MORTENSON’S IDENTITIES AND PARTIAL FRACTION
DECOMPOSITION

HELMUT PRODINGER

ABSTRACT. We reprove two identities of Mortenson by using not
more than partial fraction decomposition.

1. INTRODUCTION

Mortenson [2, 3] proved the two identities
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Here, 1 <m <nand H, = Zl<k<n % are harmonic numbers.

The goal of the present note is to show that the particularly simple
technique, presented in [4], works here as well. Because of a formula, e. g.,
discussed in [4], identity (2) is equivalent to the more appealing
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Compare also with the paper [5].
The method consists of the following steps:

e A rational function, of the form

(z+1)...(z+n)
Y,
z2(z—=1)...(z —n)
will undergo partial fraction decomposition.
e The resulting equation will be multiplied by z, and the limit z — oo

will be performed.
e We write harmonic numbers as
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We use an individual term as part of the rational function.
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The resulting identities will be summed over all 7 > 1.
e To obtain the final result, these infinite series have to be evaluated.
We use creative telescoping, as popularized in the book [1] to do

that.

Factorials are, whenever necessary, defined by the Gamma function. In
particular, 1/(—n)!, for n € N, must be interpreted, as usual, by 0.

2. THE FIRST IDENTITY
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The two results

appear already in [4], so let us concentrate on (0 < m < n)
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Consider
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Then partial fraction decomposition results in
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Multiplying this by z and then performing the limit z — oo leads to
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Summing over j > 1, we get
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Denoting the term in the sum that still needs to be evaluated by F(n,j),
we find

Fn+1,5) — F(n,j) = G(n,j +1) — G(n,j),
with
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(Once this is known, it is trivial to check.)
We need the summatory functions

= ZF(TM]),

Jj=0

m is always treated as a parameter. We find by summing

S(n+1)—S(n)= }LH;O(GW’ J) = G(n,0)) = RTEE

so that
S(n) — S(m) =2(H,, — Hp).

The instance S(m) = 2H,, is already known, as mentioned, and we get for

0<m<n
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Putting the individual evaluations together, we get identity (1).

3. THE SECOND IDENTITY

Consider the partial fraction decomposition
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Again, multiplying this by z and taking the limit z — oo results in
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which we sum:
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Denoting the term in the bracket of the right-hand side by F(n,j), we get
nF(n+1,5) — (n+2)F(n,j) =G(n,j+1) — G(n,j) + 2,

with
(G+m)(G+m+1)!
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which is again routine to check. Consequently we find for the summatory
functions the recursion

G(n,j) = -2

nS(n+1)—(n+2)S(n) = lim [G(n,J)+2J — G(n,0)] = 2n(n+2) —2m

J—o0

The recursion is valid for n > m. However, the special case
S(m) = 2m(m + 1)H,, — m?
is already known, see [4], and therefore we get in general
S(n) =2n(n+1)H, —n* —n +m.

This is easy to check by induction.
So we have the general formula for 0 <m <n
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To evaluate Mortenson’s second sum, we add the ingredients
2n(n+1)H, —n?—n+m+2n(n+1)H, —n?—4n(n+1)H,+2n(n+1) = m+n

and are done.
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