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This paper deals with sequences a1a2a3 . - l of symbols 0 and 1 with the property that they 
contain no arbitrary long blocks of the form ai+1 l l l ai+k = ww. The behaviour of this cIass of 
sequences with respect to some operations is examined. Especially the following is shown: Let 
be ai”) = ai, ain+‘) = (l/i) Ci =, ap), then there exists a sequence without arbitrary long adjacent 
identical blocks such that no lim,, akn) exists. Let be cy E (0, l), then there exists such a 
sequence with lim,_, ai]) = 0~. Furthermore a class of sequences appearing in computer 
graphics is considered. 

1. Introduction 

In this section first the basic definitions are given, followed by a short survey of 
the remaining sections. 

An alphabet C is a finite nonempty set, the elements of C are called symbols. 
c* denotes the free monoid geccrated by C. The elements of C* are called words. 
The unit in S* is denoted by E. The length of a word w E C* is denoted by 1 WI and 
is 0 if W=E and n if w=ul~**a,, aiEZ. 

The mirror image of a word w E C* is denoted by wR and is E if w = E and 
a, l l -al if w=ul 9 l 9 a,, ai E C. 

An infinite sequence ala2.a3 l l l , ai E C is called S-sequence. 
A substitution is a mapping T: 2: + @(Sz) such that the following conditions 

hold: T(E) = & and for each a E & there exists &C Sz, such that 7(a1 l l 9 a,,) = 

La, * l l La” for all a, l l l a,, E 27. Let 7 be a substitution such that for each a E & 
E# L, holds. Then to each &-sequence w = ala2u3 l l l corresponds the set 
7(&Q) = (w1w2w3 l . l 1 Wi E La,} Of &-sequences. 

Let 0 = ala2a3 l 9 9 be a X-sequence, a E 2, k EN, then n:“‘(k) i-notes the 
number Of symbols a it, a, l l l ak. 

A word x E Z* is called subword of a word w E C* (of a Z-sequence o), if there 
are words y, z EX* (a word y EC* and a Z-sequence q), such that w = yxz 
(W = y x n). 

For C = (0, l}, T(O) = 1, T( 1) = 0, T(W) (T(O)) are abbreviated by r;E (6). 
A (0, l}-sequence o has arbitrary long adjacent identical blocks (is of un- 

bounded repetition) provided that for all n EN there exists a subword ww of 0 

where 1 WI Z= n. A sequence not of this type is called sequence of bounded repetition. 
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The existence of sequences of unbounded repetition is evident. The second 
section contains a historica remark concerning the existence of sequences of 
bounded repetition; a special one is discussed in detail in Section 3, these 

examinations bring up some interesting arithmetical identities. 
The relative frequencies of symbols 1 in sequences with bounded repetition are 

examined in Section 4. 
Section 5 contains some results about operations on sequences of (un-) 

bounded repetition. 
In the last section d class of sequences with unbounded repetition is related to a 

problem appearing in computer graphics. 

2. Histotical remark 

It is well-known (Thue [12], Arshon [l], Hedlund and Morse [6]), that there are 
(0, 1,2}-sequences containing no subword of the form ww. Such (0, 1,2}- 
sequences can be used in order to construct sequences of bounded repetition. 

Entringer, Jackson and Schatz [4] have shown that there are (0, l}-sequences 
having only subwords ww with 1 w) G 2 and that this constant cannot be improved. 
The construction is based on a (0, 1,2}-sequence containing no subword of the 
form ww and the substitution T(O) = 1010, ~(1) = 1100, ~(2) = 0111. 

It is remarked that the substitution ~(0) = 0000, r(l) = 0101, ~(2) = 1111 is also 
possible. 

A further sequence of bounded repetition can be constructed as in Section 3: 
The sequence 0000 l l l is written down. Between every two symbols a gap is left. 
Now the sequence 1111 l l l is filled in the gaps, where gaps of odd index are left 
free. In the remaining (infinitely many) gaps the sequence 000 l l l is written, 
where again gaps of odd index are left free. This process (inserting O’s and l’s) is 
repeated ad infinitum. The nth element of this sequence can be obtained in the 
following way: if n =2k+*ii-2k, then a,=k(mod2). 

3. A special sequence with bounded w?etition 

Let be o=a,a,a,-0, where u,E{O, 1). a,=i(mod2) if n=2k+1i+2k. Since 
each n EN can be uniquely written as n = Zk+‘i +2k, u is well defined. (If the 
binary representation of n is ~010 l l l 0, CT E (0, l}, then a,, = CT). o can be defined 
as follows (see Jacob!, and Keane [7]): 

The sequence 0101 l l l is written down, leaving a gap between every two symbols: 

al a2 a3 a4 a5 a6 a7 %3 a9 a10 a11 a12 a13 a14 

0 1 0 1 0 1 0 
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Now the sequence 0101 l l 9 is filled in the gaps, leaving free every second gap: 

a, a2 a3 a4 Qs % a7 at3 a9 a10 a11 a12 a13 a14 

0 1 0 1 0 1 0 
0 1 0 1 

The remaining gaps are again filled by the sequence 0101 l l l , leaving free 
every second gap: 

al a2 a3 a4 a5 a6 a7 6 a9 410 a11 a12 a13 a14 

0 1 0 1 0 1 0 
0 1 0 1 

0 1 

This process is repeated ad infinitum. 

Theorem 3.1. o is a sequence of bounded repetition. 

Proof. It will be shown by induction on n 26, that w contains no word of the 
form XX with IX!= n. (A separate discussion of the cases n = 6, 7, 8, 9 and 10 is 
necessary.) 

(i) n = 6. In a set of 6 consecutive natural numbers there is always a k with 
k = 1 (mod 8) or k = 5 (mod 8). The binary representation of k ends in both cases 
with 01, therefore ak = 0. Thus the binary representation of k + 6 ends with 11, 
and so ak+6= 1. It follows that two consecutive words of length 6 in w differ at 
least at one position. 

Similar arguments are used in the following cases: 
(ii) n = 7. In a set of 7 consecutive natural numbers there is always a k with 

k = 3 (mod 8) or k =6 (mod 8). Therefore ak = 1, but ak+, = (1. 
(iii) n = 8. In a set of 8 consecutive natural numbers there is always a k with 

k =4 (mod 16) or k = 12 <mod 16). In the first case 61, = 0 and ak+8 = 1, in the 
second Case ak = 1 and ak+8 = 0. 

(iv) n =9. For k=5,13 (mod16) ak=O and ak+9=1. 

(v) n = 10. For k=4,13 (mcd 16) ak =0 and ak+lO= 1. 
(vi) Since a2a4a6 l 9 l = 0 = a1a2a3 l l . , o contains to each subword XX, where 

(XI= 2k already a subword yy, where 1 y 1 = k (yy is obtained by erasing all syb;lbols 
of XX with odd index). Therefore the statement holds for even n. 

(vii) Let be n> 11 an odd number and ai+* l l l Ui+nUi+n+l * l l Ui+2n a subword 
of o of the form XX. Let kE{i+l,i+2} be odd. Then 

akak+l ’ ’ l ak+8 = uak+1ijak+3~uk+5~ak+,~= a. 

Since k + n + 1 is odd, in the same way it can be concluded that 

ak+nak+n+lw” ak+n+8=ak+n7uk+n+27ak+n+4rak~*+6ci(;lk-en+8 =P 

and a = f3 must hold. Therefore Q = UT?%&% = p. Without loss of generality let 
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be u = T (otherwise u is replaced by T and T by 
subword 

@). Qi+l l l l ai+, contains a 

Then there is a unique r, j + 1 brsj+4, such that r=2 (mod8) or ~6 (mod@. 
Like in (i)-(v) it can be concluded, that a, # ar+4, which is impossible because of 
the form of ‘y. (This reasoning also excludes, that o contains a subword XX, where 
1x1= 4.) 

In Theorem 3.3 it will be shown, that o can be defined recursively (similar to 
Hedlund and Morse [6]). 

The following lemma will then be used: 

Lemma 3.2. a:1 l l l azn_, = a2n+1 l l l a2n+~_lR for all nEN. 

Proof. Let be 1&~2”-- 1 and wolOk the binary representation of i. Then 
lhGIOk is the binary representation of 2”+’ - i and therefore Ui = uzn+~+ 

Theorem 3.3. Let be a,, P,, n * 1 recursively defined as follows: 

l%~of. First, by induction on n, it is shown that cy, = FnR : 
(8 aI=o=iR=p~, 

(ii) a! n+l = (~,op, = fifiRG,R= cy,lpnR = p:+,. 
NOW the statement of the theorem is proved by induction on n: 

(9 fZ,=O=CY,, 
(ii) 

R 
a, l l l a2m_,a2na2n+1 l l 9 a2n+i_1 = a1 l l l a n _R 2 _,a2nal l l l a2n-l 

=oL,oLy, = q,opn = cY,+1. 

In the rest of this section the numbers n\“‘(k) and lhnkhm nto’(k)/k are 
examined. (Since there is no danger ot confusion, n,(k) will be written instead of 
n:‘“‘(k).) 

Definition 3.4. Let be k E No. The variation v(k) of k is defined recursively as 
follows: a(0) = 0, ~(2j + i) = u(j) + 6, where i, 8 E (0, l}, 6 = i + j (mod 2). 

Roughly spoken, u(k) denotes the number of changes of consecutive digits in 
the binary representation of k, where the leftmost digit 1 counts as a change. 

The following lenlma shows a property of v(k) which is used in the sequel. 

a 3.5. Let be 2” s k <2’? Then v(k) = 0(2”+‘- k - I)+ 1. 



Infinite O-l-sequences 281 

Roof. By induction on n: 
(i) If n = 0, then only k = 1 is possible and u(1) = 1 = u(0) + 1. 

(ii) Let be nsl and 2”~k<2”“. Then k=2j+l, &{O, 1) and 2”-‘~j<2”. 
Let be 6, S’E{O, 1}, 6 = i + j (mod 2), 6’~ 2” - j - i (mod 2). Then 6 = 6’ (mod 2) 
and 

Now the numbers n,(k) and u(k) can be related: 

Theorem 3.6. n,(k) = $(k - u(k)). 

Proof. Let be 2” s k <2”? The statement is proved by induction on n: 
(i) If n = 0, then k = 1 and n,(l) = 0 = $(l - u(1)). 
(ii) Let be n 2 1. The number of symbols 1 in a, l l l a2n_l aZn l l l ak can be 

determined in the following manner (it should be remembered that a2n = 0): In 
a, l l l a2n_1 occur exactly n,(2” - 1) = f(2” - 1 - ~(2” - 1)) symbols 1. To this 
number the number m of symbols 1 in a2n+1 l l l a2n+l_1 is added, and the number 
m’of symbols 1 in ak+l l l l a2n+l_1 is subtracted. Lemma 3.2 implies that 

m = n0(2” - 1) = 2” - 1- n,(2n - 1) 

m’ = n,,(2”+l- k - 1) = 2n+? - k - 1 - nl(2n+* - k - 1). 

Therefore 

n,(k) = n,(2” - 1) + m - m’ 

= n,(2” - 1)+2” - 1 - n,(2” - 1) - 2”+l f k + 1 + n1(2”+’ - k - 1) 

= -2” -I- k +4(2”+l- k - 1- ~(2~+l- k - 1)) 

=$(k-l-(u(k)-1)) 

= ;(k - v(k)). 

Now it can be shown that the sequence n,(k)ik of the relative frequencies of 
symbols 1 in o converges: 

Theorem 3.7. lim+, n,(k)/k = $. 

Proof. Since 0 G u(k) s 1 + Id kalways hold, it follows that 

i(k-1-ld k)<n,(k)<$. 
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Therefore 

Since limk._, (1 + Id k)/k = 0, the proof is finished. 

Another way to compute n,(k) shows 

meouem 3,8. nl( k) = Ciao [(k + 2i)/2i+2]. 

Proof. First it should be noted that a, = 1 if and only if there exists a number i, 
such that s = 3 l 2’ (mod 2i+2). (The binary representation of s must be of the form 
w 1 lo’.) Let i be fixed. Then there are [(k - 3 l 2i)/2i+2]+ 1 numbers s, such that 
s < k and s = 3 l 2’ (mod 2it2). (The following fact was used: For given n, r, m, 
0 G r < m, there are exactly [(n - r)/m]+ 1 numbers t, such that 0 G t G n and t = r 
(mod mj.) 

Furthermore 

A summation over i completes the proof. 

Using Lemma 3.6 and Theorem 3.8 an interesting identity can be proved: 

COxOlIm 3.9. Ciao [(k + 2’)/2”*]=i(k - u(k)). 

In a similar way an other identity can be easily proved. 

Theorem 3.10. Ciao [(k + 2i)/2i’ ‘I= k. 

Proof. Let W’ = b, b2b3 9 l l be defined as W, but using 1111 l l l instead of 
OlOl***. Then clearly n\““)(k) = k holds for all k. 

n\““(k) can be determined as in the proof of Theorem 3.8: b, = 1 if and only if 
there exists a number i, such that s = 2’ Gnod 2’+‘). (The binary representation of 
s must be of the form wlO’.) 

Let i be fixed. Then there are [(k - 2i)/2d+1] + 1 numbers s such that s s k and 
s = 2’ (mod 2’+‘). Since 

[$q+l=[$q, 
a summation over i completes the proof. 
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4. Some properties of sequences with (nn-)bounded repetition 

In the sequel it will be shown, that for each CY E (0,l) there exists a sequenc.e 
with bounded repetition o = ~1~2~3 l l - , such that lim,,, nl”‘(k)/k = cy. To ob- 
tain this, it is necessary to make some preparations. 

In the following r denotes the substitution T(O) = (00, Ol}, T( 1) = { 11). 

Lemma 4.1. Let o be a sequence with bounded repetition. Then T(O) contains only 
sequences with bounded repetition. 

hoof* Assume k to be a number such that w does not contain a subword 
where 1~12 k. 

Assume that there is a sequence with unbounded repetition q E T(O). Th 
contains a subword Qi+l l l l Ui+,Ui+,+l l l l Ui+zm, where m 32k. 

It is necessary to distinguish the following cases: 
(i) i = 0 (mod 2) and m = 0 (mod 2). Then there is a subword ww in W, Iw 

corresponding by r to the subword Qi+l l * l ai+2,,,. 

(ii) i ~0 (mod 2) and m G 1 (mod 2). If Ui+mUi+m+l = OX, then ai+,,= 0 

w*w, 

3 k, 

and 
therefore ai+2m_l = 0, and therefore Qi+m_l = 0, etc. Because of this w contains a 
subword O’O’, where ra k. If ui+mUi+m+l = 11, then Ui+l = 1, and therefore 
a i+2= 1, and therefore Ui+m+Z = 1, etc. Because of this o contains a subword l’l’, 
where ta k. 

(iii) i = 1 (mod 2) and m = 0 (mod 2). In this case o contains a subword of the 
form V~WO~WCT~, where Iw] 2 k - 1. From this it follows that ml # o2 and a2 # a3 
must hold. If v2 = 0, then a3 = 1 and therefore ai+m = 0 and ai+2m = 1; this is 
impossible. If c2 = 1, then 0, = 0 and therefore ai+m = 1 and ai+2m = 0; this is also 

impossible. 
(iv) i = 1 (mod 2) and m = 1 (mod 2). In this case o contains a subword of the 

form cl w~2(r3wu4, where 1 WI 3 k - 1. Therefore al f a3 or a2 f 0, must hold. 
Without loss of generality one can assume that cl Z 0,. If u1 = 0, then u3 = 1 and 
therefore Ui+m+l = ui+m+2 = 1, etc. Because of this w contains a subword O’O’, 
where ra k. The case u1 = 1, a3 = 0 can be discussed with similar arguments. 

Lemma 4.2. Let o be a (0, l}-sequence and limk,, np’(k)/k = CL Then for each 
/3 E [a, i(tx + 1)] there is a r) E T(O), such that limk_,, ny)(k)/k = p. 

Proof. If p = cy, q is obtained from M by replacing each 0 by 00 and each 1 by 11. 
Now it is assumed, that p > CL Then it exists a kO, such that n\“)( k)/k s p holds 

for all k > k,. All symbols 0 in o are replaced by 00 until k, is reached, Then 
all symbols 0 are replaced by 01, until a minimal k, is found, such that 
ny)(2k1)/2kl 3 p. (This is possible: if all but finitely many symbols in o are 
replaced by 01, then the sequence of relative frequencies of this new sequence 
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converges to #ty -I- l),) Beginning with index kI 9 1 all symbols 0 are again 
replaced by 00, until a minimal k2 is found, such that n~)(2kz)/2kz 
process is repeated, Clearly, the so constructed sequence r) has the desired 
property. (Compare this construction with Knopp [g; p. 3291,) 

Lemma 4.3. Let cs) be u (0, I)-sequence rana limk,, np)(k)/k = cy, Then for each 
p E [a, 1) there e&s a n an8 Q q E P(U), such that limk,, np)(k)/k = /3. 

Proof. Since the sequence (a! +2’ - 1)/:2& increases strictly monotonously and 
converges to 1, there is a unique n, such that 

a-t2”-1 
2” e@< . 

Then there is a $E?(w), such that 

n’,“‘)(k) &-2*-l 
lim k= 
k--J- 

2” ’ 

Then, because of Lemma 4.2, there is a JET (ET’~+‘(w)), such that 
lim kjot np’(k)/k = pm 

Theorem 4.4. For each p t=” [f, 1) there is a sequence with bounded repetition q, such 
that limk-,, ny’(k)/k = 0. 

Plloof. Let o be the sequence of Section 3. Then the statement is evident 
applying Lemma 4.3 to 0. 

Theorem 4.5. For each p E (0,l) there is a sequence with bounded repetition 7, 
such that lim k+ac n?‘(k)/k = p. 

IProof. The statement must be proved only for p E (0, $1. Let o be a sequence with 
bounded repetition and limk,, #‘( k)/k = 1 - p. Then for q = i3 the statement is 
true. 

Corollary 4.6. The set of sequences with bounded repetition has cardinal&y 2”0. 

This statement can be seen also in thai way: From the work of Kakutani (cf. 
Gottschalk and Hedlund [S; p. 1091) there are 2Ko square-free (0, 1,2)-sequences. 
This can be found also in Bean, Ehrenfeucht and McNulty [23. Then a substitution 
as in Section 2 gives the result. 

BY w = ala2a3 9 l l - @(o) = c a,/2’, each (0, 1}-sequence can be associated 
with a real number in [0, 11. Each real number which corlresporids to a sequence 
with bounded repetition is non-normal in accordance to Bore1 [3]. (See Nkt~ 
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[ 101,) Since the set of non-normal numbers is of measure 0, the following theorem 
holds: 

Theorem 4.7. Let M be the set of all sequences with bounded regetition, Then 
@(Mj is of measure 0. 

Finally, it is shown, that there are sequences with bounded repetition, for which 
the sequences of the “nth averages” do not converge. 

De0nitlon 4.8. Let 0 = a1a2a3 m 9 l be a (0, #sequence and the sequences a?), 
u:“‘, a?‘, 8.. of the nth averages (n $r 0) defined by: 

Then ai’) = n,(k)/k. 

Theorem 4.9. There is a sequence with bounded repetition q, such that FW 
lim k+9D a?’ e&& 

Proof. Let o be the sequence of Section 3. 7 will be constructed by applying the 
substitution T to o step by step. For this purpose let QC, p be so that f < cy < p < 3. 

First step: Symbols 0 are replaced by 01 until a!,!)a p. Then symbols 0 are 
replaced by 00 until a!$ ~a. 

kth step: Symbols 0 are replaced by 01 until a( 0 and ~!1”,‘> /3 and 9 l b und 
a’,Z)a /3. Then symbols’ 0 are replaced by 00 l!util a:: c Q! and l l 9 and a$: s cy. 

For each k the sequence aik), aik), aSkI,. . . contains infinitely many numbers 
su and “p and th;:refore it does not converge. 

5. Operations on sequences with (un-) bounded repetition 

The behaviour of sequences with (un-) bounded repetition is examined for the 
following operations: changes of finite character, mixing, addition mod 2. 

Lemnw 5.1. Let o be a (0, 1).sequence and o E (0, 1). Then o is a sequence with 
bounded repeti?n n if and only if cm is a sequence with bounded repetition. 

Proof. If ow is a sequence with bounded repetition, then there is a k, such that 
“TO contains no stibword ww, where 1~12 k. Then w does not contain such a 
subword and is therefore a sequence with bounded repetition. 

Let conversely w be a sequence with bouhded repetition. Then there is 8 k, 
such that w cotltains no subword ww, where 1~1~ k. Assuming ti’w to be a 



E’rwfs It follaws fmm Lm~ma 5 h by induction, that w is ~1 squencs with 
bounded repetition if and only if w is a squsnce 14th bounded repetition. By a 
similar argument it can be concluded, that w is a sequence with bounded 
repetition if and only if yw is a sequence with bounded repetition. 

Remark. Theorem 5.2 shows, that by changes of finite character (deleting and 
inserting of finitely many symbols) of sequences with bounded repetition again 
sequences with bounded repetition are obtained. 

Let o2 be obtained from o1 by changes of finite character, and k; (i = 1,2) 
minimal, such that mi contains no subword ww, 1~1-2 k,. Then kl and k2 can be 
quite different. 

De&&ion 5.3. For (0, 1).sequences o = ulu2a3 l l l and q = b&b3 l l l let 

Theorem 5.4. The sequences with unbounded repetition are not closed under Cl. 

Proof. Let o be a sequence with bounded repetition, ~~(0) = 00, ~~(1’) = 11, 
~~(0) = 01, Q( 1) = 11. Then according to Lemma 4. I ~~(0) = Q~ clzu3 l l l and 
72(o) = b,b2b3 l l l are sequences with bounded repetition. Let the sequences 

rll =al,akai-.= and 772 = b:b$b$ l l - be constructed as follows: 
FW all n ~0 let 

0 2” 

a& l 9 l a&+l_l = 
if n is even, 

a2” l l l u2n+l_1 if n is odd, 

&. l l l b;n+l_l = b2n . . . b2”+1-* if n is even, 

12” if n is odd. 

Since ql and ~7~ contain subwords OkOk and lk lk for infinitely many k, they are 
sequences with unbounded repetition. 

Now it is shown that ql 0 q2 is a sequence with bounded repetition. Assuming 
the contrary tne following cases are possible: 

(8 a:+&:+, l l l a;+, b:+,:= a:+,,+lb:+n+l l l l ~C+2,&+2~. 

Then a:,, l l l a:,,, = a:,,,,, l l l u:+~,, and b:,, l l l b:+,,= l~;+,,+~ l l l b:+*,,, which is 
possible only for finitely many n. 



(iv) b:+lG+2 l l l a:+n+lb:+n+l = aL,+2b:+n+2 0 9 l b:+2n+la:+2n+2 

is discussed similar to (iii). 

If o and q are sequences with bounded repetition, then it is quite possible, that 
o 0 q is a sequence with bounded repetition. (An example: o Cl w = TV, r1 
from Theorem 5.4.) It could not be found out, whether or not this holds in 
general. however the following can be shown: 

Theorem 5.5. For each sequence with bounded repetition o there is a (0, l}- 
sequence q, such that o Cl q is a sequence with unbounded repetition. 

Proof. Let 0 = a1a2a3 l l l be a sequence with bounded repetition and q = 
blb2b3 l 9 l be constructed as follows: for all n 2 0 let be blm be anyhow and 

b 2”+1 . . . b 2n+,_1 = a2h+2n-l+1 l 9 l a2n+l_1a2n+1 l l l a2n+2n-1. 

Then o Cl q contains for all n the subword 

a2n+1a2n+2n-~+1 . 9 l a,.+~_1a2n+2n-~a2n+1a2n+2n-~+1 l l l a2n+~-1a2n-2n-~ 

of the form ww, the length of which is 2(2” - 1). 

Interpreting 0 and 1 as the elements of GF(2), and defining the addition :jf 
(0, l}-sequences elementwise, it can be shown that neither the sequences of 
unbounded repetition nor the sequences with bounded repetition are classed under 
addition. 

Theorem 5.6. There are sequences of bounded repetition ml, 02, o3 and sequences 
with unbounded repetition ql, 7a2, q3, such that 

(i) o1 + o2 = w3, (iv) ml + r/2 = q3, 

(ii) ol+o, = ql, (v) r/2+ r/3 = 019 

(iii) o1 t ql = ol, (vi) rllfrl, = 71. 

Proof. Let be qr = 0000 l l l . Then (ii), (iii) and (vi) are true. Let w be a sequence 
with bounded repetition, o1 = TV, o2 = l+ and o3 = ~~(6) (7i from Theorem 
5.4). Since ~~(0) + 1r2(o) = r&G), (i) holds. 
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Now it will be shown, that b,+, . . . II,+, = bs+,+i l * * bs+*,, holds: First, for 
lSiS$l, 

tt(lc + n + i) (mad I) = @(a -I- i)+ 8) (mad I) 

[I] 6.E Areh~,n, Rnkai@td’stvo suswWnvanijis ~wwnyh bdmwmyh mimmstrimyh 
pmkfwstel’nmki, Mat, 6b. O%S.) 2 (44) (lQ37) 776-778. 
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