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Abstract. An m-version of plane oriented recursive trees is considered. Moments of
depth and path length are computed asymptotically. Two transformations on the level of
generating functions from the ordinary (m = 1) case are used.

1. Introduction

Cichon and Macyna [3], in the context of approximate counting, introduced a parameter
m, which means that m counters are used instead of just one. The association of an
incoming element to one of the counters is done at random, with probability 1

m
. This

brilliant idea is of course not restricted to approximate counting. Recently, the second
author undertook a study of binary search trees, where m such trees are kept, and again
incoming (new) elements are inserted into a random tree.

Here, we continue this line of research, by considering Plane Oriented Recursive Trees,
shortly PORTs. These trees also appeared under the name heap ordered trees, [2, 9], but
we agree with Hwang [8] that PORT is a much more appropriate name. They belong to
the family of increasing trees [1].

A PORT is created from the list 1, 2, . . . , n. Assume that a PORT with n− 1 elements
has already been created. The new element n can be attached to any node; if such a node
has d successors, it can be put in one of the d+ 1 slots between them. It follows that there
are

an = 1 · 3 · 5 · · · (2n− 3) = n!21−nCn
such trees, with a Catalan number

Cn =
1

n

(
2n− 2

n− 1

)
.

Following the general paradigm, we now construct m PORTs; a new element is randomly
assigned to one of the m PORTs, and each PORT is created as usual.

We analyse two parameters: the depth (distance from the root) of a random element,
and the path length. The path length of an ordinary PORT is the sum of the distances
of the nodes to the root, and for the m-version, it is the sum of the path lengths of the
individual PORTs. We follow the paper [9]; it turns out that the results derived there
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can be used. They do not need to be rederived. One must control carefully how the two
counting problems change when switching to m PORTs. That is what we will do in this
paper.

In the above mentioned paper [10], explicit formulæ could be derived for the m-BST ver-
sion. Here, that is not possible. We must resort to asymptotic methods, and we do this via
generating functions and singularity analysis of them [5]. There is a dominant singularity at
1, and known expansions of the typical terms. We have to transform generating functions
from [9] twice; first, they have to be adapted to become ordinary generating functions, and
then the m-version follows from something that is often called Euler transform [6].

2. Known results about PORTs

We cite from the paper [9]: The expectation of the depth of a random node in a PORT
of size n is given by

E(Dn) =
(

1− 1

2n

)
Ĥn −

1

2
;

the variance is

V(Dn) =
(

1− 1

2n

)[
Ĥn − Ĥ(2)

n

]
− E(Dn)2,

with

Ĥn =
n∑
k=1

1

2k − 1
and Ĥ(2)

n =
n∑
k=1

1

(2k − 1)2
.

These quantities can be expressed in terms of traditional harmonic numbers,

Hn =
n∑
k=1

1

k
and H(2)

n =
n∑
k=1

1

k2
,

but it is useful to have a special notation here.
The expectation of the path length of a PORT of size n is given by

E(Pn) =
(
n− 1

2

)
Ĥn −

n

2
;

the variance is

V(Pn) = n2
(3

2
− Ĥ(2)

n

)
+ n
(
Ĥ(2)
n − Ĥn −

3

4

)
+

1

2
Ĥn −

1

4
Ĥ(2)
n .

We cite here the known expansions involving Ĥn and Ĥ
(2)
n since we will need them later.

Our reference is [7].

[zn]
1

(1− z)α+1
log

1

1− z
=

(
n+ α

n

)
(Hn+α −Hα),

[zn]
1

(1− z)α+1
log2 1

1− z
=

(
n+ α

n

)(
(Hn+α −Hα)2 − (H

(2)
n+α −H(2)

α )
)
.
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We will need this for α = 0, 1, 2, but also for α = −1
2
, 1
2
, when it takes this form:

[zn]
1

(1− 4z)1/2
log

1

1− 4z
=

(
2n

n

)
2Ĥn,

[zn]
1

(1− 4z)3/2
log

1

1− 4z
=

(
2n

n

)
(2n+ 1)2(Ĥn+1 − 1),

and

[zn]
1

(1− 4z)1/2
log2 1

1− 4z
=

(
2n

n

)
4(Ĥ2

n − Ĥ(2)
n ),

[zn]
1

(1− 4z)3/2
log2 1

1− 4z
=

(
2n

n

)
(2n+ 1)4

(
(Ĥn+1 − 1)2 − (Ĥ

(2)
n+1 − 1)

)
.

These expansions were already discussed and used in the earlier paper [9].

3. Depth in m-PORTs

The derivation of the depth of a random node in a PORT is via level polynomials Ln(u):
the coefficient of uk is the probability that there are k nodes on level k. They are given by

Ln(u) =
1

2(1 + u)Cn
(−4)n

(
−u/2
n

)
+

1

1 + u
,

with Catalan numbers

Cn =
1

n

(
2n− 2

n− 1

)
.

Note that Ln(1) = n, as it should.
For the analogous quantity in m-PORTs we compute

LN(u) =
∑

n1+···+nm=N

m−N
(

N

n1, . . . , nm

)(
Ln1(u) + · · ·+ Lnm(u)

)
=

N∑
n=0

m1−N(m− 1)N−n
(
N

n

)
Ln(u),

and LN(u)/N is the probability generating function of interest, i. e., moments of the depth
can be obtained from it by differentiation. It does not seem to be promising to try for a
closed form expression of LN(u) directly, but we can use this relation to compute moments,
as we will now demonstrate.

Assume that the (ordinary) generating function

F (z) :=
∑
n≥1

L′n(1)zn

is known. Then

L′N(1) =
N∑
n=0

m1−N(m− 1)N−n
(
N

n

)
L′n(1)
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=
N∑
n=0

m1−N(m− 1)N−n
(
N

n

)
[zn]F (z)

= [zN ]
m2

m− (m− 1)z
F
( z

m− (m− 1)z

)
,

as is easy to check. This is often called an Euler transform [6].
We have an explicit formula for F (z). The corresponding formula

m2

m− (m− 1)z
F
( z

m− (m− 1)z

)
is not suitable anymore for explicit coefficients, but asymptotics can be easily derived, by
singularity analysis. The dominant singularity z = 1 is again, after this transformation, at
z = 1, and we get an expansion that can be used for asymptotics. In principle, as many
terms as one wants for an asymptotic expansion could be derived, although with some
effort. The same is true for the second factorial moments:

G(z) :=
∑
n≥1

L′′n(1)zn,

then we need to consider

m2

m− (m− 1)z
G
( z

m− (m− 1)z

)
.

To be more specific,

F (z) =
∑
n≥0

[(
n− 1

2

)
Ĥn −

n

2

]
zn =

z3/2

2(1− z)2
log

1

1− z
+

z3/2

(1− z)2
log(1 +

√
z ).

Then

m2

m− (m− 1)z
F
( z

m− (m− 1)z

)
=

1

2(1− z)2
log

1

1− z
+

2 log 2− logm

2(1− z)2
+O
( 1

1− z
log

1

1− z

)
.

For the coefficient of zN this means

N + 1

2
(HN+1 − 1) +

2 log 2− logm

2
(N + 1) +O(logN),

and we get an asymptotic formula for the average of the depth of a random node in an
m-PORT by dividing this by N and using well known asymptotics for harmonic numbers.

The explicit formula for F (z) from the given coefficients can be computed using Maple.
We will follow this approach also for the second factorial moment where it is more com-
plicated to get the explicit formula for G(z). It was done using Maple, in particular the
package Gfun [11], and some human interaction. At a first glance, it looks like a guessed
result, but it can be made fully rigorous. We do not, however, want to spend too much
space on that. After all, once such an explicit formula is known, by backwards engineering,
the coefficients may be computed!
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As demonstrated in the paper [9], all results come out from terms like

1

(1− 4z)α+1
logβ

1

1− 4z
, (1)

for which we know explicit formulæ for the coefficients, which must then be divided by
Cn. For computations related to expectation and variance, only β = 0, 1, 2 is needed,
but higher moments would require arbitrary values. For instance, computing the second
factorial moment, we encounter

[zn]M2(z) = [zn]
z

2
√

1− 4z
− [zn]

1

8
√

1− 4z
log

1

1− 4z
+ [zn]

1

16
√

1− 4z
log2 1

1− 4z

= [zn−1]
1

2
√

1− 4z
− [zn]

1

8
√

1− 4z
log

1

1− 4z
+ [zn]

1

16
√

1− 4z
log2 1

1− 4z

=
1

2

(
2n− 2

n− 1

)
− 1

4

(
2n

n

)
Ĥn +

1

16

(
2n

n

)
[4Ĥ2

n − 4Ĥ(2)
n ]

and
1

Cn
[zn]M2(z) =

n

2
− 2n− 1

2
Ĥn +

2n− 1

2
[Ĥ2

n − Ĥ(2)
n ].

The most complicated ingredient is then given by∑
n≥0

2n− 1

2
[Ĥ2

n − Ĥ(2)
n ]zn =

z3/2

4(1− z)2
log2 1

1− z
+
z3/2(1 + 2 log(2))

2(1− z)2
log

1

1− z

+
z3/2

(1− z)2
Li2

(1−
√
z

2

)
− z3/2

2(1− z)2
log2(1 +

√
z ) +

z3/2(1 + log(2))

(1− z)2
log(1 +

√
z )

− z3/2π2

12(1− z)2
+
z3/2 log2(2)

2(1− z)2
.

Here,

Li2(z) :=
∑
n≥1

zn

n2
.

We provided a full catalogue of functions as in (1) that are needed. The second table
provides then the expansion of the translated formula f(z/(m− (m− 1)z) around z = 1.
From these, everything can be put together, and we only provide the most interesting
results, since intermediate steps are often long and performed with Maple anyway.
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We apply this to

M2(z) = −
√

1− 4z

8
+

1

8
√

1− 4z
− 1

8
√

1− 4z
log

1

1− 4z
+

1

16
√

1− 4z
log2 1

1− 4z
;

the transformed version is (leading terms only), after simplification

− 2 log(2)− log(m)

2(1− z)2

+
1

4(1− z)2
log2 1

1− z
+

2 log(2)− log(m)

2(1− z)2
log

1

1− z

+
(log(m)− 2 log(2))(log(m)− 2 log(2)− 2)

4(1− z)2
− π2

12(1− z)2
.

The coefficient of zN , and its asymptotics, divided by N is a long expression that we don’t
display, but the variance simplifies. Let us thus summarize the results about the first two
moments of the depth of a random node:

Theorem 1. Expectation and variance of the depth of a random node in m-PORTs of size
N admit the following asymptotic expansions:

E(DN) =
1

2
log

N

m
+

1

2
γ + log 2− 1

2
+O

( logN

N

)
,

V(DN) =
1

2
log

N

m
+
γ

2
− π2

8
− 1

4
+ log 2 +O

( logN

N

)
.

4. Path length in m-PORTs

We start from the probability generating function Pn(u) for the path length.

PN(u) = m1−N
N∑
n=0

(m− 1)N−n
(
N

n

)
Pn(u),

Note that now PN(1) = m, so it needs to be normalized.
Pn(u) is not really available, but we can compute moments.
The expectation is just n times the expectation of the depth, so we find the depth in

the m-model on average:

∼ N

2m

(
log

N

m
+ γ + 2 log 2− 1

)
.

The second factorial moment is much more demanding. Its generating function (the
Catalan version) is given in [9]. Here we only repeat the leading terms

1

32

1

(1− 4z)3/2
log2 1

1− z
+

1

16

1

(1− 4z)3/2
log

1

1− z
+

3

32

1

(1− 4z)3/2
;

for a full list of terms see the original paper.
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f(z) an := [zn]f(z)
/
Cn

∑
n≥1

anz
n

√
1− 4z −2

−2z

1− z
1√

1− 4z
2(2n− 1)

2z(1 + z)

(1− z)2

1

(1− 4z)3/2
2(2n+ 1)(2n− 1)

2z(3 + 6z − z2)
(1− z)3

1

(1− 4z)1/2
log

1

1− 4z
4(2n− 1)Ĥn

4z3/2

(1− z)2
log

1

1− z

+
8z3/2

(1− z)2
log(1 +

√
z ) +

4z

(1− z)2

1

(1− 4z)1/2
log2 1

1− 4z
8(2n− 1)(Ĥ2

n − Ĥ
(2)
n )

4z3/2

(1− z)2
log2 1

1− z

+
8(1 + 2 log(2))z3/2

(1− z)2
log

1

1− z

+
16z3/2

(1− z)2
Li2

(1−
√
z

2

)
− 8z3/2

(1− z)2
log2(1 +

√
z )

+
16(1 + log(2))z3/2

(1− z)2
log(1 +

√
z )

+
8 log2(2)z3/2

(1− z)2
− 4π2z3/2

3(1− z)2

1

(1− 4z)3/2
log

1

1− 4z
4(2n+ 1)(2n− 1)

16z3/2

(1− z)3
log

1

1− z

×(Ĥn+1 − 1) +
32z3/2 log(1 +

√
z )

(1− z)3

− 12z2

(1− z)3
+

4z

(1− z)3

1

(1− 4z)3/2
log2 1

1− 4z
8(2n− 1)(2n+ 1)

16z3/2

(1− z)3
log2 1

1− z

×[(Ĥn+1 − 1)2 −16(1− 4 log(2))z3/2

(1− z)3
log

1

1− z

− (Ĥ
(2)
n+1 − 1)] +

64z3/2

(1− z)3
Li2

(1−
√
z

2

)
− 32z3/2

(1− z)3
log2(1 +

√
z )

− 32(1− 2 log(2))z3/2

(1− z)3
log(1 +

√
z )

− 16π2z3/2

3(1− z)3
+

32 log2(2)z3/2

(1− z)3
+

48z2

(1− z)3
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F (z) F
(

z
m−(m−1)z

)
leading terms only

−2z

1− z
− 2

m

1

1− z
2z(1 + z)

(1− z)2
4

m2

1

(1− z)2

2z(3 + 6z − z2)
(1− z)3

16

m3

1

(1− z)3

4z3/2

(1− z)2
log

1

1− z
4

m2

1

(1− z)2
log

1

1− z

+
8z3/2

(1− z)2
log(1 +

√
z ) +

4z

(1− z)2
4(1 + 2 log(2)− log(m))

m2

1

(1− z)2

4z3/2

(1− z)2
log2 1

1− z
4

m2

1

(1− z)2
log2 1

1− z

+
8(1 + 2 log(2))z3/2

(1− z)2
log

1

1− z
+

8(1 + 2 log(2)− log(m))

m2

1

(1− z)2
log

1

1− z

+
16z3/2

(1− z)2
Li2

(1−
√
z

2

)
+

4(log(m)− 2 log(2))(log(m)− 2 log(2)− 2)

m2(1− z)2

+
8(1 + 2 log(2))z3/2

(1− z)2
log

1

1− z
− 4π2

3m2(1− z)2

− 8z3/2

(1− z)2
log2(1 +

√
z )

+
16(1 + log(2))z3/2

(1− z)2
log(1 +

√
z )

+
8 log2(2)z3/2

(1− z)2
− 4π2z3/2

3(1− z)2

16z3/2

(1− z)3
log

1

1− z
16

m3(1− z)3
log

1

1− z

+
32z3/2 log(1 +

√
z )

(1− z)3
− 8(1− 4 log(2) + 2 log(m))

m3(1− z)3

− 12z2

(1− z)3
+

4z

(1− z)3

16z3/2

(1− z)3
log2 1

1− z
16

m3(1− z)3
log2 1

1− z

−16(1− 4 log(2))z3/2

(1− z)3
log

1

1− z
− 16(1− 4 log(2) + 2 log(m))

m3(1− z)3
log

1

1− z

+
64z3/2

(1− z)3
Li2

(1−
√
z

2

)
− 16π2

3m3(1− z)3
+

48

m3(1− z)3

− 32z3/2

(1− z)3
log2(1 +

√
z ) +

16(2 log(2)− log(m))(2 log(2)− log(m)− 1)

m3(1− z)3

− 32(1− 2 log(2))z3/2

(1− z)3
log(1 +

√
z )

− 16π2z3/2

3(1− z)3
+

32 log2(2)z3/2

(1− z)3
+

48z2

(1− z)3
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According to our prepared lists, we can translate that into ordinary generating functions:

1

m

1

(1− z)3
log

1

1− z
− 1− 4 log(2) + 2 log(m)

2m(1− z)3

+
1

m

1

2(1− z)3
log2 1

1− z
− 1− 4 log(2) + 2 log(m)

2m

1

(1− z)3
log

1

1− z

− π2

6m(1− z)3
+

3

m(1− z)3
+

(2 log(2)− log(m))(2 log(2)− log(m) + 1)

2m(1− z)3
.

From this we can read off the coefficients of zN and evaluate it asymptotically. We don’t
show intermediate steps since it is mostly done with Maple, and eventually there is a lot
of simplification.

Theorem 2. Expectation and variance of the path length in m-PORTs of size N admit
the following asymptotic expansions:

E(PN) =
N

2m

(
log

N

m
+ γ + 2 log 2− 1

)
+O(logN),

V(PN) =
N2

m2

(3

2
− π2

8

)
+O(N logN).

So, when concentrating only on the leading terms, m-PORTs behave in a very predictable
way, namely n is just replaced by N/m. Such a simple dependency is not likely to persist,
however, when making the effort to compute lower order terms. This seems to be a good
student’s project.

5. Conclusion

This was just the beginning of the analysis of m-PORTs. Many more things are waiting
to be discovered.

The transition from ∑
n≥0

anz
n to

∑
n≥1

an
Cn
zn

was done here via the coefficients. It would be interesting to do this on a purely analytic
level. Most likely, techniques related to the Hadamard product as in [4] will play a role.
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