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Abstract. Recently, Belbachir and Bencherif [2] have expanded Fibonacci and Lu-
cas polynomials using bases of Fibonacci and Lucas like polynomials. Here, we provide
simplified proofs of the expansion formulæ, that in essence a computer can do.

Furthermore, for 2 of the 5 instances, we find q-analogues.

1. Introduction

In [2], Fibonacci and Lucas polynomials were studied:

U0 = 0, U1 = 1, Un = xUn−1 + yUn−2,

V0 = 2, V1 = x, Vn = xVn−1 + yVn−2.

We prefer the modified polynomials

u0 = 0, u1 = 1, un = un−1 + zun−2,

v0 = 2, v1 = 1, vn = vn−1 + zvn−2,

so that

Un(x, y) = xnun

( y

x2

)
, Vn(x, y) = xnvn

( y

x2

)
.

Then, with

λ1,2 =
1±

√
1 + 4z

2
,

un =
1√

1 + 4z
(λn

1 − λn
2 ), vn = λn

1 + λn
2 .

Substituting z = t/(1− t)2, these formulæ become particularly nice:

un =
1− (−t)n

(1 + t)(1− t)n−1
, vn =

1 + (−t)n

(1− t)n
.

The main result of [2] are the following 5 formulæ:

2u2n+1 =
n∑

k=0

an,kv2n−k, an,k = 2
n∑

j=0

(−1)j+k

(
j

k

)
− (−1)n+k

(
n

k

)
. (1.1)

u2n =
n∑

k=1

bn,ku2n−k, bn,k = (−1)k+1

(
n

k

)
. (1.2)
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v2n−1 =
n∑

k=1

cn,ku2n−k, cn,k = 2(−1)k+1

(
n

k

)
− [k = 1]. (1.3)

2v2n−1 =
n∑

k=1

dn,kv2n−1−k, dn,k = (−1)k+1 2n− k

n

(
n

k

)
. (1.4)

2u2n =
n∑

k=1

en,kv2n−1−k, (1.5)

en,k = (−1)k+1 2n− k

2n

(
n

k

)
+

n−1∑
j=0

(−1)j+k−1

(
j

k − 1

)
− 1

2
(−1)n+k

(
n− 1

k − 1

)
.

But the proofs of all these, using the simple forms for un and vn, can be done by a
computer! To give the reader an idea, let us do the last one, which seems to be the
most complicated:

n∑
k=1

en,kv2n−1−k =
n∑

k=1

(−1)k+1 2n− k

2n

(
n

k

)
v2n−1−k

+
n−1∑
j=0

j+1∑
k=1

(−1)j+k−1

(
j

k − 1

)
v2n−1−k −

n∑
k=1

1

2
(−1)n+k

(
n− 1

k − 1

)
v2n−1−k

=
1− t2n−1

(1− t)2n−1
+

1 + t2n−1

(1− t)2n−2(1 + t)
− (−1)ntn−1

(1− t)2n−2
+

(−1)ntn−1

(1− t)2n−2

=
2(1− t2n)

(1− t)2n−1(1 + t)
= u2n.

The other proofs are similar/easier:

n∑
k=0

an,kv2n−k =
2[(−t)n(1 + t) + 1 + t2n+1]

(1− t)2n(1 + t)
− 2(−t)n

(1− t)2n

=
2[1 + t2n+1]

(1− t)2n(1 + t)
= 2u2n+1.

n∑
k=1

cn,ku2n−k =
2(1− t2n)

(1− t)2n−1(1 + t)
− 1 + t2n−1

(1 + t)(1− t)2n−2

=
1− t2n−1

(1− t)2n−1
= v2n−1.

2. q-analogues

Now we are interested in q-analogues. For this, we replace un by

Fibn =
∑

0≤k≤n−1
2

q(
k+1
2 )

[
n− k − 1

k

]
q

zk
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and vn by

Lucn =
∑

0≤k≤n
2

q(
k
2)

[
n− k

k

]
q

[n]q
[n− k]q

zk,

as suggested by Cigler [3]. We use standard q-notation here:

[n]q := 1 + q + · · ·+ qn−1, [n]q! := [1]q[2]q . . . [n]q,

[
n

k

]
q

:=
[n]q!

[k]q![n− k]q!
,

compare [1]; the notions of the Introduction are the special instance q = 1.

Theorem 1.

Luc2n−1 =
n∑

k=1

dn,kLuc2n−1−k,

with

dn,k = (−1)k−1 q(
k
2)

1 + qn−1

([
n− 1

k

]
q

+ qn−1

[
n

k

]
q

)
.

Proof. We must prove that∑
0≤k≤n−1

q(
k
2)

[
2n− 1− k

k

]
q

[2n− 1]q
[2n− 1− k]q

zk

=
n∑

j=1

(−1)j−1 q(
j
2)

1 + qn−1

([
n− 1

j

]
q

+ qn−1

[
n

j

]
q

)
×

∑
0≤k≤ 2n−j−1

2

q(
k
2)

[
2n− j − 1− k

k

]
q

[2n− j − 1]q
[2n− j − 1− k]q

zk.

Comparing coefficients, we have to prove that

q(
k
2)

[
2n− 1− k

k

]
q

[2n− 1]q
[2n− 1− k]q

=
n∑

j=1

(−1)j−1 q(
j
2)

1 + qn−1

([
n− 1

j

]
q

+ qn−1

[
n

j

]
q

)
q(

k
2)

[
2n− j − 1− k

k

]
q

[2n− j − 1]q
[2n− j − 1− k]q

.

Simplifying, we must prove that
n∑

j=0

(−1)jq(
j
2)

([
n− 1

j

]
q

+ qn−1

[
n

j

]
q

)[
2n− j − 2− k

k − 1

]
q

[2n− j − 1]q = 0.

Another form of this is
n∑

j=0

(−1)jq(
j
2)

(
1− q2n−1 − qn−j + qn−1

)(
1− q2n−j−1

)[
n

j

]
q

[
2n− j − 2− k

k − 1

]
q

= 0.

Notice that
n∑

j=0

(−1)jq(
j
2)

[
n

j

]
q

q−aj = 0
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for 0 ≤ a ≤ n− 1. This follows from Rothe’s formula [1, p. 490]

n∑
j=0

(−1)jq(
j
2)

[
n

j

]
q

xj = (1− x)(1− xq) . . . (1− qn−1).

We write the desired identity as

n∑
j=0

(−1)jq(
j
2)

(
A + Bq−j + Cq−2j

)[
n

j

]
q

(
D0q

−0 + · · ·+ Dk−1q
−j(k−1)

)
= 0.

Therefore, for k ≤ n− 2, the identity holds. For k = n− 1,

1∑
j=0

(−1)jq(
j
2)

(
1− q2n−1 − qn−j + qn−1

)(
1− q2n−j−1

)[
n

j

]
q

[
n− j − 1

n− 2

]
q

= 0

can be shown by inspection, and for k = n, the identity holds, since the sum is
empty. �

Theorem 2.

Fib2n =
n∑

k=1

bn,kFib2n−k

with

bn,k = (−1)k−1q(
k
2)

[
n

k

]
q

.

Proof. We must prove that

∑
0≤k≤n−1

q(
k+1
2 )

[
2n− k − 1

k

]
q

zk

=
n∑

j=1

(−1)j−1q(
j
2)

[
n

j

]
q

∑
0≤k≤ 2n−j−1

2

q(
k+1
2 )

[
2n− j − k − 1

k

]
q

zk.

Comparing coefficients, this means

n∑
j=0

(−1)jq(
j
2)

[
n

j

]
q

[
2n− j − k − 1

k

]
q

= 0,

which follows by a similar but simpler argument than before. �

3. Conclusion

We found 2 q-analogues; for the remaining 3 instances we were not successful and
leave this as a challenge for anybody who is interested.
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