SOME DOUBLE BINOMIAL SUMS RELATED TO FIBONACCI, PELL AND GENERALIZED ORDER-k FIBONACCI NUMBERS

EMRAH KILIÇ AND HELMUT PRODINGER

Abstract. We consider some double binomial sums related with the Fibonacci, Pell numbers and a multiple binomial sums related with the generalized order-k Fibonacci numbers. The Lagrange-Bürmann formula and other known techniques are used to prove them.

1. Introduction

The generating function of the Fibonacci numbers F_n is

$$
\sum_{n=0}^{\infty} F_n x^n = \frac{x}{1 - x - x^2}.
$$

Similarly, the generating function of the Pell numbers P_n is

$$
\sum_{n=0}^{\infty} P_n x^n = \frac{x}{1 - 2x - x^2}.
$$

The generalized order-k Fibonacci numbers $f_n^{(k)}$ are defined by

$$
f_n^{(k)} = \sum_{i=1}^{k} f_{n-i}^{(k)} \quad \text{for} \quad n > k
$$

with initial conditions $f_j^{(k)} = 2^{j-1}$ for $1 \leq j \leq k$.

For example, when $k = 3$, the generalized Fibonacci numbers $f_n^{(3)}$ are reduced to the Tribonacci numbers T_n defined by

$$
T_n = T_{n-1} + T_{n-2} + T_{n-3}
$$

with $T_1 = 1$, $T_2 = 2$ and $T_3 = 4$, for $n > 3$.

For these number sequences, we recall the combinatorial representations due to [2, 3, 5]:

(1.1) $$
\sum_{i=1}^{n} \binom{n-i}{i-1} = F_n,
$$

(1.2) $$
\sum_{i=1}^{\lfloor (n-1)/2 \rfloor} \binom{n}{2i+1} 2^r = P_n,
$$

(1.3) $$
\sum_{i=0}^{n} \sum_{j=0}^{n} \binom{n-i}{j} \binom{n-j}{i} = F_{2n+3}.
$$

2000 Mathematics Subject Classification. Primary 05C38, 15A15; Secondary 05A15, 15A18.

Key words and phrases. Fibonacci numbers, generating functions, Lagrange-Bürmann formula.
Among the formulas (1.1–1.3), the last formula seems to be different from first two identities just above since it includes double sums, see [2]. The authors of the above cited papers use a combinatorial approach to prove these results. For many similar identities, we refer to [6].

In this paper, we shall derive some new double binomial sums related with the Fibonacci, Pell and generalized order-\(k\) Fibonacci numbers and then use the Lagrange-Bürmann formula and well known other techniques to prove them.

The Lagrange-Bürmann formula is a very useful tool if one knows a series expansion for \(y(x)\) but would like to obtain the series for \(x\) in terms of \(y\). We recall the formula (for details see [1, 4]): Suppose a series for \(y\) in powers of \(x\) is required when \(y = x\Phi(y)\). Assume that \(\Phi\) is analytic in a neighborhood of \(y = 0\) with \(\Phi(0) \neq 0\). Then

\[
x = y/\Phi(y) = \sum_{n=1}^{\infty} a_n y^n, \quad a_1 \neq 0.
\]

Then the two (equivalent) version of the Lagrange(-Bürmann) inversion formula can be written as

\[
F(y) = F(0) + \sum_{n=1}^{\infty} \frac{x^n}{n!} \left[\frac{d^{n-1}}{dy^{n-1}} \left(F'(y)\Phi^n(y) \right) \right]_{y=0}
\]

or

\[
\frac{F(y)}{1 - x\Phi'(y)} = \sum_{n=0}^{\infty} \frac{x^n}{n!} \left[\frac{d^n}{dy^n} \left(F(y)\Phi^n(y) \right) \right]_{x=0}.
\]

We would like to rephrase this using the notation of the “coefficient–of” operator:

\[
\frac{F(y)}{1 - x\Phi'(y)} = \sum_{n=0}^{\infty} [y^n] \left(F(y)\Phi^n(y) \right) \cdot x^n;
\]

we will use it in this form.

2. Double Binomial Sums

We start with a result related to Fibonacci numbers:

Theorem 1. For \(n > 0\),

\[
F_{4n-1} = \sum_{0 \leq i,j \leq n} \binom{n+i}{2j} \binom{n+j}{2i}.
\]

Proof. We start from

\[
[y^{2j}](1+y)^{n+i} = \binom{n+i}{2j}
\]

and compute

\[
S = \sum_{i=0}^{n} (1+y)^{n+i} \binom{n+j}{2i}
\]

\[
= \sum_{i \geq 0} (1+y)^{n+i/2} \binom{n+j}{i} \frac{1+(-1)^i}{2}
\]

\[
= \left[(1 + \sqrt{1+y})^{j+n} + (1 - \sqrt{1+y})^{j+n} \right] \frac{(1+y)^n}{2}.
\]
here the desired sum takes the form:

\[
\sum_{j=0}^{n} [y^{2j}] \left((1 + \sqrt{1+y})^{j+n} + (1 - \sqrt{1+y})^{j+n} \right) \frac{(1+y)^n}{2}
\]

\[
= \sum_{j \geq 0} [y^{2j}] \left((1 + \sqrt{1+y})^{j+n} + (1 - \sqrt{1+y})^{j+n} \right) \frac{(1+y)^n}{2}
\]

\[
= \sum_{j \geq 0} [y^{2j}] \left((1 + \sqrt{1+y})^{j+n} \frac{(1+y)^n}{2} + \sum_{j \geq 0} [y^{2j}] \left(1 - \sqrt{1+y} \right)^{j+n} \frac{(1+y)^n}{2} \right)
\]

Let us consider the first sum:

\[
\sum_{j \geq 0} [y^{j}] \left(1 + \sqrt{1+y} \right)^{j/2+n} (1+y)^n.
\]

This is of the form

\[
\sum_{j \geq 0} [y^{j}] F(y) \Phi(y)^j
\]

with

\[
F(y) = \left(1 + \sqrt{1+y} \right)^n (1+y)^n \quad \text{and} \quad \Phi(y) = \sqrt{1 + \sqrt{1+y}}.
\]

The Lagrange-Bürmann formula can now be applied to this sum. The general formula is given by

\[
\sum_{j \geq 0} [y^{j}] F(y) \Phi(y)^j \cdot x^j = \frac{F(y)}{1-x\Phi'(y)}.
\]

We need the instance \(x = 1 \) here, and the variables \(x \) and \(y \) are linked via \(y = x\Phi(y) \). Notice that \(\Phi(y) \) must be a power series in \(y \) with a constant term different from zero. Therefore

\[
y = \frac{1 + \sqrt{5}}{2}, \quad F(\alpha) = \left(\frac{7 + 3\sqrt{5}}{2} \right)^n,
\]

\[
\Phi'(\alpha) = \frac{3 - \sqrt{5}}{8}, \quad \frac{1}{1 - \Phi'(\alpha)} = 2 \left(1 - \frac{1}{\sqrt{5}} \right).
\]

So our evaluation is

\[
2 \left(1 - \frac{1}{\sqrt{5}} \right) \left(\frac{7 + 3\sqrt{5}}{2} \right)^n.
\]

The second term is

\[
\sum_{j \geq 0} [y^{j}] \left(1 + \sqrt{1+y} \right)^{j/2+n+1/2} (1+y)^n (-1)^j.
\]

This is the instance \(x = -1 \), which translates to \(y = -1 \) and so the third term is

\[
\frac{F(-1)}{1 + \Phi'(-1)} = 0.
\]
The last sum is
\[\sum_{j \geq 0} [y^{2j}] (1 - \sqrt{1+y})^{j+n} (1+y)^n = \sum_{j \geq 0} [y^{2j}] y^{j+n} \left(\frac{1 - \sqrt{1+y}}{y} \right)^{j+n} (1+y)^n \]
\[= \sum_{j \geq 0} [y^j] y^n \left(\frac{1 - \sqrt{1+y}}{y} \right)^{j+n} (1+y)^n. \]

This is again of the form
\[\sum_{j \geq 0} [y^j] F(y) \Phi(y)^j \]
with
\[F(y) = \left(\frac{1 - \sqrt{1+y}}{y} \right)^n (1+y)^n \quad \text{and} \quad \Phi(y) = \frac{1 - \sqrt{1+y}}{y}. \]

We need the instance \(x = 1 \) here, and the link is
\[y = x \left(\frac{1 - \sqrt{1+y}}{y} \right), \]
which means
\[y = \frac{1 - \sqrt{5}}{2}, \quad F(\beta) = \left(\frac{7 - 3\sqrt{5}}{2} \right)^n \quad \text{and} \quad \frac{1}{1 - \Phi(\alpha)} = 1 + \frac{1}{\sqrt{5}}. \]
So our evaluation is
\[\left(1 + \frac{1}{\sqrt{5}} \right) \left(\frac{7 - 3\sqrt{5}}{2} \right)^n. \]

Altogether
\[\left[\left(1 - \frac{1}{\sqrt{5}} \right) \left(\frac{7 + 3\sqrt{5}}{2} \right)^n + \left(1 + \frac{1}{\sqrt{5}} \right) \left(\frac{7 - 3\sqrt{5}}{2} \right)^n \right] \frac{1}{2} = \frac{\alpha^{4n-1} - \beta^{4n-1}}{\sqrt{5}} = F_{4n-1}, \]
as desired.

Theorem 2. For \(n > 0 \),
\[F_{4n+1} = \sum_{1 \leq i, j \leq n+1} \binom{n+i}{2j-1} \binom{n+j}{2i-1}. \]

Proof. Since
\[[y^{2j-1}] (1+y)^{n+i} = \binom{n+i}{2j-1} \]
and
\[S = \sum_{i=1}^{n+1} (1+y)^{n+i} \binom{n+j}{2i-1} \]
\[= \sum_{i \geq 0} (1+y)^{n+i+1/2} \binom{n+j}{i} \frac{1 - (-1)^i}{2} \]
\[= \left[(1 + \sqrt{1+y})^{j+n} - (1 - \sqrt{1+y})^{j+n} \right] \frac{(1+y)^{n+1/2}}{2}, \]
here the desired sum takes the form:

\[
\sum_{j=1}^{n+1} [y^{2j-1}] \left((1 + \sqrt{1+y})^{j+n} - (1 - \sqrt{1+y})^{j+n} \right) \frac{(1+y)^{n+1/2}}{2} \\
= \sum_{j \geq 1} [y^{2j-1}] \left((1 + \sqrt{1+y})^{j+n} - (1 - \sqrt{1+y})^{j+n} \right) \frac{(1+y)^{n+1/2}}{2} \\
= \sum_{j \geq 1} [y^{2j-1}] \left(1 + \sqrt{1+y} \right)^{j+n} \frac{(1+y)^{n+1/2}}{2} \\
- \sum_{j \geq 1} [y^{2j-1}] \left(1 - \sqrt{1+y} \right)^{j+n} \frac{(1+y)^{n+1/2}}{2} \\
= \sum_{j \geq 0} [y^j] \left(1 + \sqrt{1+y} \right)^{j/2+n+1/2} \frac{(1+y)^{n+1/2}}{2} \left(1 - (-1)^j \right) \\
- \sum_{j \geq 1} [y^{2j-1}] \left(1 - \sqrt{1+y} \right)^{j+n} \frac{(1+y)^{n+1/2}}{2}.
\]

Let us start with one term in the above sum:

\[
\sum_{j \geq 0} [y^j] \left(1 + \sqrt{1+y} \right)^{j/2+n+1/2} (1+y)^{n+1/2}.
\]

This is of the form

\[
\sum_{j \geq 0} [y^j] F(y) \Phi(y)^j
\]

with

\[
F(y) = \left(1 + \sqrt{1+y} \right)^{n+1/2} (1+y)^{n+1/2} \quad \text{and} \quad \Phi(y) = \sqrt{1 + \sqrt{1+y}}.
\]

This is the instance \(x = 1 \), which translates to

\[
y = \frac{1 + \sqrt{5}}{2}, \quad F(\alpha) = \alpha^{4n+2}
\]

and

\[
\Phi'(\alpha) = \frac{3 - \sqrt{5}}{8}, \quad \frac{1}{1 - \Phi'(\alpha)} = 2 \left(1 - \frac{1}{\sqrt{5}} \right).
\]

So our evaluation is:

\[
2 \left(1 - \frac{1}{\sqrt{5}} \right) \alpha^{4n+2}.
\]

The second term is

\[
\sum_{j \geq 0} [y^j] \left(1 + \sqrt{1+y} \right)^{j/2+n+1/2} (1+y)^{n+1/2}(-1)^j.
\]

This is the instance \(x = -1 \), which translates to \(y = -1 \) and so the second term is

\[
\frac{F(-1)}{1 + \Phi'(-1)} = 0.
\]
Finally the last term is of the form:

\[
\sum_{j \geq 1} [y^{2j-1}] \left(1 - \sqrt{1 + y} \right)^{j+n} (1 + y)^{n+1/2}
\]

\[
= \sum_{j \geq 1} [y^{2j-1}] y^j \left(\frac{1 - \sqrt{1 + y}}{y} \right)^{j+n} (1 + y)^{n+1/2}
\]

\[
= \sum_{j \geq 0} [y^j] y^{n+1} \left(\frac{1 - \sqrt{1 + y}}{y} \right)^{j+n} (1 + y)^{n+1/2}.
\]

This is of the form:

\[
\sum_{j \geq 0} [y^j] F(y) \Phi(y)^j
\]

with

\[
F(y) = \left(1 - \sqrt{1 + y} \right)^n (1 + y)^{n+\frac{1}{2}} y \quad \text{and} \quad \Phi(y) = \frac{1 - \sqrt{1 + y}}{y}.
\]

This is the instance \(x = 1 \), which translates to \(y = \beta = \frac{1 - \sqrt{5}}{2} \). Thus

\[
F(\beta) = -\beta^{4n+2}, \quad \Phi'(\beta) = -\frac{1 - \sqrt{5}}{4}, \quad \frac{F(\beta)}{1 - \Phi'(\beta)} = -\left(1 + \frac{1}{\sqrt{5}} \right) \beta^{4n+2}.
\]

So our evaluation is

\[
\left[\left(1 - \frac{1}{\sqrt{5}} \right) \alpha^{4n+2} + \left(1 + \frac{1}{\sqrt{5}} \right) \beta^{4n+2} \right] \frac{1}{2} = F_{4n+1},
\]

as claimed. \(
\square
\)

Theorem 3. For \(n > 0 \),

\[
F_{4n} = \sum_{i=0}^{n} \sum_{j=0}^{n} \left(\frac{n+i}{2j-1} \right) \left(\frac{n+j}{2i} \right),
\]

\[
F_{4n-3} = \sum_{i=0}^{n} \sum_{j=0}^{n} \left(\frac{n+i}{2j+1} \right) \left(\frac{n+j}{2i+1} \right).
\]

Again by using the Lagrange-Bürmann formula, Theorem 3 can be similarly proved.

Theorem 4. For \(n > 0 \),

\[
\frac{F_{2n+2} + F_{n+1}}{2} = \sum_{0 \leq i+j \leq n} \left(\frac{n-i}{2j} \right) \left(\frac{n-2j}{i} \right).
\]

Proof. First, we replace \(i \) by \(n-i \) and get

\[
\sum_{0 \leq 2j \leq i \leq n} \left(\frac{i}{2j} \right) \left(\frac{n-2j}{i-2j} \right).
\]
Now we compute the generating function of it:
\[
\sum_{n \geq 0} \sum_{0 \leq 2j \leq n} \binom{i}{2j} \binom{n-2j}{i-2j} = \sum_{0 \leq 2j \leq i} \binom{i}{2j} \frac{z^i}{(1-z)^{i+1-2j}}
\]
\[
= \sum_{j \geq 0} z^{2j} (1-z)^{2j} = \frac{1-2z}{(1-z)(1-3z+z^2)}
\]
\[
= \frac{1}{2} \frac{1}{1-z-z^2} + \frac{1}{2} \frac{1}{1-3z-z^2},
\]
which is the generating function of the numbers \((F_{2n+2} + F_{n+1})/2\).

The following results are similar:

Theorem 5. For \(n > 0\),
\[
F_{2n} = \sum_{i=1}^{n} \sum_{j=1}^{n} \binom{n-i}{n-j} \binom{n-j}{i-1},
\]
\[
F_{2n-1} = \sum_{0 \leq j \leq n} \binom{n-i}{j} \binom{n-i}{j}.
\]

Theorem 6. For \(n > 0\),
\[
F_{2n} + 1 = \sum_{i=0}^{n} F_{2i-1} = \sum_{0 \leq j \leq n} \binom{n-i}{j} \binom{j}{2i}.
\]

Proof. Multiplying the right hand side of (2.1) by \(z^n\) and summing over \(n\), we get
\[
S = \sum_{n \geq 0} z^n \sum_{0 \leq i \leq j \leq n} \binom{n-i}{j} \binom{j}{2i} = \sum_{0 \leq i \leq j \leq n} \sum_{h \geq 0} z^{h+i+j} \binom{h+j}{j} \binom{j}{2i}
\]
\[
= \sum_{0 \leq i \leq j} \sum_{h \geq 0} z^{h+i+j} \binom{h+j}{j} \binom{j}{2i} = \sum_{0 \leq i \leq j} \sum_{h \geq 0} z^{h+i+j} \frac{1}{1-(1-z)^{h+i+j+1}}
\]
\[
= \sum_{i \geq 0} \frac{z^{3i}}{(1-2z)^{2i+1}} = \frac{1-2z}{(1-z)(1-3z+z^2)} = \frac{z}{1-3z+z^2} + \frac{1}{1-z},
\]
which is the generating function of the numbers \(F_{2n} + 1\).

For the Pell numbers, we give the following result:

Theorem 7. For \(n \geq 0\),
\[
P_{n+1} = \sum_{0 \leq i \leq j \leq n} \binom{n-i}{j} \binom{j}{i}.
\]

Proof. Multiplying the right hand side of (2.2) by \(z^n\) and summing over \(n\), we get
\[
S = \sum_{n \geq 0} z^n \sum_{0 \leq i \leq j \leq n} \binom{n-i}{j} \binom{j}{i} = \sum_{0 \leq i \leq j} \sum_{h \geq 0} z^{h+i+j} \binom{h+j}{j} \binom{j}{i}
\]
\[
= \sum_{0 \leq i \leq j} \sum_{h \geq 0} z^{h+i+j} \binom{h+j}{j} \binom{j}{i} = \sum_{0 \leq i \leq j} \sum_{h \geq 0} z^{h+i+j} \frac{1}{1-(1-z)^{h+i+j+1}}
\]
\[\sum_{0 \leq i \leq j} \frac{z^j}{(1-z)^{j+1}} \binom{j}{i} z^i = \sum_{j \geq 0} \frac{z^j}{(1-z)^{j+1}} (1+z)^j \]
\[= \frac{1}{1-z} - \frac{1}{1-z(1+z)} = \frac{1}{1-2z-z^2}. \]

This is the generating function of the numbers \(P_{n+1} \). \(\blacksquare \)

Now we give a double sum for the Tribonacci numbers:

Theorem 8. For \(n \geq 0 \),
\[T_n = \sum_{0 \leq j \leq i \leq n} \binom{n-i}{i-j} \binom{i-j}{j}. \]

Proof. Consider
\[\sum_{n \geq 0} T_n z^n = \sum_{0 \leq j \leq i \leq n} z^n \binom{n-i}{i-j} \binom{i-j}{j} = \sum_{0 \leq j \leq i} z^i \binom{i-j}{j} \sum_{h \geq 0} t^h \binom{h}{i-j} \]
\[= \sum_{0 \leq j \leq i} z^i \binom{i-j}{j} t^{i-j} \sum_{h \geq 0} \frac{z^h}{(1-z)^{h+1}} = \sum_{j \geq 0} \sum_{h \geq 0} z^{h+j} \binom{h+j}{j} \frac{z^h}{(1-z)^{h+1}}. \]

Let \(t = \frac{z^2}{1-z} \), and we continue
\[\sum_{n \geq 0} T_n z^n = \frac{1}{1-z} \sum_{0 \leq j} z^j \sum_{h \geq 0} \frac{t^h}{(1-t)^{h+1}} = \frac{1}{1-z} \frac{1}{1-z} = \frac{1}{1-z} \frac{1}{1-2z-z} = \frac{1}{1-z-2z-z^2} = \frac{1}{1-z-2z-z^2-z^3}. \]

which is the generating function of the Tribonacci numbers, as expected. So the proof is complete. \(\blacksquare \)

By using the same proof method as in Theorem 8, we get a more general result:

Theorem 9. For \(n > 0 \),
\[f_{n}^{(k)} = \sum_{0 \leq i_k \leq \cdots \leq i_1 \leq n} \binom{n-i_1}{i_1-i_2} \binom{i_1-i_2}{i_2-i_3} \cdots \binom{i_{k-1}-i_k}{i_k} \]
where \(f_{n}^{(k)} \) is the \(n \)-th generalized order-\(k \) Fibonacci number.

References

SOME DOUBLE BINOMIAL SUMS

TOBB University of Economics and Technology, Mathematics Department, 06560 Ankara Turkey
E-mail address: ekilic@etu.edu.tr

Department of Mathematics, University of Stellenbosch 7602 Stellenbosch South Africa
E-mail address: hproding@sun.ac.za