## NOTE

## NON-REPETITIVE SEQUENCES AND GRAY CODE

## Helmut PRODINGER

Institut für Algebra und Diskrete Mathematik, Technische Universität Wien, Gußhausstraße 27-29, A-1040 Wien, Austria

Received 3 September 1981
Revised 5 February 1982
A sequence of 0's and 1's is constructed which is related to the Gray code, and which has only subwords ww of length not greater than ten.

## 1. Introduction

Consider a sequence $\omega=b_{1} b_{2} b_{3} \cdots$, where $b_{i} \in\{0,1\}$. A method to construct from this given sequence a new sequence $a_{1} a_{2} a_{3} \cdots$ was proposed by Toeplitz (see Jacobs and Keane [2]):

The sequence $b_{1} b_{2} b_{3} \cdots$ is written down, leaving a gap between every two symbols:

$$
\begin{array}{lllllll}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & a_{7} \cdots \\
b_{1} & & b_{2} & & b_{3} & & b_{4}
\end{array}
$$

Now the sequence $b_{1} b_{2} b_{3} \cdots$ is filled into the gaps, leaving free every second gap. This last step is repeated ad infinitum, yielding the new sequence

$$
T(\omega)=b_{1} b_{1} b_{2} b_{1} b_{3} b_{2} b_{4} b_{1} b_{5} b_{3} b_{6} b_{2} b_{7} b_{4} b_{8} b_{1} b_{9} \cdots
$$

In [5] it is shown that $T(010101 \cdots)$ is a sequence of bounded repetition, i.e. only subwords $w w$ of bounded length can occur. In particular, only subwords ww where the length of $w$ is 1,3 or 5 occur.

The sequence $010101 \cdots$ is in some sense the base of the binary number system: If $(n)_{2}=s_{m} \cdots s_{1} s_{0}$, the digits $s_{k}$ form the sequence $0^{2 k} 1^{2 k} 0^{2 k} 2^{2 k} \cdots$ if $n$ runs through the nonnegative integers.
There is another way to encode the integers by 0 and 1 , the Gray code. A Gray code is an encoding of the integers as sequences of bits with the property that representations of adjacent integers differ in exactly one binary position. See [ 1,4$]$. We restrict our considerations to the stundard Gray (or binary reflected) code: If $(n)_{G R}=u_{m} \cdots u_{1} u_{0}$ denotes the Gray code representation of $n$, then the 0012-365X/83/0000-0000/\$03.00 © 1983 North-Holland
digits $u_{k}$ form the sequence $0^{2^{k}} 1^{2 k+1} 0^{2^{k+1}} 1^{2 k+1} \cdots$ if $n$ runs throwish the monegative integers. So one can consider the sequence $011001100 \cdots$ as the basic sequence for the Gray code. In this note we are going to prove:

Theorem 1. The sequence $a_{1} a_{2} a_{3} \cdots=00101100 \cdots$ obtained from the basic sequence of the Gray code by means of the construction of Toeplitz is of bounded repetition. In particular, only subwords ww where the length of $w$ is $1,2,3$ or 5 occur.

As an example $a_{34} \cdots a_{38}=a_{39} \cdots a_{43}=01011$.

## 2. Prcof of Theorem 1

Let $p(n)$ be defined by $p(n)=1$ if $n \equiv 1(\bmod 4)$ or $n \equiv 2(\bmod 4)$ and $p(n)=0$ otherwise. Equivalently,

$$
p(n)=\frac{1}{2}(1-(-1))^{\left|n^{n} z^{\prime}\right|}
$$

or, if $(n)_{2}=u_{m} \cdots u_{1} u_{0}$, then $p(n) \equiv u_{0}+u_{1}(\bmod 2)$. It is not hard to establish the following fact: If $(n)_{2}=w 10^{l}$ and $w$ is the binary representation of $m$, then $a_{n}=p(m)$. The last two digits of $w=w^{\prime} \sigma \tau$ determine $a_{n}: a_{n} \equiv \sigma+\tau(\bmod 2)$.

Since $a_{2} a_{4} a_{6} \cdots=a_{1} a_{2} a_{3} \cdots$, it is clear that if the subword $w w$ with $|w|=n$ is impossible, then the subword $w w$ with $|w|=2 n$ is also impossible. So we prove that the subword $w w$ is impossible for the length $n$ of $w$ :
(1) $n=4$; (2) $n=6$, 10; (3) $n=7$; (4) $n=9$; (5) $n=11$; (6) $n \geqslant 13$, $n$ odd.
(1) Assume $a_{k+1} \cdots a_{k+4}=a_{k+5} \cdots a_{k+8}$ and let $i \in\{k+1, k+2\}$ be odd. Then $a_{i+4}=a_{1}$, which is impossible.
(2) Assume $a_{k+1} \cdots a_{k+6}=a_{k+7} \cdots a_{k+12}$ and let $i \in\{k+1, k+2\}$ be odd. Then $a_{i, 6}=a_{i}$ and $a_{i+8}=a_{i+2}$; it is impossible that both equalities are fulfilled. For $n=10$ the argument is similar.
(3) If $a_{k+1} \cdots a_{k+7}=a_{k+k} \cdots a_{k+14}$ and $k=16 m+i, 0 \leqslant i \leqslant 15$, a careful check of a!! 16 possibilities for $i$ gives the proof.
(4) Similar as in (3), a check of all 32 possibilities for $i$ modulo 32 gives the proof.
(5) The same argument as in (4) can be applied.
(6) Assume $a_{k+1} \cdots a_{k+n}=a_{k+n+1} \cdots a_{k+2 n+1}$ and let $i \in$ $\{;+1, k+2, k+3, k+4\}$ be the number with $i \equiv 2(\bmod 4)$. Since $n+i$ is odd, we find ti. ${ }^{2} a_{i} a_{i+2} a_{i+4} a_{i+6} a_{i+8}$ is either abbaa or aajba with $a \in\{0,1\}$. In both cases is $a_{i}=a_{i+8}$, which is impossible.

## 3. Further results

Let $n_{1}(k)$ be the number of 1's in $a_{1} \cdots a_{k}$. For the sequence $T(0101 \cdots)$ the corresponding numbers have interesting properties according to the binary representation of $k$ [5]. The same is true for the numbers $n_{1}(k)$.

Firs we give an estimate for the numbers $n_{1}(k)$.

Theorem 2. $n_{1}(k)=\frac{1}{2} k+O(\log k)$.
Proof. The sequence $b_{1} b_{2} b_{3} \cdots=01100 \cdots$ has the property that the number of ones in the first $k$ places is $\frac{1}{2} k+C(1)$. The first $k$ places of $a_{1} a_{2} a_{3} \cdots$ only involve terms from $O(\log k)$ of the interleaved sequences, and each interleaved sequence can only contribute $O(1)$ to the error term.

## Theorem 3.

$$
\begin{aligned}
n_{1}(k) & =\sum_{i \geqslant 3}\left(\left\lfloor k / 2^{i}+\frac{5}{8}\right\rfloor+\left\lfloor k / 2^{i}+\frac{3}{8}\right\rfloor\right) \\
& =\sum_{i \geqslant 2}\left\lfloor k / 2^{i}+\frac{1}{4}\right\rfloor+\sum_{i \geqslant 3}\left(\left\lfloor k / 2^{i}+\frac{3}{8}\right\rfloor-\left\lfloor k / 2^{i}+\frac{1}{8}\right\rfloor\right) .
\end{aligned}
$$

Proof. Apply elementary counting arguments.
Theorem 4. $n_{1}(k)=\left\lfloor\frac{1}{4} k\right\rfloor+\left\lfloor\frac{1}{4} k+\frac{3}{4}\right]-B_{2}(1, k)+B_{2}(11, k)+B_{2}(101, k)+B_{2}(110, k)$ where $B_{2}(w, k)$ denotes the number of occurrences of $w$ as a subword of the binary representation of $k$ with the convention that $w$ is completed on the boundaries by zeroes (which is in this case important for $w=110$ ).

## Proof.

$$
\begin{aligned}
n_{1}= & -\left\lfloor\frac{1}{2} k+\frac{1}{4}\right\rfloor+\sum_{i \geqslant 1}\left\lfloor k / 2^{i}+\frac{1}{4}\right\rfloor-\left\lfloor\frac{1}{4} k+\frac{3}{8}\right\rfloor+\left\lfloor\frac{1}{4} k+\frac{1}{8}\right\rfloor-\left\lfloor\frac{1}{2} k+\frac{3}{8}\right\rfloor \\
& +\left\lfloor\frac{1}{2} k+\frac{1}{8}\right\rfloor+\sum_{i \geqslant 1}\left(\left\lfloor k / 2^{i}+\frac{3}{8}\right\rfloor-\left\lfloor k / 2^{i}+\frac{1}{4}\right\rfloor\right) \\
& +\sum_{i \geqslant 1}\left(\left\lfloor k / 2^{i}+\frac{1}{4}\right\rfloor-\left\lfloor k / 2^{i}+\frac{1}{8}\right\rfloor\right) .
\end{aligned}
$$

It is known $[3,6,7]$ that the first sum equals $k-B_{2}(1, k)+B_{2}(11, k)$, that the second sum equals $B_{2}(101, k)$ and that the third sum equals $B_{2}(110, k)$. Furthermore

$$
\begin{aligned}
& k-\left\lfloor\frac{1}{2} k+\frac{1}{4}\right\rfloor-\left\lfloor\frac{1}{4} k+\frac{3}{8}\right\rfloor+\left\lfloor\frac{1}{4} k+\frac{1}{8}\right\rfloor-\left\lfloor\frac{1}{2} k+\frac{3}{8}\right\rfloor+\left\lfloor\frac{1}{2} k+\frac{1}{8}\right\rfloor \\
& \quad=k-\left\lfloor\frac{1}{2} k\right\rfloor-\left\lfloor\frac{1}{4} k+\frac{1}{4}\right\rfloor+\left\lfloor\frac{1}{4} k\right\rfloor-\left\lfloor\frac{1}{2} k\right\rfloor+\left\lfloor\frac{1}{2} k\right\rfloor=\left\lfloor\frac{1}{4} k+\frac{3}{4}\right\rfloor+\left\lfloor\frac{1}{2} k\right\rfloor .
\end{aligned}
$$

Remark. The Toeplitz construction scheme is, in some sense, a binary scheme. One could consider a Gray code scheme:


Each of the interleaved sequences acts as follows: take one, skip two, take two, skip two, take two, etc.

## References

[1] P. Flajolet and L. Ramshaw, A note on Gray code and odd-even merge, SIAM J. Comput. 9 (1980) 142-158.
[2] K. Jacobs and M. Keane, 0-1-Sequences of Toeplitz type, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 13 (1969) 123-131.
[3] P. Kirschenhofer, Subblock occurrences in the $q$-ary representation of $n$, preprint, SIAM J. Algebraic Discrete Methods (1983), to appear.
[4] D.E. Knuth, The Art of Computer Programming, Vol. 2, 2nd ed. (Addison-Wesley, Reading, MA, 1980).
[5] H. Prodinger and F.J. Urbanek, Infinite 0-1-sequences without long adjacent identical blocks, Discr. Math. 28 (1979) 277-289.
[6] H. Prodinger, Generalizing the sum of digits function, SIAM J. Algebraic Discrete Methods 3 (1982) 35-42.
[7] H. Prodinger, Subblock occurrences in representations of integers, preprint, TU Wien (1981).

