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Abstract. The lattice path model suggested by E. Deutsch is derived from ordinary
Dyck paths, but with additional down-steps of size −3,−5,−7, . . . . For such paths, we
find the generating functions of them, according to length, ending at level i, both, when
considering them from left to right and from right to left. The generating functions are
intrinsically cubic, and thus (for i = 0) in bijection to various objects, like even trees,
ternary trees, etc.

1. Introduction

Nonnegative lattice paths consisting of up-steps (1, 1) and down-steps (1,−1) and ending
at the x-axis again are enumerated by Catalan numbers. Richard Stanley [10] devoted a
whole book on combinatorial objects enumerated by Catalan numbers.

Nonnegative lattice paths consisting of up-steps (1, 1) and down-steps (1,−2) and ending
at the x-axis again are enumerated by the numbers 1

2n+1

(
3n
n

)
. These generalized Catalan

numbers appear less often than Catalan numbers but they are sequence A001764 in [7] and
also enumerate many different combinatorial objects. It is recommended to watch Donald
Knuth’s christmas lecture [5].

Deutsch [6] suggested different down-steps: (1,−1), (1,−3), (1,−5), . . . . We draw the
first few instances in a combinatorial triangle, similar to Pascal’s triangle. A new line
means going from n to n+ 1:

1
0 1
1 0 1
0 2 0 1
3 0 3 0 1
0 7 0 4 0 1
12 0 12 0 5 0 1
0 30 0 18 0 6 0 1
55 0 55 0 25 0 7 0 1

The numbers in the first row, 1, 1, 3, 12, 55, . . . are given by the formula 1
2n+1

(
3n
n

)
, and,

because of the plethora of combinatorial objects enumerated by this sequence, allows for
1
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bijective methods between them. Indeed, N. Cameron [2] established a bijection to so-
called even trees, which are plane trees with the property that each node has an even
number of subtrees.

In this paper, we will construct generating functions for the enumeration of “Deutsch-
paths”. In this way, we will also understand the other numbers in the above triangle, not
just the ones in the first row. We also generalize the concept by allowing that such a path
ends at level i ≥ 0, where i = 0 means the original model.

Since up-steps and down-steps are no longer symmetric (as in ordinary Dyck paths), the
enumeration from right to left, working with up-steps (1, 1), (1, 3), (1, 5), . . . and one down-
step (1,−1) leads (for i 6= 0) for different generating functions and thus enumerations. This
right-to-left model is more difficult to treat.

The method consists by first assuming a horizontal barrier at level h, so that the Deutsch-
paths live in a strip. Then the generating functions are rational, and linear algebra methods
(Cramer’s rule) can be employed. In the resulting formulæ it is then possible to perform
the limit h→∞.

To know the enumeration both, from left to right and from right to left allows to compute
the total area, summed over all Deutsch-paths returning to the x-axis. The area of a path
is the sum of all its ordinates.

Similar methods were already used in [8], solving an open problem in N. Cameron’s
thesis [3]. However, the results from our earlier paper cannot be used for the present
enumeration of Deutsch-paths.

In whatever follows, the variable z is used in generating functions to mark the length of
the paths. The substitution z2 = t(1 − t)2 is used throughout, always with this meaning.
In this way, the cubic equations that we encounter become manageable. Compare this
with [9].

We find explicit expressions for the generating functions fi(z) and gi(z) of Deutsch-
paths ending on level i from left to right resp. from right to left. They are rational in
an auxiliary variable t which in itself satisfies a cubic equation. Thus one might speak
about cubic Deutsch-paths. We are also able to write down explicit expressions for the
coefficients of these generating functions. As a corollary we find an explicit expression
for the cumulative area, summed over all Deutsch-paths of a given length. This result is
derived from the generating functions. It should be stated that computer algebra (Maple)
played a major rule in the current project.

2. Two generating functions

The following expansions will be used later. Set

1

1−X + z2X3
=
∑
n≥0

anX
n



GENERATING FUNCTIONS FOR A LATTICE PATH MODEL INTRODUCED BY DEUTSCH 3

and

r1 = 1− t, r2,3 =
t±
√

4t− 3t2

2
.

We sometimes find it useful to abbreviate W =
√

4t− 3t2. A direct computation confirms
that

(1− r1X)(1− r2X)(1− r3X) = 1−X + z2X3.

Some background information why this cubic equations factors nicely can be found in [5, 9].
Then, adjusting the initial values, we get the explicit expression

an =
1

3t− 1

[
−rn+1

1 +
3t+W

2W
rn+1

2 − 3t−W
2W

rn+1
3

]
.

The other expansion we need is related to

1

1− Y 2 − zY 3
=
∑
n≥0

bnY
n.

It can be checked directly via (1− µ1z)(1− µ2z)(1− µ3z) = 1− Y 2 − zY 3 that

bn =
1

3t− 1
[Aµn1 +Bµn2 + Cµn3 ]

with

µ1 =
z

t− 1
, µ2 =

−z(t+W )

2t(t− 1)
, µ3 =

z(−t+W )

2t(t− 1)

and

A = t, B =
2t− 1

2
+

t

2W
, C =

2t− 1

2
− t

2W
.

The quantities A, B, C take care of the initial values.

3. Enumeration of paths from left to right

(0, 0)

The picture shows a Deutsch path ending in (16, 2) and being bounded by 4 (or higher).
Let an,k be the number of Deutsch-paths ending at (n, k) and being bounded by h. In

order not to clutter the notation, we did not put the letter h into the definition, especially,
since h has only a very temporary meaning here.

The recursion (for n ≥ 1)

an,k = an−1,k−1 + an−1,k+1 + an−1,k+3 + an−1,k+5 + · · ·
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with the understanding that an,k should be interpreted as 0 if k < 0 or k > h is easy
to understand. The starting value is a0,0 = 1. It is natural to introduce the generating
functions

fk = fk(z) =
∑
n≥0

an,kz
n.

Here is a little list:

f0 = 1 + z2 + 3 z4 + 12 z6 + 55 z8 + 268 z10 + 1338 z12 + 6741 z14 + 34075 z16 + · · ·
f1 = z + 2 z3 + 7 z5 + 30 z7 + 142 z9 + 701 z11 + 3517 z13 + 17751 z15 + · · ·
f2 = z2 + 3 z4 + 12 z6 + 55 z8 + 268 z10 + 1338 z12 + 6741 z14 + 34075 z16 + · · ·
f3 = z3 + 4 z5 + 18 z7 + 87 z9 + 433 z11 + 2179 z13 + 11010 z15 + · · ·
f4 = z4 + 5 z6 + 25 z8 + 126 z10 + 637 z12 + 3224 z14 + 16324 z16 + · · ·
f5 = z5 + 6 z7 + 32 z9 + 165 z11 + 841 z13 + 4269 z15 + · · ·
f6 = z6 + 7 z8 + 39 z10 + 204 z12 + 1045 z14 + 5314 z16 + · · ·

The recursion for the numbers an,k translates into

fk = zfk−1 + zfk+1 + zfk+3 + zfk+5 + · · ·+ [[k = 0]],

which is best written as a matrix equation
1 −z 0 −z 0 −z 0 . . .
−z 1 −z 0 −z 0 −z . . .
0 −z 1 −z 0 −z 0 . . .

...
−z 1



f0

f1

f2
...
fh

 =


1
0
0
...
0


Now let dm be the determinant of this matrix with m rows and columns. We have d0 = 1,

d1 = 1, d2 = 1− z2, and the recursion

dm = dm−1 − z2dm−3.

The characteristic equation of this recursion is the cubic equation

λ3 − λ2 + z2 = 0.

Note also the generating function

R(X) =
∑
m≥0

dm−1X
m = 1 +X +X2 +

∑
m≥3

(dm−2 − z2dm−4)Xm

= 1 +X +X2 +X
∑
m≥2

dm−1X
m − z2X3R(X)

= 1 +X +X2 +XR(X)−X −X2 − z2X3R(X),
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or

R(X) =
1

1−X + z2X3
=
∑
j≥0

dj−1X
j.

So we see that dn−1 are the numbers studied in the previous section. Therefore

dm =
1

3t− 1

[
−rm+2

1 +
3t+W

2W
rm+2

2 − 3t−W
2W

rm+2
3

]
.

Cramer’s rule now leads to

fk = zk
dh−k
dh+1

,

which, when performing the limit h→∞, leads to

fk(z) = zkr−k−1
1 =

zk

(1− t)k+1
.

This form will be useful later, but we would also like to compute [zn]fk(z), i. e., the numbers
an,k. We can only have contributions (which is also clear for combinatorial reasons) if
n ≡ k mod 2. So let us set n = 2N + i, k = 2K + i for i = 0, 1, and compute

[z2N+i]
z2K+i

(1− t)2K+i+1
= [z2N−2K ]

1

(1− t)2K+i+1
.

It helps, as mentioned before, to set z2 = x = t(1− t)2. Then we can continue

a2N+i,2K+i = [xN−K ]
1

(1− t)2K+i+1

=
1

2πi

∮
dx

xN−K+1

1

(1− t)2K+i+1

=
1

2πi

∮
dt(1− t)(1− 3t)

tN−K+1(1− t)2N−2K+2

1

(1− t)2K+i+1

= [tN−K ](1− 3t)
1

(1− t)2N+i+2

=

(
3N −K + i+ 1

N −K

)
− 3

(
3N −K + i

N −K − 1

)
.

Notice in particular the enumeration of paths ending at the x-axis:

a2N,0 =

(
3N + 1

N

)
− 3

(
3N

N − 1

)
=

1

2N + 1

(
3N

N

)
,

a generalized Catalan number, enumerating many different combinatorial objects, as men-
tioned in the Introduction.
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4. Enumeration of ternary paths from right to left

We still prefer to work from left to right, so we change our setting as follows:

(0, 0)

The picture shows a reversed Deutsch path ending in (16, 2) and being bounded by 7 (or
higher). Such a path has down-step (1,−1) and up-steps (1, 1), (1, 3), (1, 5) etc.

Again, we can make a small scheme of numbers:

1
0 1 0 1 . . .
1 0 2 0 . . .
0 3 0 6 . . .
3 0 9 0 . . .
0 12 0 31 . . .
12 0 43 0 . . .

The first row is the same as before, but the other numbers are different and we will
investigate them now.

For the notation, we switch from an,k to bn,k and from fk(z) to gk(z), and give a short
list as an illustration.

g0 = 1 + z2 + 3 z4 + 12 z6 + 55 z8 + 268 z10 + 1338 z12 + 6741 z14 + 34075 z16 + · · ·
g1 = z + 3 z3 + 12 z5 + 55 z7 + 273 z9 + 1428 z11 + 7752 z13 + 43263 z15 + · · ·
g2 = 2 z2 + 9 z4 + 43 z6 + 218 z8 + 1155 z10 + 6324 z12 + 35511 z14 + · · ·
g3 = z + 6 z3 + 31 z5 + 163 z7 + 882 z9 + 48967 z11 + 27759 z13 + · · ·
g4 = 3 z2 + 19 z4 + 108 z6 + 609 z8 + 3468 z10 + 20007 z12 + · · ·
g5 = z + 10 z3 + 65 z5 + 391 z7 + 2313 z9 + 13683 z11 + · · ·
g6 = 4 z2 + 34 z4 + 228 z6 + 1431 z8 + 8787 z10 + · · ·

The linear system changes now as follows:
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

1 −z . . .
−z 1 −z . . .
0 −z 1 −z . . .
−z 0 −z 1 −z . . .
0 −z 0 −z 1 −z . . .

...
−z 1





g0

g1

g2

g3

g4
...
gh


=



1
0
0
0
0
...
0


The determinant of the matrix is the same as before by transposition: dh+1. However,

the application of Cramer’s rule is more involved now. We must evaluate the determinant
of 

0 0 . . . 1 . . . 0
−z 1 −z 0 . . .
0 −z 1 0 . . .
−z 0 −z 0 0 . . .

...
0 0 1


︸ ︷︷ ︸ ︸ ︷︷ ︸

q − 1 m− q
Call this determinant ∆m,q. We want to find a recursion for it.

By expansion, we find the recursions

αm = αm−1 − z2αm−3

for αm = ∆m,q, for fixed q, and

βm = βm−2 + zβm−3

for βm = ∆m,m−q, for fixed q.
Eventually, with a lot of help by Gfun, we find that for 2 ≤ q < m:

∆m,q = [XmY q]
zX2Y 2(1 + zXY + zY X2 + z2Y 2X3)

(1−X + z2X3)(1−X2Y 2 − zX3Y 3)

= z[Xm−qY q−2]
(1 + zY )(1 + zXY )

(1−X + z2X3)(1− Y 2 − zY 3)
,

∆m,1 = dm−1 = [Xm−1]
1− z2X2

1−X + z2X3
,

∆m,m = z2[Y m−2]
1 + zY

1− Y 2 − zY 3
.

We can now continue with the computation, according to Cramer’s rule:

gi =
∆h+1,i+1

dh+1

.
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The instance ∆m,m is less interesting, since we will eventually push the barrier h to
infinity, and then it plays no role anymore. The instance ∆m,1 will show us that f0 = g0,
which is clear from combinatorial reasons, since it describes the same objects when left and
right are switched. So we concentrate on the remaining cases and compute some generating
functions:

∆m,q = z[Xm−qY q−2]
(1 + zY )(1 + zXY )

(1−X + z2X3)(1− Y 2 − zY 3)

= zam−q[Y
q−2]

1 + zY

1− Y 2 − zY 3
+ z2am−q−1[Y q−3]

1 + zY

1− Y 2 − zY 3

= zam−q(bq−2 + zbq−3) + z2am−q−1(bq−3 + zbq−4)

and we will rewrite this according to gi =
∆h+1,i+1

dh+1
.

At that stage, we will let h→∞ and assume that i ≥ 1.

gi =
z

(1− t)i+2
(bi−1 + zbi−2) +

z2

(1− t)i+3
(bi−2 + zbi−3)

=
1

3t− 1
Aµi−3

1

[ zµ2
1

(1− t)i+2
+

z2µ1

(1− t)i+2
+

z2µ1

(1− t)i+3
+

z3

(1− t)i+3

]
+

1

3t− 1
Bµi−3

2

[ zµ2
2

(1− t)i+2
+

z2µ2

(1− t)i+2
+

z2µ2

(1− t)i+3
+

z3

(1− t)i+3

]
+

1

3t− 1
Cµi−3

3

[ zµ2
3

(1− t)i+2
+

z2µ3

(1− t)i+2
+

z2µ3

(1− t)i+3
+

z3

(1− t)i+3

]
=

t+ (2t− 1)W

2(3t− 1)(1− t)i+1W
µi−3

2

[ zµ2
2

1− t
+
z2µ2

1− t
+

z2µ2

(1− t)2
+

z3

(1− t)2

]
+

−t+ (2t− 1)W

2(3t− 1)(1− t)i+1W
µi−3

3

[ zµ2
3

1− t
+
z2µ3

1− t
+

z2µ3

(1− t)2
+

z3

(1− t)2

]
= z

t+ (2t− 1)W

4(3t− 1)(1− t)i+2W
µi−3

2 (−3t2 + 3t+ 2− (t− 3)W )

+ z
−t+ (2t− 1)W

4(3t− 1)(1− t)i+2W
µi−3

3 (−3t2 + 3t+ 2 + (t− 3)W )

=
z

2(1− t)i+2W
µi−3

2 (t3 − 5t2 + 5t− (t2 − t− 1)W )

+
z

2(1− t)i+2W
µi−3

3 (−t3 + 5t2 − 5t− (t2 − t− 1)W )

=
1

4W (1− t)i+5
µi2(t3 − 5t2 + 5t− (t2 − t− 1)W )(2t2 − 3t+W )

+
1

4W (1− t)i+5
µi3(−t3 + 5t2 − 5t− (t2 − t− 1)W )(2t2 − 3t−W )
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=
t

2(1− t)i+1W
µi2(−t+ 2 +W ) +

t

2(1− t)i+1W
µi3(t− 2 +W )

=
t

2(1− t)i+1
(µi2 + µi3)− z(t− 2)

2(1− t)i+2

µi2 − µi3
µ2 − µ3

.

So we managed to compute the functions gi for all i ≥ 0.

5. Extraction of coefficients

We start by noticing the pleasant formulae

µ2µ3 = t− 1, µ2 + µ3 =
z

1− t
.

We need the Girard-Waring formula, see e. g. [4]:

Xm + Y m =
∑

0≤k≤m/2

(−1)k
(
m− k
k

)
m

m− k
(XY )k(X + Y )m−2k.

In our instance, we need

µi2 + µi3 =
∑

0≤k≤i/2

zi−2k

(
i− k
k

)
i

i− k
(1− t)3k−i.

The other version is

Xm − Y m

X − Y
=

∑
0≤k≤(m−1)/2

(−1)k
(
m− 1− k

k

)
(XY )k(X + Y )m−1−2k

and in the special instance

µi2 − µi3
µ2 − µ3

=
∑

0≤k≤(i−1)/2

zi−1−2k

(
i− 1− k

k

)
(1− t)3k+1−i.

So we get for i ≥ 1

gi =
t

2(1− t)i+1
(µi2 + µi3)− z(t− 2)

2(1− t)i+2

µi2 − µi3
µ2 − µ3

=
t

2

∑
0≤k≤i/2

zi−2k

(
i− k
k

)
i

i− k
(1− t)3k−2i+1

− t− 2

2

∑
0≤k≤(i−1)/2

zi−2k

(
i− 1− k

k

)
(1− t)3k−2i+1

= t
∑

1≤k≤(i−1)/2

zi−2k

(
i− 1− k
k − 1

)
(1− t)3k−2i+1
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+
∑

0≤k≤(i−1)/2

zi−2k

(
i− 1− k

k

)
(1− t)3k−2i+1.

Now we distinguish the two cases i even resp. odd. Set i = 2I + δ, with δ ∈ {0, 1}.

[z2N+δ]gi = [z2N ]t
∑

1≤k≤(i−1)/2

z2I−2k

(
i− 1− k
k − 1

)
(1− t)3k−2i+1

+ [z2N ]
∑

0≤k≤(i−1)/2

z2I−2k

(
i− 1− k

k

)
(1− t)3k−2i+1

= [xN ]
∑

1≤k≤(i−1)/2

tI−k+1

(
i− 1− k
k − 1

)
(1− t)k−i+1−δ

+ [xN ]
∑

0≤k≤(i−1)/2

tI−k
(
i− 1− k

k

)
(1− t)k−i+1−δ

=
∑

1≤k≤(i−1)/2

[tN ](1− t)−2N−1(1− 3t)tI−k+1

(
i− 1− k
k − 1

)
(1− t)k−i+1−δ

+
∑

0≤k≤(i−1)/2

[tN ](1− t)−2N−1(1− 3t)tI−k
(
i− 1− k

k

)
(1− t)k−i+1−δ

=
∑

1≤k≤(i−1)/2

(
i− 1− k
k − 1

)
[tN−I+k−1](1− 3t)(1− t)−n+k−i

+
∑

0≤k≤(i−1)/2

(
i− 1− k

k

)
[tN−I+k](1− 3t)(1− t)−n+k−i

=
∑

1≤k≤(i−1)/2

(
i− 1− k
k − 1

)[(
3N + 2δ + I − 2

N − I + k − 1

)
− 3

(
3N + 2δ + I − 3

N − I + k − 2

)]

+
∑

0≤k≤(i−1)/2

(
i− 1− k

k

)[(
3N + 2δ + I − 1

N − I + k

)
− 3

(
3N + 2δ + I − 2

N − I + k − 1

)]

6. The area

Each contribution ci to the area of a path (0, c0 = 0), . . . , (2n, c2n = 0) can be seen as
splitting the path into a path of length k (left to right) ending at level i and a path of
length 2n − k (right to left) also ending at level i. Since we are working with generating
functions, all possible such splittings are taken into account when taking the product of
two such generating functions.
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The cumulated area is thus given as (write again z2 = x = t(1− t)2)

area =
∑
i≥0

ifi(z)gi(z) =
t(1 + 3t)

(1− t)(1− 3t)2
.

Then

[z2n]area = [xn]
t(1 + 3t)

(1− t)(1− 3t)2

=
1

2πi

∮
dx

xn+1

t(1 + 3t)

(1− t)(1− 3t)2

=
1

2πi

∮
dt(1− t)(1− 3t)

tn+1(1− t)2n+2

t(1 + 3t)

(1− t)(1− 3t)2

= [tn−1]
1

(1− t)2n+2

1 + 3t

1− 3t

=
∑
k≥0

3k[tn−1−k]
1 + 3t

(1− t)2n+2

=
∑
k≥0

3k
[(

3n− k
n− 1− k

)
+ 3

(
3n− 1− k
n− 2− k

)]
.

The paper [1] contains general results about the area of lattice paths, of a less explicit
nature than what we are doing here. Anyway, since Deutsch-paths have an infinite set of
possible steps, they do not fall into the framework studied in [1].

We hope that the gentle reader will find our analysis of cubic Deutsch-paths exciting; we
are sure that there are many questions left for future research, possibly also of a bijective
nature.
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