NOTE

NON-REPETITIVE SEQUENCES AND GRAY CODE

Helmut PRODINGER

Institut für Algebra und Diskrete Mathematik, Technische Universität Wien, Gußhausstraße 27–29, A-1040 Wien, Austria

Received 3 September 1981 Revised 5 February 1982

A sequence of 0's and 1's is constructed which is related to the Gray code, and which has only subwords ww of length not greater than ten.

1. Introduction

Consider a sequence $\omega = b_1 b_2 b_3 \cdots$, where $b_i \in \{0, 1\}$. A method to construct from this given sequence a new sequence $a_1 a_2 a_3 \cdots$ was proposed by Toeplitz (see Jacobs and Keane [2]):

The sequence $b_1b_2b_3\cdots$ is written down, leaving a gap between every two symbols:

a_1	a_2	a_3	a_4	a_5	a_6	a_7 .	• •
b 1		b 2		b3		b₄	

Now the sequence $b_1b_2b_3\cdots$ is filled into the gaps, leaving free every second gap. This last step is repeated *ad infinitum*, yielding the new sequence

 $T(\omega) = b_1 b_1 b_2 b_1 b_3 b_2 b_4 b_1 b_5 b_3 b_6 b_2 b_7 b_4 b_8 b_1 b_9 \cdots$

In [5] it is shown that $T(010101\cdots)$ is a sequence of bounded repetition, i.e. only subwords ww of bounded length can occur. In particular, only subwords ww where the length of w is 1, 3 or 5 occur.

The sequence $010101\cdots$ is in some sense the base of the binary number system: If $(n)_2 = s_m \cdots s_1 s_0$, the digits s_k form the sequence $0^{2^k} 1^{2^k} 0^{2^k} 1^{2^k} \cdots$ if n runs through the nonnegative integers.

There is another way to encode the integers by 0 and 1, the Gray code. A Gray code is an encoding of the integers as sequences of bits with the property that representations of adjacent integers differ in exactly one binary position. See [1, 4]. We restrict our considerations to the standard Gray (or binary reflected) code: If $(n)_{GR} = u_m \cdots u_1 u_0$ denotes the Gray code representation of n, then the 0012-365X/83/0000-0000/\$03.00 (C) 1983 North-Holland

113

digits u_k form the sequence $0^{2^k} 1^{2^{k+1}} 0^{2^{k+1}} 1^{2^{k+1}} \cdots$ if *n* runs through the nonnegative integers. So one can consider the sequence $011001100 \cdots$ as the basic sequence for the Gray code. In this note we are going to prove:

Theorem 1. The sequence $a_1a_2a_3\cdots = 00101100\cdots$ obtained from the basic sequence of the Gray code by means of the construction of Toeplitz is of bounded repetition. In particular, only subwords ww where the length of w is 1, 2, 3 or 5 occur.

As an example $a_{34} \cdots a_{38} = a_{39} \cdots a_{43} = 01011$.

2. Proof of Theorem 1

Let p(n) be defined by p(n) = 1 if $n \equiv 1 \pmod{4}$ or $n \equiv 2 \pmod{4}$ and p(n) = 0 otherwise. Equivalently,

$$p(n) = \frac{1}{2}(1-(-1))^{\binom{n}{2}}$$

or, if $(n)_2 = u_m \cdots u_1 u_0$, then $p(n) \equiv u_0 + u_1 \pmod{2}$. It is not hard to establish the following fact: If $(n)_2 = w 10^1$ and w is the binary representation of m, then $a_n = p(m)$. The last two digits of $w = w'\sigma\tau$ determine $a_n : a_n \equiv \sigma + \tau \pmod{2}$.

Since $a_2a_4a_6\cdots = a_1a_2a_3\cdots$, it is clear that if the subword ww with |w| = n is impossible, then the subword ww with |w| = 2n is also impossible. So we prove that the subword ww is impossible for the length n of w:

(1) n = 4; (2) n = 6, 10; (3) n = 7; (4) n = 9; (5) n = 11; (6) $n \ge 13$, n odd.

(1) Assume $a_{k+1} \cdots a_{k+4} = a_{k+5} \cdots a_{k+8}$ and let $i \in \{k+1, k+2\}$ be odd. Then $a_{i+4} = a_i$, which is impossible.

(2) Assume $a_{k+1} \cdots a_{k+6} = a_{k+7} \cdots a_{k+12}$ and let $i \in \{k+1, k+2\}$ be odd. Then $a_{i+6} = a_i$ and $a_{i+8} = a_{i+2}$; it is impossible that both equalities are fulfilled. For n = 10 the argument is similar.

(3) If $a_{k+1} \cdots a_{k+7} = a_{k+8} \cdots a_{k+14}$ and k = 16m + i, $0 \le i \le 15$, a careful check of all 16 possibilities for *i* gives the proof.

(4) Similar as in (3), a check of all 32 possibilities for i modulo 32 gives the proof.

(5) The same argument as in (4) can be applied.

(6) Assume $a_{k+1} \cdots a_{k+n} = a_{k+n+1} \cdots a_{k+2n+1}$ and let $i \in \{i \neq 1, k+2, k+3, k+4\}$ be the number with $i \equiv 2 \pmod{4}$. Since n+i is odd, we find $i \ge a_{i}a_{i+2}a_{i+4}a_{i+6}a_{i+8}$ is either abbaa or $aa \ge ba$ with $a \in \{0, 1\}$. In both cases is $a_i = a_{i+8}$, which is impossible.

3. Further results

Let $n_1(k)$ be the number of 1's in $a_1 \cdots a_k$. For the sequence $T(0101\cdots)$ the corresponding numbers have interesting properties according to the binary representation of k [5]. The same is true for the numbers $n_1(k)$.

First we give an estimate for the numbers $n_1(k)$.

Theorem 2. $n_1(k) = \frac{1}{2}k + O(\log k)$.

Proof. The sequence $b_1b_2b_3\cdots = 01100\cdots$ has the property that the number of ones in the first k places is $\frac{1}{2}k + O(1)$. The first k places of $a_1a_2a_3\cdots$ only involve terms from $O(\log k)$ of the interleaved sequences, and each interleaved sequence can only contribute O(1) to the error term.

Theorem 3.

$$n_{1}(k) = \sum_{i \ge 3} \left(\lfloor k/2^{i} + \frac{5}{8} \rfloor + \lfloor k/2^{i} + \frac{3}{8} \rfloor \right)$$
$$= \sum_{i \ge 2} \lfloor k/2^{i} + \frac{1}{4} \rfloor + \sum_{i \ge 3} \left(\lfloor k/2^{i} + \frac{3}{8} \rfloor - \lfloor k/2^{i} + \frac{1}{8} \rfloor \right).$$

Proof. Apply elementary counting arguments.

Theorem 4. $n_1(k) = \lfloor \frac{1}{4}k \rfloor + \lfloor \frac{1}{4}k + \frac{3}{4} \rfloor - B_2(1, k) + B_2(11, k) + B_2(101, k) + B_2(110, k)$ where $B_2(w, k)$ denotes the number of occurrences of w as a subword of the binary representation of k with the convention that w is completed on the boundaries by zeroes (which is in this case important for w = 110).

Proof.

$$n_{1} = -\left[\frac{1}{2}k + \frac{1}{4}\right] + \sum_{i \ge 1} \left[k/2^{i} + \frac{1}{4}\right] - \left[\frac{1}{4}k + \frac{3}{8}\right] + \left[\frac{1}{4}k + \frac{1}{8}\right] - \left[\frac{1}{2}k + \frac{3}{8}\right]$$
$$+ \left[\frac{1}{2}k + \frac{1}{8}\right] + \sum_{i \ge 1} \left(\left[k/2^{i} + \frac{3}{8}\right] - \left[k/2^{i} + \frac{1}{4}\right]\right)$$
$$+ \sum_{i \ge 1} \left(\left[k/2^{i} + \frac{1}{4}\right] - \left[k/2^{i} + \frac{1}{8}\right]\right).$$

It is known [3, 6, 7] that the first sum equals $k - B_2(1, k) + B_2(11, k)$, that the second sum equals $B_2(101, k)$ and that the third sum equals $B_2(110, k)$. Furthermore

$$k - \lfloor \frac{1}{2}k + \frac{1}{4} \rfloor - \lfloor \frac{1}{4}k + \frac{3}{8} \rfloor + \lfloor \frac{1}{4}k + \frac{1}{8} \rfloor - \lfloor \frac{1}{2}k + \frac{3}{8} \rfloor + \lfloor \frac{1}{2}k + \frac{1}{8} \rfloor$$

= $k - \lfloor \frac{1}{2}k \rfloor - \lfloor \frac{1}{4}k + \frac{1}{4} \rfloor + \lfloor \frac{1}{4}k \rfloor - \lfloor \frac{1}{2}k \rfloor + \lfloor \frac{1}{2}k \rfloor = \lfloor \frac{1}{4}k + \frac{3}{4} \rfloor + \lfloor \frac{1}{2}k \rfloor.$

Remark. The Toeplitz construction scheme is, in some sense, a binary scheme. One could consider a Gray code scheme:

Each of the interleaved sequences acts as follows: take one, skip two, take two, skip two, take two, etc.

H. Prodinger

References

- P. Flajolet and L. Ramshaw, A note on Gray code and odd-even merge, SIAM J. Comput. 9 (1980) 142-158.
- [2] K. Jacobs and M. Keane, 0-1-Sequences of Toeplitz type, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 13 (1969) 123-131.
- [3] P. Kirschenhofer, Subblock occurrences in the q-ary representation of n, preprint, SIAM J. Algebraic Discrete Methods (1983), to appear.
- [4] D.E. Knuth, The Art of Computer Programming, Vol. 2, 2nd ed. (Addison-Wesley, Reading, MA, 1980).
- [5] H. Prodinger and F.J. Urbanek, Infinite 0-1-sequences without long adjacent identical blocks, Discr. Math. 28 (1979) 277-289.
- [6] H. Prodinger, Generalizing the sum of digits function, SIAM J. Algebraic Discrete Methods 3 (1982) 35-42.
- [7] H. Prodinger, Subblock occurrences in representations of integers, preprint, TU Wien (1981).