(1
2
logα N

)

+O
(
Nρ ·

∣∣∣Φ
(1
2
logα N

)
− Φ

(1
2
logα X

)∣∣∣
)
+O(logN)

= NρΦ
(1
2
logα N

)
+O(logN),

(7)

where we have used (6) to bound |Φ(12 logαN)−Φ(12 logαX)| by O(N−ρ). This

proves the theorem. �

3. Dirichlet series and Fourier coefficients

We will explain now how to compute the Fourier coefficients of Φ numerically

to high precision. For this purpose we study the Dirichlet series

ζA(s) =
∑

a∈A

a−s, ζA′(s) =
∑

a∈A′

a 6=0

a−s, and ζA′′(s) =
∑

a∈A′′

a−s. (8)
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Clearly, we have ζA(s) = ζA′(s) + ζA′(s) and

ζA′′(s) =
∞∑

k=1

α−2ks

(
1 +

∑

a∈A′

a 6=0

(1 + α2a)−s

)

=
1

α2s − 1

(
1 + α−2sζA′(s) + α−2s

∞∑

ℓ=1

(−s

ℓ

)
α−2ℓζa′(s+ ℓ)

) (9)

by (4). Furthermore, by the decomposition

A′ \ {0} = α2(A′ \ {0}) ⊎ (α+ α2(A′ \ {0})) ⊎ {α}

we have

ζA′(s) = α−2sζA′(s) +
∑

a∈A′

a 6=0

(α+ α2a)−s + α−s

= 2α−2sζA′(s) + α−s + α−2s
∞∑

ℓ=1

(−s

ℓ

)
α−ℓζA′(s+ ℓ).

This gives the functional equation for ζA′(s)

ζA′(s) =
1

α2s − 2

(
αs +

∞∑

ℓ=1

(−s

ℓ

)
α−ℓζA′(s+ ℓ)

)
. (10)

This functional equation provides the analytic continuation of ζA′(s) to the left of

ℜs = ρ. It is similar in its form to the trivial functional equation of the Riemann

zeta function and also in the way it is derived.

This functional equation can be used to compute values of ζA′(s) numerically

to high precision by the observation that for large ℓ, |ζA′(s+ℓ)−α−s−ℓ| = O(α−3ℓ)

(with an explicit O-constant). Thus the series in (10) is geometrically convergent

and the error can be controlled. Starting with ζA′(s+ k) with k large enough to

meet the prescribed error bound, we can use the functional equation to compute

ζA′(s + k − 1), . . . , ζA′(s) by rapidly convergent series, where we can control the

error bounds. For a detailed description in a similar instance we refer to [5].

From (10) we read off that ζA′(s) has simple poles at the points s = ρ+ kπi
logα

with residues

Res
s=ρ+ kπi

log α

ζA′(s) =
1

4 logα

(
(−1)k

√
2 +

∞∑

ℓ=1

(−ρ− kπi
logα

ℓ

)
α−ℓζA′

(
ρ+ ℓ+

kπi

logα

))
,
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which can be computed numerically by the procedure described above. By (9)

ζA′′(s) has the same poles with residues

Res
s=ρ+ kπi

log α

ζA′′(s) =
1

2
Res

s=ρ+ kπi
log α

ζA′(s).

We now introduce the Dirichlet generating function of all irreducible ele-

ments:

η(s) =
∑

n∈N

n irreducible

n−s.

Since the irreducible integers differ at most by 1 from the elements of A by

Lemma 2, this function has the same poles and residues as ζA(s).

The counting function of irreducible elements can now be expressed by the

Mellin-Perron formula from classical analytic number theory (cf. [6]):

B(N) =
∑

n<N
n irreducible

(
1− n

N

)
=

1

2πi

2+i∞∫

2−i∞

η(s)Ns ds

s(s+ 1)
.

Shifting the line of integration to ℜs = ρ−ε, where the integral is still convergent,

we obtain by residue calculus

B(N) = Nρ
∑

k∈Z

1

(ρ+ kπi
logα

)(ρ+ 1 + kπi
logα

)
Res

s=ρ+ kπi
log α

ζA(s)e
kπi logα N +O(Nρ−ε)

= NρΨ
(1
2
logα N

)
+O(Nρ−ε)

with a continuous periodic function Ψ. For more details on the application of this

technique to digital functions we refer to [3, 5].

The counting functions A(N) defined in (7) and B(N) are related by partial

(Abel) summation:

B(N) =
1

N

∑

n≤N

A(n). (11)

The periodic function Φ in Theorem 2 is Hölder continuous with exponent ρ > 1
2

by (6). Therefore its Fourier series is absolutely convergent by Bernstein’s theorem

(cf. [7]). Thus the Fourier coefficients of Φ can be related to those of Ψ by (11)

Φ̂(k) =
(
ρ+ 1 +

kπi

logα

)
Ψ̂(k) =

1

ρ+ kπi
logα

Res
s=ρ+ kπi

log α

ζA(s)
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by [3] or [5, Proposition 5].

We have used the numerical method for the computation of ζA(s) as described

above to compute the first Fourier coefficients

Φ̂(0) = 1.2805518195386460216946037033568563347660801437933 . . . ,

Φ̂(1) = 0.072680149457538598589977133015533730235053618517778 . . .

+ 0.010398381210825974099196428902369009784854020134648 . . . i,

Φ̂(2) = −0.001564808148052238888496969303490183402915232587181 . . .

− 0.017356976045800856810743168654268946461607279485855 . . . i.

The plot of the first 50 terms of the Fourier series compared to the function Φ is

shown in Figure 1.
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