Short Communications / Kurze Mitteilungen

A Note on a Result of R. Kemp on R-Tuply Rooted Planted Plane Trees

H. Prodinger, Wien

Received July 23, 1981

Abstract - Zusammenfassung

A Note on a Result of R. Kemp on R-Tuply Rooted Planted Plane Trees. R. Kemp has shown that the average height of r-tuply rooted planted plane trees is

$$
\sqrt{\pi n}-\frac{1}{2}(r-2)+O\left(\log (n) / n^{1 / 2-\varepsilon}\right), \varepsilon>0, n \rightarrow \infty
$$

assuming that all such trees with n nodes are equally likely. We give a quite short proof of this result (with an error term of $O(1)$).

Eine Bemerkung zu einem Resultat von R. Kemp über r-fach gewurzelte Bäume. R. Kemp hat gezeigt, daß die mittlere Höhe von r-fach gewurzelten Bäumen

$$
\sqrt{\pi n}-\frac{1}{2}(r-2)+O\left(\log (n) / n^{1 / 2-\varepsilon}\right), \varepsilon>0, n \rightarrow \infty
$$

ist, falls man annimmt, daß alle solchen Bäume mit n Knoten gleich wahrscheinlich sind. Wir geben für dieses Resultat (mit einem Fehler von $O(1)$) einen ziemlich kurzen Beweis.

1. Introduction

A planted plane tree is a rooted tree which has been embedded in the plane so that the relative order of subtrees at each branch is part of its structure. Kemp [2] has defined an r-tuply rooted planted plane tree to be a planted plane tree, such that the root has degree $r(r$ a fixed parameter $\in \mathbb{N}$).

The height of a planted plane tree is defined to be the maximal number of nodes on a path from the root to a leave.

Kemp [2] has shown in a rather lengthy paper that the average height of an r-tuply rooted planted tree with n nodes is given by

$$
\begin{equation*}
\sqrt{\pi n}-\frac{1}{2}(r-2)+O\left(\log (n) / n^{1 / 2-\varepsilon}\right), \varepsilon>0, n \rightarrow \infty \tag{1}
\end{equation*}
$$

provided that all such trees with n nodes are assumed to be equally likely. In this note we show that the weaker result

$$
\begin{equation*}
\sqrt{\pi n}+O(1) \tag{2}
\end{equation*}
$$

can be obtained quite quickly.
First note that the existence of the root is rather superficial and uncomfortable ior the computations. Dropping this extra node, Kemp's result reads:

The average height of an r-tuple of planted plane trees with together n nodes is

$$
\begin{equation*}
\sqrt{\pi n}-\frac{r}{2}+O\left(\log (n) / n^{1 / 2-\varepsilon}\right), \varepsilon>0, n \rightarrow \infty . \tag{3}
\end{equation*}
$$

If the height of a planted plane tree t is denoted by $h(t)$, the height of an r-tuple $t=\left(t_{1}, \ldots, t_{r}\right)$ of trees is defined by

$$
\begin{equation*}
h_{r}(t):=\max \left\{h\left(t_{1}\right), \ldots, h\left(t_{r}\right)\right\} \tag{4}
\end{equation*}
$$

We define a further notion $h_{r, 1}$ of "height" as follows (this is inspired by [3]):

$$
\begin{equation*}
h_{r, 1}(t):=\max \left\{h\left(t_{1}\right), h\left(t_{2}\right)+1, \ldots, h\left(t_{r}\right)+r-1\right\} . \tag{5}
\end{equation*}
$$

We observe that the rather obvious estimate

$$
\begin{equation*}
h_{r, 1}(t)-(r-1) \leq h_{r}(t) \leq h_{r, 1}(t) \tag{6}
\end{equation*}
$$

holds for all r-tuples t. Thus we have similar inequalities for the averages $\overline{h_{r}}(m)$, $\overline{h_{r, 1}}(n)$ of r-tuples of n nodes:

$$
\begin{equation*}
\overline{h_{r, 1}}(n)-(r-1) \leq \overline{h_{r}}(n) \leq \overline{h_{r, 1}}(n) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{r}(n)=h_{r, 1}(n)+O(1) \tag{8}
\end{equation*}
$$

So if we show
Theorem 1: The average " $h_{r, 1}$-height" of an r-tuple with $n+r$ nodes is

$$
\overline{h_{r, 1}}(n+r)=\sqrt{\pi n}+O(1), n \rightarrow \infty
$$

we are done.

2. The Average $h_{r, 1}$-Height of R-Tuples of Trees

Note that the number $T_{n, r}$ of r-tuples of trees with together n nodes is given by

$$
\begin{equation*}
T_{n, r}=\frac{r}{n}\binom{2 n-r-1}{n-1} \tag{9}
\end{equation*}
$$

the generating function of $\left\{T_{n, r}\right\}_{n \geq 1}$ is just

$$
\begin{equation*}
z^{r} C^{r}(z)=\sum_{n \geq 0} T_{n, r} z^{n} \tag{10}
\end{equation*}
$$

with $C(z)=(1-u) / 2 z$, where $u=(1-4 z)^{1 / 2}$ (see [2]).

It is known [1] that the generating function $A_{h}(z)$ of trees with height $\leq h$ is

$$
\begin{equation*}
A_{h}(z)=2 z \frac{(1+u)^{h}-(1-u)^{h}}{(1+u)^{h+1}-(1-u)^{h+1}} \tag{11}
\end{equation*}
$$

Thus the generating function $D_{h}(z)$ of r-tuples with $h_{r, 1}$-height $\leq h$ is $(h \geq r)$

$$
\begin{align*}
D_{h}(z) & =A_{h}(z) \cdot A_{h-1}(z) \ldots A_{h-(r-1)}(z) \\
& =2^{r} z^{r} \frac{(1+u)^{h-(r-1)}-(1-u)^{h-(r-1)}}{(1+u)^{h+1}-(1-u)^{h+1}} \tag{12}
\end{align*}
$$

Observing $(1+u)^{-1}=\frac{1}{2} C(z)$ and $(1-u) /(1+u)=z C^{2}(z)$, we find

$$
\begin{equation*}
D_{h}=z^{r} C^{r} \frac{1-z^{h-r+1} C^{2(h-r+1)}}{1-z^{h+1} C^{2(h+1)}} \tag{13}
\end{equation*}
$$

and therefore $E_{h}(z)=\sum_{h \geq 1} E_{n, h} z^{n}$, the generating function of r-tuples with $h_{r, 1}$-height $>h$ fulfills by (10) and (13)

$$
\begin{gather*}
E_{h}=z^{r} C^{r}-D_{h}=z^{r} C^{r} \frac{z^{h+1-r} C^{2(h+1-r)}-z^{h+1} C^{2(h+1)}}{1-z^{h+1} C^{2(h+1)}} ;(h \geq r-1) \\
E_{h-1}=\sum_{\lambda \geq 1} z^{h \lambda} C^{2 h \lambda-r}-\sum_{\lambda \geq 1} z^{h \lambda+r} C^{2 h \lambda+r} \tag{14}
\end{gather*}
$$

Since the coefficients of the powers of $C(z)$ are well known (compare (9) and (10)) we have

$$
\begin{equation*}
E_{n+r, h-1}=\sum_{\lambda \geq 1}\left[\binom{2 n+r-1}{n-h \lambda}-\binom{2 n+r-1}{n-h \lambda-1}-\binom{2 n+r-1}{n+r-h \lambda}+\binom{2 n+r-1}{n+r-h \lambda-1}\right] . \tag{15}
\end{equation*}
$$

Now the average $h_{r, 1}$-height is

$$
\begin{equation*}
\overline{h_{r, 1}}(n+r)=T_{n+r, r}^{-1} \cdot\left\{\sum_{h \geq r-1} E_{n+r, h}+(r-1) T_{n+r, r}\right\} \tag{16}
\end{equation*}
$$

if we replace $E_{n+r, h}$ for $h=0, \ldots, r-2$ by the righthand side of (15), and start the sum in (16) by $h=0$, we make again an error of $O(1)$, yielding

$$
\begin{equation*}
\widetilde{h_{r, 1}}(n+r)=T_{n+r, r}^{-1} \cdot \xi+O(1) \tag{17}
\end{equation*}
$$

with

$$
\begin{equation*}
\xi=\sum_{k \geq 1} d(k)\left[\binom{2 n+r-1}{n-k}-\binom{2 n+r-1}{n-k-1}-\binom{2 n+r-1}{n-k+r}+\binom{2 n+r-1}{n-k+r-1}\right] \tag{18}
\end{equation*}
$$

where $d(k)$ denotes the number of divisors of k.
The following approximation of the binomial coefficients is well known [1], [2]: $(\varepsilon>0)$

$$
\binom{2 n}{n+a-k}=\binom{2 n}{n} \cdot \begin{cases}\exp \left(-k^{2} / n\right)\left[f_{a}(n, k)+O\left(n^{-2+\varepsilon}\right)\right] & |k-a|<n^{2 / 2+\varepsilon} \tag{19}\\ O\left(\exp \left(-n^{2 \varepsilon}\right)\right) & \text { otherwise }\end{cases}
$$

with

$$
\begin{equation*}
f_{a}(n, k)=1-\frac{a^{2}}{n}+\left[\frac{2 a}{n}-\frac{2 a^{3}+a}{n^{2}}\right] k+\frac{4 a^{2}+1}{2 n^{2}} k^{2}+\frac{4 a^{3}+5 a}{3 n^{3}} k^{3}-\frac{1}{6 n^{3}} k^{4}-\frac{a}{3 n^{4}} k^{5} . \tag{20}
\end{equation*}
$$

Now we use (19) where n is replaced by $N:=n+\frac{r-1}{2}$ and $\binom{2 n}{n}$ by $\pi^{-1 / 2} 2^{2 n} n^{-1 / 2}$ $\left(1+O\left(n^{-1}\right)\right):$
We do this for the 4 summands in (18) with

$$
a=\frac{r+1}{2} ; \frac{r-1}{2} ;-\frac{r-1}{2} ;-\frac{r+1}{2}
$$

yielding

$$
\begin{equation*}
\xi=\frac{2^{2 n+r-1}}{\sqrt{\pi n}}\left(1+O\left(\frac{1}{n}\right)\right) \sum_{k \geq 1} d(k) e^{-k^{2} / N}\left[\frac{-2 r}{N}+\frac{4 r k^{2}}{N^{2}}+O\left(\log (N) / N^{-3 / 2+\varepsilon}\right)\right] \tag{21}
\end{equation*}
$$

Now

$$
\begin{equation*}
T_{n+r, r}=\frac{r}{n} \cdot \frac{1}{\sqrt{\pi n}} \cdot 2^{2 n+r-1}\left(1+O\left(\frac{1}{n}\right)\right) \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k \geq 1} d(k) e^{-k^{2} / N}\left[-\frac{2}{N}+\frac{4 k^{2}}{N^{2}}+O\left(\log (N) / N^{-3 / 2+\varepsilon}\right)\right]=\left(\frac{\pi}{N}\right)^{1 / 2}+O\left(\frac{1}{N}\right) \tag{23}
\end{equation*}
$$

(compare [1]), so that finally

$$
\begin{equation*}
\overline{h_{r, 1}}(n+r)=\sqrt{\pi n}+O(1) \tag{24}
\end{equation*}
$$

as desired.

References

[1] De Bruijn, N. G., Knuth, D. E., Rice, S. O.: The average height of planted plane trees, in: Graph theory and computing (Read, R. C., ed.), pp. 15-22. New York-London: Academic Press 1972.
[2] Kemp, R.:The average height of r-tuply rooted planted plane trees. Computing 25, 209-232(1980).
[3] Kirschenhofer, P., Prodinger, H.: On the average height of monotonically labelled binary trees, presented at: 6th Hungarian Colloquium on Combinatorics, Eger, 1981.
H. Prodinger

Institut für Algebra und Diskrete Mathematik
Technische Universität Wien
Gusshausstrasse 27-29
A-1040 Wien
Austria

