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Continued fraction expansions for q-tangent
and q-cotangent functions
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For 3 different versions of q-tangent resp. q-cotangent functions, we compute the continued fraction expansion
explicitly, by guessing the relative quantities and proving the recursive relation afterwards. It is likely that these are
the only instances with a “nice” expansion. Additional formulæ of a similar type are also provided.
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To Philippe Flajolet for 30 years of inspiration

1 Philippe Flajolet and continued fractions
In a paper that was written on the occasion of Philippe Flajolet’s 50th birthday [26] and discussed his
various research areas, we wrote about his contributions to continued fractions:

Continued fractions
The papers [8, 9, 10] deal with the interplay of continued fractions and combinatorics. Let us consider
lattice paths, consisting of steps NORTHEAST, EAST, SOUTHEAST, starting at the origin, returning to
the x-axis after n steps, and never being negative. The possible steps are denoted by the letters {a, b, c},
and an index i is additionally used when a step starts at altitude i. Thus, such a lattice path is a word in
the variables {a0, a1, . . . , b0, b1, . . . , c1, . . . }.

The set of all paths (a formal language) is given by the infinite continued fraction

1

1− c0 −
a0|b1

1− c1 −
a1|b2

1− c2 −
a2|b3
· · ·

,

where (u|v)/w denotes uw−1v, and w−1 is the quasi-inverse of languages (or formal power series).
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There are many consequences of this continued fraction theorem, e. g. finite versions describe lattice
paths of bounded height. Counting leads to a replacement of noncommuting variables by commuting
variables. For instance, replacing all the variables by z gives the continued fraction for

∑
Mnz

n, Mn

being a Motzkin number. Many combinatorial objects can be described by such lattice paths, with
suitable specializations. Some examples: Set partitions (also with several restrictions), permutations
(via tournament trees), involutions, etc. Some later developments can be found in [15, 20].

There are also applications to Computer Science, since several dynamic data structures can be de-
scribed in this way, the simplest being a stack, but also Dictionaries, Priority queues, Linear lists,
Symbol tables, and subspecies of these. Operations like Insertion, Query, Deletion have then an obvi-
ous interpretation in the path diagram. Several notions of costs can be discussed with conveniently in
terms of continued fractions. These concepts were worked out in collaboration with Chéno, Françon,
Puech, and Vuillemin [12, 14, 3, 13, 17, 18].

Numbertheoretic aspects of continued fractions
Gauss studied expansions of complex numbers into continued fractions. Here is an example.
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1

5 +
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Consecutive digits are obtained by the recursive rule

ψ(z) = d<(z)c+
ε(z)

ψ
( ε(z)

z − d<(z)c

),
where dxc = dx − 1

2
e and ε(z) = sign(<(z) − d<(z)c). The algorithm terminates if the resulting

number falls into the domain {z ∈ C | 0 ≤ <(z) ≤ 1
2

and |z| ≥ 1}.
The average number of steps of this algorithm (in various continuous and discrete models) turns out

to be linear, and the constant(s) involve the interesting quantity

∑
d≥1

(−1)d

d2

d∑
c=1

1

c2
,

which is expressible in terms of the remarkable constants ζ(3) and Li4( 1
2
) (a tetralogarithm).

This and much more can be found in the papers [28, 5, 6, 11]. The work [11] is a survey paper
and covers much more general reduction schemes (transformation), e. g. the binary representation. The
average-case analysis of these usually involves interesting numerical constants, like Wirsing’s, Lévy’s,
Hensley’s, and Vallée’s constant. This is a quite challenging domain, with relations to Functional Anal-
ysis.

The paper [8] has since 1998, when the previous lines were published, become a classic, and it was
reprinted by Discrete Mathematics in a volume that comprised the most influential papers of the journal
since its beginning [22].

Since 1998, Flajolet’s research on continued fractions has not stopped; here are the more recent papers
on the subject [16, 21, 2].
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It is my hope that Philippe (as I am allowed to call him) will like my own research on continued
fractions as well.

We always represent our continued fractions in the form

z

a1 +
z

a2 +
z

a3 +
z

. . .

since this is convenient for our computations. It would be easy, however, to transform it, say, into the
form:

zb1

1 +
zb2

1 +
zb3

1 +
zb4

. . .

Set a0 = 1, then bi =
1

ai−1ai
for all i = 1, 2, . . ..

2 Introduction
In this paper, we consider the functions

F (z) =
∑
n≥0

(−1)nzn

[2n + 1]q!
qdn2

,

G(z) =
∑
n≥0

(−1)nzn

[2n]q!
qdn2

.

We use standard q-notation:

[n]q :=
1− qn

1− q
, [n]q! := [1]q[2]q . . . [n]q.

For d = 0, 1, 2, we will find the following continued fraction expansions:

zF (z)
G(z)

=
z

a1 +
z

a2 +
z

a3 +
z

. . .
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(Replacing z by z2, we get z times a q-tangent function.)

zG(z)
F (z)

=
z

a1 +
z

a2 +
z

a3 +
z

. . .

(Replacing z by z2, we get z3 times a q-cotangent function.)
These q-trigonometric functions are variants of Jackson’s, see [24].
The instance d = 0 of the q-tangent appeared in [25], and the instance d = 1 in [23] and [27]. Computer

experiments indicate that, apart from trivial variations, these are the only cases where we get “nice”
coefficients ak.

We treat all 6 instances in a systematic way:
We write

zF (z)
G(z)

=
z

N0
=

z

a1 +
z

N1

=
z

a1 +
z

a2 +
z

N2

= . . . ,

and set
Ni =

ri

si
.

This means
Ni = ai+1 +

z

Ni+1

or
z

Ni+1
=

zsi+1

ri+1
= Ni − ai+1 =

ri

si
− ai+1 =

ri − ai+1si

si
.

We can set ri = si−1 and get the recursion

si+1z = si−1 − ai+1si.

The initial conditions are
s−1 = G(z) and s0 = F (z).

Note that the ai’s are the unique numbers that make the si’s power series expansions.
In all instances, we are able to guess the numbers ak and the power series sk, and prove the guessed

form by induction. In the cotangent case, F and G switch roles, of course. The proof by induction is a
routine computation; the challenging part in this line of research is the guessing. Since the proofs are very
similar, we present just one of them.

Not all of the results are new; the instance d = 0 is of course the classical case, and the instance d = 1
(tangent case) was published in [23, 27], but the other formulæ are believed to be new. However, to be
systematic, we collected all the results.
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3 Tangent
3.1 d = 0

ak = (−1)k−1 [2k − 1]q
qk−1

,

sk = (−1)b
k+1
2 cq(

k+1
2 )∑

n≥0

zn(−1)n

[2n + 2k + 1]q!

k∏
j=1

[2n + 2j]q.

3.2 d = 1

a2k = − [4k − 1]q
q(k+1)(2k−1)

,

a2k+1 = [4k + 1]qqk(2k−1).

s2k = (−1)kqk2 ∑
n≥0

zn(−1)n

[2n + 4k + 1]q!

2k∏
j=1

[2n + 2j]qqn(n+2k),

s2k+1 = (−1)k−1q(k+1)(3k+2)
∑
n≥0

zn(−1)n

[2n + 4k + 3]q!

2k+1∏
j=1

[2n + 2j]qqn(n+2k+2).

3.3 d = 2

a2k = − [4k − 1]q(1− q2k − q2k+1 + q4k−1)2

(1− q2)2q6k−3
,

a2k+1 =
[4k + 1]q(1− q2)2q2k−1

(1− q2k+2 − q2k+3 + q4k+3)(1− q2k − q2k+1 + q4k−1)
.

s2k = (−1)kq2k2 ∑
n≥0

zn(−1)n

[2n + 4k + 1]q!

2k∏
j=1

[2n + 2j]q
(
1 +

q2n+2(1− q2k)(1− q2k+1)
1− q2

)
q2n(n+2k),

s2k+1 = (−1)k−1q2k2+6k+3
∑
n≥0

zn(−1)n

[2n + 4k + 3]q!

2k+1∏
j=1

[2n + 2j]q
(1− q2)q2n(n+2k+2)

1− q2k+2 − q2k+3 + q4k+3
.

4 Cotangent
4.1 d = 0

a1 = 1, and for k ≥ 1

a2k =
[4k − 1]q[2k − 1]2q[2k]2q

q6k−5(1 + q)2
,
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a2k+1 = − [4k + 1]q(1 + q)2q2k−2

[2k − 1]q[2k]q[2k + 1]q[2k + 2]q
.

s2k = (−1)kqk(2k−1)
∑
n≥0

zn(−1)n

[2n + 4k + 1]q!

2k∏
j=1

[2n + 2j]q

(
[2n + 4k + 1]q +

q2[2k]q[2k − 1]q
1 + q

)
,

s2k+1 = (−1)kq2k2+5k+1
∑
n≥0

zn(−1)n

[2n + 4k + 3]q!

2k+1∏
j=1

[2n + 2j]q
1 + q

[2k + 1]q[2k + 2]q
.

4.2 d = 1

a1 = 1, and for k ≥ 1

a2k =
[4k − 1]q[k(2k − 1)]2q

q(2k−1)(k+1)
,

a2k+1 = − [4k + 1]qqk(2k−1)

[k(2k − 1)]q[(k + 1)(2k + 1)]q
.

s2k = (−1)kqk2 ∑
n≥0

zn(−1)n

[2n + 4k + 1]q!

2k∏
j=1

[2n + 2j]q[2n + 2k2 + 3k + 1]qqn(n+2k),

s2k+1 =
(−1)kq(k+1)(3k+2)

[(k + 1)(2k + 1)]q

∑
n≥0

zn(−1)n

[2n + 4k + 3]q!

2k+1∏
j=1

[2n + 2j]qqn(n+2k+2).

4.3 d = 2

a1 = 1, and for k ≥ 1

a2k =
[4k − 1]q[2k − 1]2q[2k]2q

q6k−3(1 + q)2
,

a2k+1 = − [4k + 1]q(1 + q)2q2k−1

[2k − 1]q[2k]q[2k + 1]q[2k + 2]q
.

s2k = (−1)kq2k2 ∑
n≥0

zn(−1)n

[2n + 4k + 1]q!

2k∏
j=1

[2n + 2j]qq2n(n+2k)

(
[2n + 4k + 1]q +

q2n+2[2k]q[2k − 1]q
1 + q

)
,

s2k+1 =
(−1)kq2k2+6k+3(1 + q)

[2k + 2]q[2k + 1]q

∑
n≥0

zn(−1)n

[2n + 4k + 3]q!

2k+1∏
j=1

[2n + 2j]qq2n(n+2k+2).
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5 Proof of the cotangent case d = 1
We have by inspection that s0 = G(z), and compute

s1 =
1
z

(
s−1 − s0

)
=

1
z

(
F (z)−G(z)

)
=

1
z

∑
n≥0

zn(−1)nqn2

[2n + 1]q!
1− q − 1 + q2n+1

1− q

=
∑
n≥1

zn−1(−1)nqn2

[2n + 1]q!
−q(1− q2n)

1− q

=
∑
n≥1

zn−1(−1)n−1qn2+1

[2n− 1]q![2n + 1]q

= q2
∑
n≥0

zn(−1)nqn(n+2)

[2n + 1]q![2n + 3]q
,

which checks, so we have the basis for our induction. And now we must show for all n that

[zn]
(
s2k − a2k+2s2k+1

)
= [zn−1]s2k+2,

[zn]
(
s2k−1 − a2k+1s2k

)
= [zn−1]s2k+1.

Let us start with the first one:

[zn]
(
s2k − a2k+2s2k+1

)
= (−1)kqk2 (−1)n

[2n + 4k + 1]q!

2k∏
j=1

[2n + 2j]q[2n + 2k2 + 3k + 1]qqn(n+2k)

−
[4k + 3]q[(k + 1)(2k + 1)]2q

q(2k+1)(k+2)
×

× (−1)kq(k+1)(3k+2)

[(k + 1)(2k + 1)]q
(−1)n

[2n + 4k + 3]q!

2k+1∏
j=1

[2n + 2j]qqn(n+2k+2)

=
(−1)n+kqk2

[2n + 4k + 1]q!

2k∏
j=1

[2n + 2j]q[2n + 2k2 + 3k + 1]qqn(n+2k)

− (−1)n+kqk2
[4k + 3]q[(k + 1)(2k + 1)]q

[2n + 4k + 1]q![2n + 4k + 3]q

2k∏
j=1

[2n + 2j]qqn(n+2k+2)

=
(−1)n+kq(n+k)2

[2n + 4k + 1]q![2n + 4k + 3]q

2k∏
j=1

[2n + 2j]q×

×
(

[2n + 4k + 3]q[2n + 2k2 + 3k + 1]q − q2n[4k + 3]q[(k + 1)(2k + 1)]q

)
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=
(−1)n+kq(n+k)2

[2n + 4k + 1]q![2n + 4k + 3]q

2k∏
j=1

[2n + 2j]q[2n]q[2n + 2k2 + 7k + 4]q.

On the other hand

[zn−1]s2k+2 = (−1)k−1q(k+1)2 (−1)n−1

[2n + 4k + 3]q!

2k+2∏
j=1

[2n− 2 + 2j]q[2n + 2k2 + 7k + 4]qq(n−1)(n+2k+1),

which is the same, as it should.
And now to the second one:

[zn]
(
s2k−1 − a2k+1s2k

)
=

(−1)k−1qk(3k−1)

[k(2k − 1)]q
(−1)n

[2n + 4k − 1]q!

2k−1∏
j=1

[2n + 2j]qqn(n+2k)

+
[4k + 1]qqk(2k−1)

[k(2k − 1)]q[(k + 1)(2k + 1)]q
×

× (−1)kqk2 (−1)n

[2n + 4k + 1]q!

2k∏
j=1

[2n + 2j]q[2n + 2k2 + 3k + 1]qqn(n+2k)

=
(−1)n+k−1qk(3k−1)+n(n+2k)

[k(2k − 1)]q[(k + 1)(2k + 1)]q[2n + 4k + 1]q!

2k∏
j=1

[2n + 2j]q×

×
(

[2n + 4k + 1]q[(k + 1)(2k + 1)]q − [4k + 1]q[2n + 2k2 + 3k + 1]q

)
=

(−1)n+k−1qk(3k−1)+n(n+2k)

[k(2k − 1)]q[(k + 1)(2k + 1)]q[2n + 4k + 1]q!

2k∏
j=1

[2n + 2j]q[2n]q[k(2k − 1)]qq4k+1

=
(−1)n+k−1q3k(k+1)+1+n(n+2k)

[(k + 1)(2k + 1)]q[2n + 4k + 1]q!

2k∏
j=0

[2n + 2j]q.

On the other hand,

[zn−1]s2k+1 =
(−1)kq(k+1)(3k+2)

[(k + 1)(2k + 1)]q
(−1)n−1

[2n + 4k + 1]q!

2k+1∏
j=1

[2n− 2 + 2j]qq(n−1)(n+2k+1),

which is the same, so that our proof is finished.

6 A tangent

F (z) =
∑
n≥0

(−1)nzn

[2n + 1]q!
,
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G(z) =
∑
n≥0

(−1)nzn

[2n]q!
q2n.

a2k = − [4k − 1]qq2k−3(1− q2)2

(1− q2k−3 − q2k−2 + q4k−3)(1− q2k−1 − q2k + q4k+1)
,

a2k+1 =
[4k + 1]q(1− q2k−1 − q2k + q4k+1)2

q6k−2(1− q2)2
.

s2k =
(−1)k−1q2k2+3k−1(1− q2)
1− q2k−1 − q2k + q4k+1

∑
n≥0

zn(−1)n

[2n + 4k + 1]q![2n]q

2k∏
j=1

[2n + 2j]q,

s2k+1 = (−1)k−1q2k2+k
∑
n≥0

zn(−1)n

[2n + 4k + 3]q![2n]q

2k+1∏
j=1

[2n + 2j]q
(
q4k+2n+3 − (1− q2k+1)(1− q2k+2)

1− q2

)
.

7 A cotangent

F (z) =
∑
n≥0

(−1)nzn

[2n + 1]q!
q2n,

G(z) =
∑
n≥0

(−1)nzn

[2n]q!
.

For k ≥ 0,

a2k =
[4k − 1]q[2k − 1]2q[2k]2q

q6k−6(1 + q)2
,

a2k+1 = − [4k + 1]q(1 + q)2q2k−3

[2k − 1]q[2k]q[2k + 1]q[2k + 2]q
,

and a1 = 1.

s2k =
(−1)kq2k2−k

1− q

∑
n≥0

zn(−1)n

[2n + 4k + 1]q!

2k∏
j=1

[2n + 2j]q
(1− q2k+1 − q2k+2 + q4k+1

1− q2
− q2n+4k+1

)
,

s2k+1 =
(−1)kq2k2+5k(1 + q)
[2k + 2]q[2k + 1]q

∑
n≥0

zn(−1)n

[2n + 4k + 3]q!

2k+1∏
j=1

[2n + 2j]q.

8 A generalization
Our computer calculations suggested to go for a generalization of the previous results. Note that h = 0 is
the instance studied before.
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Fh(z) =
∑
n≥0

(−1)nzn

[2n + 1]q!

h∏
j=1

[2n + 2j]qqdn2
,

Gh(z) =
∑
n≥0

(−1)nzn

[2n]q!

h∏
j=1

[2n + 2j]qqdn2
.

8.1 d = 0

a2k = −[4k − 1 + 2h]qq−2k+1−2h,

a2k+1 = [4k + 1 + 2h]qq−2k.

8.2 d = 1

a2k = −[4k − 1 + 2h]qq−2k2−k(2h+1)+1,

a2k+1 = [4k + 1 + 2h]qq2k2+k(2h−1).

8.3 d = 2

a2k = −
[4k − 1 + 2h]q([k]q2 − q2k+1+2h[k − 1]q2)2

q6k−3+2h
,

a2k+1 =
[4k + 1 + 2h]qq2k−1+2h

([k]q2 − q2k+1+2h[k − 1]q2)([k + 1]q2 − q2k+3+2h[k]q2)
.

8.4 d = 0

a1 = 1, and for k ≥ 1

a2k =
[4k − 1 + 2h]q[2k − 1 + 2h]2q[2k]2q

q6k−5+2h(1 + q)2
,

a2k+1 = − [4k + 1 + 2h]q(1 + q)2q2k−2

[2k − 1 + 2h]q[2k]q[2k + 1 + 2h]q[2k + 2]q
.

8.5 d = 1

a1 = 1, and for k ≥ 1

a2k =
[4k − 1 + 2h]q[k(2k − 1 + 2h)]2q

q(2k−1)(k+1)+2kh
,

a2k+1 = − [4k + 1 + 2h]qqk(2k−1)+2kh

[k(2k − 1 + 2h)]q[(k + 1)(2k + 1 + 2h)]q
.
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8.6 d = 2

a1 = 1, and for k ≥ 1

a2k =
[4k − 1 + 2h]q[2k − 1 + 2h]2q[2k]2q

q6k−3+2h(1 + q)2
,

a2k+1 = − [4k + 1 + 2h]q(1 + q)2q2k−1+2h

[2k − 1 + 2h]q[2k]q[2k + 1 + 2h]q[2k + 2]q
.

9 More continued fraction expansions
The following expansions are not new, but they fit the same pattern, and they are very beautiful, so I
decided to include them here to please Philippe.

Let

G(z) =
∑
n≥0

(y; q)nzn

(x; q)n
.

Then we have the continued fraction expansion

z

G(z)
=

z

a1 +
z

a2 +
z

a3 +
z

a4 +
z

. . .
with a1 = 1, and for k ≥ 1

a2k =
(x; q)k−1(1− xq2k−2)(yq; q)k−1

(1− y)(yq)k−1(x
y ; q)k−1(q; q)k−1

,

a2k+1 = −
(1− y)yk−1(x

y ; q)k−1(1− xq2k−1)(q; q)k−1

(x; q)k(yq; q)k
.

For the proof, we notice that a1 is an exceptional value, and we only start the recursion with

s0 = 1, s1 =
∑
n≥0

(y; q)n+1z
n

(x; q)n+1
.

Note that the numbers ai are uniquely determined by annihilating the constant term in si−1 − ai+1si,
making si+1 a power series expansion. Our claim follows now by the following explicit formulæ (for
k ≥ 0)

s2k =
(−1)kq(

k
2)

(q; q)k−1

∑
n≥0

zn(qn+1; q)k−1(yq; q)n+k

(xqk; q)n+k
,

s2k+1 = (1− y)yk(x
y ; q)k(−1)kq(

k+1
2 )∑

n≥0

zn(qn+1; q)k(yqk+1; q)n

(x; q)n+2k+1
,
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provided we are able to establish these formulæ by induction via the recursion. The initial values follow
by inspection, and the induction step must be split into two computations, according to the parity of the
indices.

s2k − a2k+2s2k+1 =
(−1)kq(

k
2)

(q; q)k−1

∑
n≥0

zn(qn+1; q)k−1(yq; q)n+k

(xqk; q)n+k

− (x; q)k(qy; q)k(1− xq2k)

(qy)k(x
y
; q)k(1− y)(q; q)k

(1− y)yk(x
y
; q)k(−1)kq(

k+1
2 )
∑
n≥0

zn(qn+1; q)k(yqk+1; q)n

(x; q)n+2k+1

=
(−1)kq(

k
2)

(q; q)k−1

∑
n≥0

zn(qn+1; q)k−1(yq; q)n+k

(xqk; q)n+k
− (1− xq2k)

(q; q)k
(−1)kq(

k
2)
∑
n≥0

zn(qn+1; q)k(yq; q)n+k

(xqk; q)n+k+1

=
(−1)kq(

k
2)

(q; q)k

[
(1− qk)

∑
n≥0

zn(qn+1; q)k−1(yq; q)n+k

(xqk; q)n+k
− (1− xq2k)

∑
n≥0

zn(qn+1; q)k(yq; q)n+k

(xqk; q)n+k+1

]

=
(−1)kq(

k
2)

(q; q)k

∑
n≥0

zn(qn+1; q)k−1(yq; q)n+k

(xqk; q)n+k+1

[
(1− qk)(1− xqn+2k)− (1− xq2k)(1− qn+k)

]

=
(−1)kq(

k
2)

(q; q)k

∑
n≥0

zn(qn+1; q)k−1(yq; q)n+k

(xqk; q)n+k+1
(−1)qk(1− xqk)(1− qn)

=
(−1)k+1q(

k+1
2 )

(q; q)k

∑
n≥0

zn(qn; q)k(yq; q)n+k

(xqk+1; q)n+k

= zs2k+2;

s2k−1 − a2k+1s2k = (1− y)yk−1(x
y
; q)k−1(−1)k−1q(

k
2)
∑
n≥0

zn(qn+1; q)k−1(yq
k; q)n

(x; q)n+2k−1

+
(1− y)yk−1(x

y
; q)k−1(q; q)k−1(1− xq2k−1)

(qy; q)k(x; q)k

(−1)kq(
k
2)

(q; q)k−1

∑
n≥0

zn(qn+1; q)k−1(yq; q)n+k

(xqk; q)n+k

= (1− y)yk−1(x
y
; q)k−1(−1)k−1q(

k
2)
∑
n≥0

zn(qn+1; q)k−1(yq
k; q)n

(x; q)n+2k−1

+ (1− y)yk−1(x
y
; q)k−1(1− xq2k−1)(−1)kq(

k
2)
∑
n≥0

zn(qn+1; q)k−1(yq
k+1; q)n

(x; q)n+2k

= (1− y)yk−1(x
y
; q)k−1(−1)k−1q(

k
2)

×
[∑

n≥0

zn(qn+1; q)k−1(yq
k; q)n

(x; q)n+2k−1
− (1− xq2k−1)

∑
n≥0

zn(qn+1; q)k−1(yq
k+1; q)n

(x; q)n+2k

]

= (1− y)yk−1(x
y
; q)k−1(−1)k−1q(

k
2)
∑
n≥0

zn(qn+1; q)k−1(yq
k+1; q)n−1

(x; q)n+2k

×
[
(1− xqn+2k−1)(1− yqk)− (1− xq2k−1)(1− yqk+n)

]
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= (1− y)yk−1(x
y
; q)k−1(−1)k−1q(

k
2)
∑
n≥0

zn(qn+1; q)k−1(yq
k+1; q)n−1

(x; q)n+2k

× (−1)qk−1(1− qn)yq(1− x
y
qk−1)

= (1− y)yk(x
y
; q)k(−1)kq(

k+1
2 )
∑
n≥0

zn(qn; q)k(yqk+1; q)n−1

(x; q)n+2k

= zs2k+1.

Remark. Computer experiments indicate that we cannot add additional factors (u; q)n etc. in either
numerator or denominator, as then the expressions for ai become very messy and don’t factor nicely.

We note two special cases explicitly. Set y = 0, then

a2k =
(x; q)k−1(1− xq2k−2)

xk−1q(
k
2)(q; q)k−1

,

a2k+1 = −xk−1q(
k−1
2 )(1− xq2k−1)(q; q)k−1

(x; q)k
.

Set x = 0, then

a2k =
(yq; q)k−1

(1− y)(yq)k−1(q; q)k−1
,

a2k+1 = − (1− y)yk−1(q; q)k−1

(yq; q)k
.

Michael Joseph Schlosser has kindly informed me that the formulæ could be deduced from results
in [7].

A continued fraction of Ramanujan
This method of proof also applies to a continued fraction of Ramanujan, see [1]. In slightly changed
notation, we have

G(z) =
∑
n≥0

q(
n
2)(y; q)nzn

(x; q)n(q; q)n
,

and H(z) = G(z)/G(qz). Then

z

H(z)
=

z

a1 +
z

a2 +
z

a3 +
z

a4 +
z

. . .
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with

a2k =
(1− xq2k−2)yk−1(x

y ; q)k−1(−1)k−1q(
k−1
2 )

(y; q)k
,

a2k+1 =
(1− xq2k−1)(y; q)k(−1)k

yk(x
y ; q)kq(

k+1
2 )

.

Here, the formulæ follow from

s2k = yk(x
y ; q)k(−1)kq(

k
2)
∑
n≥0

zn(yqk; q)nq(
n+k+1

2 )

(x; q)n+2k(q; q)n
,

s2k+1 =
∑
n≥0

zn(y; q)n+k+1q
(n+k+1

2 )

(x; q)n+2k+1(q; q)n
.

The celebrated Rogers-Ramanujan continued fraction expansion
and companions
Set

G(z) =
∑
n≥0

qn2
zn

(q; q)n

and H(z) = G(z)/G(qz). Then ak = q−b
k
2 c and

s2k = qk(k+1)
∑
n≥0

znqn2+n(2k+1)

(q; q)n
,

s2k+1 = q(k+1)2
∑
n≥0

znqn2+n(2k+2)

(q; q)n
.

Companion: Set H(z) = G(qz)/G(z). Then

a2k = − (1− qk)2

(1− q)2q3k−2
,

a2k+1 = − (1− q)2qk−1

(1− qk)(1− qk+1)
,

and

s2k =
∑
n≥0

zn(1 + qn+1 1−qk

1−q )q(n+k)2

(q; q)n
,
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s2k+1 = −qk(1− q)
1− qk+1

∑
n≥0

znq(n+k+1)2

(q; q)n
.

Another companion: Set H(z) = G(z)/G(q2z). Then

a2k =
(1− q)2qk−2

(1− qk)(1− qk+1)
,

a2k+1 =
(1− qk+1)2

(1− q)2q3k
.

Another example
Set

G(z) =
∑
n≥0

(z; q2)nzn

(zq; q2)n
,

then we expand again z/G(z) and get: a1 = 1, and

a2k =
(−1)k−1q(

k−1
2 )

(q; q)k−1
,

a2k+1 =
(−1)k(q; q)k−1

q(
k+1
2 )

and

s2k =
(−1)kqk2

(q; q)k−1

∑
n≥0

znq
n2
2 +

n(2k+1)
2 (q; q)n+k−1

(q; q)n
,

s2k = q(
k+1
2 )∑

n≥0

znq
n2
2 +

n(2k+1)
2 (q; q)n+k

(q; q)n
.
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