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ON THE AVERAGE HEIGHT OF MONOTONICALLY
LABELLED BINARY TREES
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1 . INTRODUCTION

In a recent paper [3], [4] F l a j o l e t and O d l y z k o have studied
the average height of binary trees (in the sense of K n u t h [5]) : if the
height h(t) of a binary tree is given inductively by

h(D) = 1
(1)

	

h(

t
/0\

t2
l = 1 + max {h(t1 ), h(t2 )},

I

	

J1

then the average height of all binary trees with n internal nodes is shown
to be asymptotically equivalent to 2 i_ n .

The present paper deals with an asymptotic evaluation of the average
height of binary trees, the nodes of which have been labelled by the num-
bers 1 and 2 such that any sequence of labels starting from the root of the
tree is monotone.

If we define the families B 1 , Bi , B2 of labelled binary trees by the,
formal equations
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(2)

B1 =0+

	

B1=0+
B1B 1

B2 =D+

	

+

	

=Bi+

B2

	

B1 B 1

then B 1 is the family of all binary trees with all nodes labelled by 1, B i

with all nodes labelled by 2 and B2 the family of monotonically labelled
binary trees as mentioned above. An easy consequences of (2) are the
following equations for the generating functions yl , y 2 of B1 , B2 , re-
spectively :

(3)

	

Y1 = 1 + zy1 ; Y2 = Y 1 + zy2 .

That means
1

1	(1	4z)2
Y1 (Z) n 0 yl nzn =
	

2z

and so

	 1 	2n

	

1
2

Yl,n = n+ 1 ~n )

The generating function
1 1

Y2(Z)

	

y2'nzn =	 1 - (-1 +2(1 -4z)	2) 2

n>0

	

2z

has been studied in the paper [7] ; the asymptotic behaviour of its coef-
ficients y2,n is established by Darboux's method (see e .g . [6]) to be

(4)

	

Y2 ,n - 4(67r) 2 (_16)
nn

2

If we denote by B 2,n the set of trees of B2 with exactly n internal
nodes and by

(5)

	

H2,n = 2: h(t)
tEB2,n

4 nn
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I

(7)

I

(where the height h(t) is given by (1) disregarding the labelling of the
tree) we will prove the following asymptotic formula :

(6)

	

H2, n ... 3 ( 3) n n 1

	

(n -' °°) .

The average height of trees of B2, n is then given by the ratio H2, n and
Y2,n

we get the following main result :

Theorem . The average height of binary trees labelled monotonically
by the numbers 1 and 2 fulfills the asymptotic relation

H2,	 n ,., (87rn) 2
Y2,n

	

3

The proof of (6) will be given by studying the following two notions
of "height" h 1 (t), h 2 (t) :

h i (D) = 1

= 1 .+ max {hi (ti ), h 1 (t2 )}

h2 (D) = 1

(9)

= max {h1 (t1 ), h1(t2)} (= 1),

= max {h2(t1), h2 (t2 )}

= 1 + max {h2 (tl ), h2(t2 )} = h

(hi (t) - 1 counts the maximal number of consecuting i's in a se-
quence starting from the root .) In analogy to (5) we define the quantities



(10)

	

H21n

	

tLB2
n h i (t), H22n

	

tEB2,n
h 2 (t) •

It is trivial to see that the following relations hold :

(11)

	

y2,n < H2 1n, H2 2n < (n + l)Y2,n ,

(12)

	

H(1) <

	

<H(1) + H(2)2 .n

	

H2,n

	

.2,n

	

2,n

The idea of proof of relation (6) is now to establish independently
the following two results :

In both cases the method is to study the behaviour of an appropriate
analytical continuation of the functions

(15)

	

H21)(z) _ Z H21nzn
n>0

(16)

	

H22)(z)
no H2 2nz n

in a sector around their singularities nearest to the origin and to evaluate
the coefficients by means of Cauchy's integral formula using a contour of
integration r as depicted in the following diagram

A110
q1

(q is the singularity in question .) The advantage of the use of r is that it
gives predominance to the behaviour of the function around its singularity .
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H2 , n ,~ 8 ( 16 ) n n -1(13) (n -' -),

(14) H2(2n) = o(H2 1n ) (n - 00) .



Section 2 will be devoted to the proof of (13) by showing that the

function H2 1) (z) has a logarithmic singularity at q = 6 and that

the study of its behaviour around 'the singularity is implicitly given by
F 1 a j o 1 e t and 0 d 1 y z k o' s method of deriving the average height of
nonlabelled binary trees in [3] .

The main difficulty which remains is the determination of the be-

haviour of the function H22) (z) around its singularity at q = 6. In

Section 3 we derive the following result :
1

(17)

	

H22) (z) = H22) (16) +00 z - 6 1 4 )

for z in a sector around 6 and thereby

(18)

	

H22) = O((3)"n- 4)

	

(n

which is a sharper version of (14) and completes the proof of the theorem .

2. ASYMPTOTIC BEHAVIOUR OF THE NUMBERS H2 1n

By relation (11) the radius of convergence of HM(z) is the same as

of the function y2 (z), that is p = 16'

Similar to [3] we define the generating functions v [h] of the numbers
of trees tE B2 n with h1 (t) 5 h . The functions v [h] fulfill the recursion
(compare (8))

(19)

	

v [0] = 0 ,

	

v [h+ 1] = y1 + z(V [h] )2 .

An immediate consequence is the identity

(20)

	

H21)(z) _ hZ h( v [h] _ v [h- 1]) _ h O (y2 - v [h] ) .

By setting

(21)

	

fh (z) _
y2(z) - v [h] (z)

2y2 (z)
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we have

(22)

	

H21)(z)
2y2(z) h0 fh(z)

and recursion (19) is transformed into

fo (z) = 2

fh + 1(z) = (1 - ~O(z))fh (z) (1 - fh (z))

1 1
with ~p (z) = (- 1 + 2(1 -4z) 2 ) 2 = 1 - 2zy 2 (z) . After having taken the

1
complex plane cut along the axis w < 0, w 2 is to be positive for w > 0
throughout the whole paper!

pp(z) has its (algebraic) singularity nearest to the origin at 6, where
1

2(1 - 4z) 2 = 1, and no further singularities inside I z I = 4. This situation
is quite the same as in [3], where the recursion

eo (z) 2

eh + 1(z) = (1 - e(z))eh (z) (1 - eh (z))

(23)

(24)

1
with e(z) _ (1 - 4z) 2 is studied and the local behaviour of
2y, (z)

ho eh (z) in a sector around the (logarithmic) singularity 4 turns
out to be

(25)

	

2y1(z)
h a

eh (z) _ - 2 log (1 - 4z) + K + 0(11 - 4z I ")

for any v < 4 . Quite the same methods lead to the following result

(26)

	

2y2 (z)
h>

fh (z)

	

3 log (1

	

13z) + K1

- 5 14 -

+ 0 (1 1 - 3z Iv)

for any v < 4, and integration using the contour I' mentioned in the

introduction with q = 16 yields the result



(27)

	

H21n = 8 ( 16) nn-1 + O ((3 )n n-1 v)

for any v < 4.
3 . ASYMPTOTIC BEHAVIOUR OF THE NUMBERS H2 2n

We introduce the generating function w (h] of the number of trees
t E B2,n with h 2 (t) < h . If B [h] denotes, as in the paper [3], the gen-
erating function of the number of trees t E B1,n with h(t) < h, then
the following relation holds (compare (9)) :

(28)

	

W [h] = BIh 1 + Z(W I h I)2 .

As in (20) we get

H2 2)(Z) _ Z h(wE h I - w Ih- 11) = L,, (y 2 -
h>1

	

h>O(29)
_ 1

2Z h0 t lh] (Z),

(n -p °° )

where tl h1 (Z) = 2z(y2 (Z) - W I h I(z)) .

By subtracting the equalities y 2 = y1 + zy2 and (28) the following
equation is obtained :

(30)

	

(tl hJ(z)) 2 + 2~p(z)tl 1 ( ) - 4z(y1 (z) - BI hJ(z)) = 0

y1 (z) - BI h1 (z)
and {	2y1(z)	 } is just the function system {eh (z)} . (Check the

recursion (24) above .) Hence the following formal identity

H2 (Z) = 1 ., tl h I(z) _2Z h>0
(31)

1

	

1
= 2z h

	

(- ~p(z) + (pp2 (z) + 8zy1(z)eh(z)) 2 )

(the determination of the square root being taken as declared above) .

The aim of the following technical lemmas is to show that (31) leads
to an analytical continuation of the function H2 2) (z) (which has again
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radius of convergence 16 by (11)) in a sector around 6.
The first lemma points out that the function

1
(cp 2 (z) + 8zy1(z)eh (z)) 2

has no singularities in an appropriate domain . (Remark that all functions

beyond the square root are analytic in I z I < 4 .)
Lemma 3.1 . [Localization of the zeroes of the functions Sp 2 (z) +

+ 8zy 1 (z) eh (z)] . There exists an i? > 0 such that p 2(Z) + 8zy 1 (z) eh (z)

# 0 for all h > 0, I z I < 3 + ri, z - 3 q R+ .16

	

16

Proof. The equation ~p2 (z) + 8zy 1 (z) eh (z) = 0 is equivalent with
B [h] (z) 4z .

There exists a sequence (xh ) of real solutions with Xh 6. (This

is an immediate consequence of the definition of B [ h ] (z) and their
monotonic convergence to y1 (z).)

The functions 1 - 4zB [ h](z) are polynomials and so it is possible
to find an ri > 0 such that there are no zeroes of all those polynomials
on the circle I z ( =

6
+ rl . The sequence (1 - 4zB [h ] (z)) h > o converges

uniformly on all compact subsets of I z I < 4 to 1 - 4zy 1 (z), which has

a simple zero at 6 and no other zeroes in this region .

So by a theorem of Hurwitz (compare [2], p . 148) there exists N

such that 1 - 4zB [h](z) has exactly one zero in I z I < 6 + i for all
h > N. If N is large enough, this zero must be xh from above, and so
there is no further zero inside I z I < 6 + n.

Any zero zh of 1 - 4zB [ h ] (z) must fulfill

	1	
41 zh I -

_ IB[h](Zh)I < B[h](I
zh I)

- 5 16 -



(as B[h] has positive coefficients), and it is immediately seen that this
inequality can only be valid for I Zh I > Xh . So by taking n small enough

there are no zeroes of the functions 1 - 4zB [h 1(z) in the domain men-

tioned in the lemma. I

Lemma 3 .2. [Uniform geometric bound of the functions eh (z) de-

fined by (24)] 377 > 0 such that I eh (z) I < ph for I z l < 6 + ri, h G N,

3
with p = 2 a .

Proof.

	

First we note that

0,1929 (> 6)

15

(32)

	

1 1 - e(z) I < 2 16 ,

for

2

because 1 - e(z) = p1 e't implies z = 2 e't - 4 e2't and therefore

IZI>- 21 0- 21)

_ 15
which yields the desired bound for p1 = 2 16

Now the assumption can be proved by induction : The estimation can

be checked directly in the cases h = 0, . . . , 4 ; the inequality

Ieh+1I<I1-el(l+lehl)lehI<

15

	

_ 15

	

_ 15
<2 16(1+ph)ph<2 161+2 161)ph

4

for all h > 4 gives the result. I

31

	

31

1 zl<x= 2 16(1 -2 16)~

< Pp h

Lemma 3 .3 . [Local convergence of eh (z) to eh (-L) ] . 3rd, C > 0

such that

Ieh(z)-eh( 6) I<CIZ- 6lph for jz- 6I<ri, hEN0 .

Proof. Recursion (24) yields



3
eh +i (z)- eh+l (16) -

= 2 (eh (z) - eh (6)) (1 - ( eh (z) + eh ( 6))) +

1 - e(z)
•

	

2
1 - e(z) eh + 1 (z)

and so by Lemma 3 .2 for I z - 6 I < 77

eh+l(z)-eh+1(6) I<

•

	

2 I eh(Z) - eh (6) I (1 + 2ph) + C1 12 - e(z) I ph+ i

For q small enough

--e(z)I<C2Iz

	

6I .

By taking C such that C i C2 < C • 0,03 and

I eh (z) _ eh(T) <Cz_-fIp6 II

	

6 h for 0<h<5,

we get the desired result by induction, as the estimation for eh (z) yields

eh + 1 (z) - eh + 1 ( --1) I
<CIz- 6Iph+1(2p-1(1+ 2ph) + CC 2 )
•

	

C I z - 6 Iph + 1 (0,966 + 0,03) for all h>-5 .1

Lemma 3 .4 . I Argt (z - 6) ( > 3 I Argt ~O 2 (z) I < 37
hr

Proof. If z = 6 + pe 3 (p > 0) then

~p2(z)=-1+2j'1-4z=x+iy
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with

(x + 1)2 - y 2 -3 (x + 1)y = 1,

so that ~p 2 (z) maps the half-ray on the part of the right branch of the

hyperbola with y < 0 . Because of y'(0) = l3 = tg 3 we obtain the

result . I

For brevity's sake let Eh (z) = 8zy 1 (z)eh (z) .

Lemma 3.5 . I p 2 (z) + Eh
(_I)

1 2 > 2 (Eh (6 2 + ~p2 (z) 2

	

for

Argt (z - 6) I > 3 .

Proof. As Eh (6) E R + we get by the cosine theorem

~O 2 (z) + Eh ( 6 ) I 2

=Eh (6) 2 +I~p 2 (z)1 2 -2Eh (6~Ip2 (z)Icos a,

with a > 3 by Lemma 3 .4. cos a < 2 yields the result . 1

Lemma 3 .6 . 377, C > 0 such that

Eh (z) - Eh (6 )

	

3 i
<CIz

	

16 I 2p h

V 2(Z)+E(1)

	

~ph
Z- 6 I < r~, ( Argt (z - 6) I > 3 and h E No .for

Proof. According to Lemma 3 .4, ~p 2 (z) + Eh (6) * 0 and for 7j

small enough

Eh (z)-Eh (6)
I<C	

I Z - 6I P h

	

`
~P2(z)+E 3 ( l

	

2 z 2+E2 3
Eh ( 16)

	

(i~ ()~

	

h ( 16))
4 \
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with

by Lemma 3 .4 and 3 .5 and

1
I~P 2 (Z)I 2= 2}Iz -

CI z-
1

3 2
16 I p h

1

6
12

+
0 (1 Z

3
1)

Lemma 3.7. 3r1, C > 0, N E No such that

1I V,02(Z) + Eh (z) - /,02 (Z) + Eh ~6~ , < CI z -
6

1 2 ph

for I Z- 6
I< ,q, JArgt(z_--)-,

	

1I>

	

h>N.

Proof. We have

V~p 2 (z) + E, (Z) - ~~O2 (Z) + Eh (6~ = j~ah (1 + Th ) -

E(z)-E
(
3)

h

	

h 16ah :=~p 2 (z)+Er6)

	

T :h 1,h

	

2(Z)

	

3

~P

	

+Eh(~ 16)

By Lemma 3 .3 and 3 .5 with suited 77 :

3_
Tslph

Th I < C Iz	1	I p2 (z) I < C2p h for all h E N .

By taking N large enough C2 p h <
2

for all h > N and therefore

I Argt (1 + Th ) I < 4 . Furthermore

Argt ah I < I Argt ~02
(Z) I < 3 .

So we have l ah (1 + rh ) = V j/ 1 + Th and we derive
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IVah (1+

	

)
1

_ a-h ~(1+rh)2-1~<C3

	

MTh' =

Eh (z) - Eh (	 3

	

3 1
=C I	I <C I Z- 16 I2ph

	

(h>

Y ~p 2 (z) + Eh ( 6)

by Lemma 3 .6 .1

Lemma 3.8. [Local behaviour of the functions t 1h1 (z) in a sector
around 6] . 377, C > 0, N E No such that

J - so(z)+ I~02 (z) + Eh (z) - /E(_-)h

	

JCJz- j JpT<

	

6
4

for all I z - 6 (< r?, ( Argt (z - 6~ I > 3 , h > N.

Proof.

I-(z)+

	

~p}/ 2 (Z)+E h (Z)-1Eh (6)

•

	

f_sp(z)+Vp2(z)+Eh()6 - VEh(16) (+

•

	

( Y cp 2 (Z) + Eh (z)
- 1 ~O 2(Z) + Eh(3)

(

	 2`p(z)]/Eh (6)	 +
j/2 (z)+

	

cpEh (6) + cp(z) + /Eh( 6 )
1

•

	

C1 1z- 6 1 2ph

by Lemma 3 .7 for h > N. Now we have

I ~~2(Z)
+ Eh (6) +

'P(z)
+

Y Eh
( 6 2

> IV~p2(Z
)+Eh ( 16) I2+I~p(Z)+

VEh(16) (2 >
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J ~p(z)
+ Y Eh (~

) ( 2 > I cp 2 (z) I + Eh (6 )

2~l ~p 2 (z) IEh (6) >

again using the cosine theorem and regarding Eh (6) E R+ .

Putting everything together we get the estimation

I~Iz)1 2 (Eh (3 )) 4 +Ci Iz- 3 ( 2p h < C)z-3 , 4p 4 .i16

	

16

	

16

Lemma 3 .9 . [Local behaviour of the function H22) (z) in a sector

around 16] . Sri > 0 such that the function series

2' t 1 h 1(z) = Z (- cp(z) + V w 2(Z) + Eh (z) )
h>O

	

h>O

converges absolutely and uniformly in the sector

' Argt (z - 6) , > 3, and behaves like

h0 t[hJ(z) = hO (Eh ~6)) 2 + 0( I z- 6

- 5 22 -

`z 6 ( < ti,

In particular the function series is an analytical continuation of the func-

tion 2zH (22) (z) for z * 16 in the sector mentioned above .

Proof. We choose rl, N as in Lemma 3 .7 and split the total series in
the following way

N-1
tE h J(z) = 2 tt h1 (z) + 2 t 1h I(z) .

h>O

	

h=0

	

h>N

For ri small enough each of the functions t I h I (z) is analytic in the sector
for z * 6 by Lemma 3 .1 .

N- I

	

3
The function

h
o t 1 h ) (z) is analytical in a small disc around 16

apart from the algebraic singularity 6 coming from ~p(z) and therefore



1 t[h](Z) _ 2 1
Z

	

t[h] (
6~ + o(I z - 6h=O

	

h =O

1(Eh 6))2 +O(IZ- 3 I 2 ~ .h=O

	

16

Lemma 3 .8 establishes the estimation of

. t[h](z) L, t[h] ( 6)h>N

	

h>N

as well as the absolute and uniform convergence . i

Lemma 3 .10 . [Local behaviour of the function H22) (z) apart from
6] . With 17 from Lemma 3 .9 for all sufficiently small ~1 > 0 the func-
tion series hO t [h1 (Z) converges absolutely and uniformly in the domain

z I < 16 + 171, 1 z -
3

> 2 and is an analytical continuation of the
function 2zH2 2) (Z).

Proof. For q1 sufficiently small t [h ](z) is an analytical function
in the considered domain by Lemma 3 .1 . Now we choose N such that
(in consequence of Lemma 3 .2)

Eh(z)

	

1

	

3	2
(z)

I < 2 for all I z - 16 I > 2

	

(h > N) .

Then we have I Argt (1 +
Eh

2
(z)

) I > 3
~

and therefore I Argt cp2 (z) I < 3
pp (z)

by Lemma 3 .4. So

t[h]
(z)I = I -

~O(z) + I 2 (
Eh (z) 1

~P (Z) 1

+ 4P2 (z)

E (z) i
= I~(Z)II- 1+ (l+h	~ 2

P 2 (z)
<

E (z)

	

E (z)	 h	hC1 I ~P(z)I
~P2(z)

I = C1 I ~P2(z) I < Cph,
where C1 , C can be taken independently from h and z . I
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_ 5
Theorem 3 .11 . H22n = O ((3) n n 4) (n co) .

Proof. By Lemma 3 .9 and 3 .10 ~' tI h '(z) is an analytical con-
h>0

tinuation of the function 2zH2 2)(z) in the domain

IzI< 16+171, IArgt(z- 6~I>3, z o 6 .

As announced in the introduction we evaluate the coefficients by
means of Cauchy's integral formula choosing the contour of integration
r in the following way : F = F 1 U F 2 U r3 with

r1 ={z IzI= 16+ 2, IArgt(z- 6)I>-

r 2,3 ={z z= 6+xexp(±i 6) , 16<1z 6
3 77 1
+ 2

(To be quite rigorous we should take a part of a small circle around 316
connecting the two line segments and let shrink the radius of this circle
to 0, but this causes no troubles .)

The contribution of the integral along r 1 is exponentially small
compared with (3) n ; the line segments r 2 , r3 can be trated
symmetrically and an easy estimation (compare e.g . [4]) yields

f I 1 _ 16z 1 -1 , dz
r2

	

3

	

Izl n
So the proof of the theorem is complete .1

4. CONCLUDING REMARKS

We would like to emphasize that the present approach to the evalua-
tion of the average height of binary trees gives more information than
announced in the main theorem, as the considerations on h i and h2 may
be regarded of some special interest for themselves .

A natural extension of the problems treated in this paper is the case
of labels taken from {1, . . . , k} (the numbers of the corresponding trees

O((3) nn 4 ~ .

- 5 24 -
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have been evaluated in the paper [7]) . We feel that the methods of this

paper may be well suited for an investigation of this general case, too .
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