The number of restricted lattice paths revisited

Helmut Prodinger

Department of Mathematics, University of Stellenbosch, 7602 Stellenbosch, South Africa

Abstract. Ilić and Ilić have recently discussed lattice paths starting and ending at the x-axis which are bounded by two horizontal lines. We establish a link of this to an old paper by Panny and Prodinger where this was already treated.

In [1] the number of random walks from $(0,0)$ to $(2n,0)$ with up-steps and down-steps of one unit each was discussed, under the condition that the walk (path) never touches the line $-h$ and k. Here, we want to shed additional light on this, by pointing out that this appeared essentially already in our 1985 paper [2]. Since all this is not complicated, we review the essential steps here. We allow the path to touch $-h$ and k, but not $-h-1$ and $k+1$. Further, let $\psi_i(z)$ be the generating function, for $-h \leq i \leq k$, of paths in the sense just described that lead to level i. Eventually, we are interested in $\psi_0(z)$.

The following system of linear equations is self-explanatory (and discussed at length in [2]):

\[
\begin{bmatrix}
1 & -z & 0 & \ldots \\
-z & 1 & -z & 0 & \ldots \\
0 & -z & 1 & -z & 0 & \ldots \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
-\ldots & 1 & -z & \ldots & 1
\end{bmatrix}
\begin{bmatrix}
\psi_{-h}(z) \\
\psi_{-h+1}(z) \\
\psi_{-h+2}(z) \\
\psi_0(z) \\
\psi_1(z) \\
\psi_2(z) \\
\psi_k(z)
\end{bmatrix}
= \begin{bmatrix}
0 \\
\vdots \\
\vdots \\
1 \\
\vdots \\
\vdots \\
0
\end{bmatrix}
\]

We use Cramer’s rule to solve this:

\[
\psi_0(z) = \frac{a_{h-k-1}}{a_{h+k}},
\]

where a_i is the determinant of the square matrix with $i+1$ rows and columns. Since a_i satisfies a recursion of second order, it is easy to get

\[
a_i = \frac{1}{1-v^2} \frac{1-v^{2i+4}}{(1+v^2)^{i+1}},
\]

where the substitution $z = v/(1+v^2)$ was used for convenience.

We want to make the parameters h and k explicit and define

\[
f_{h,k}(z) = \psi_0(z).
\]

2010 Mathematics Subject Classification. Primary 11B39

Keywords. Lattice path enumeration, Cramer’s rule, generating function

Received: 11 September 2011; Accepted: 11 September 2011

Communicated by Dragan Stevanović

Email address: hproding@sun.ac.za (Helmut Prodinger)
The example with lines $−2$ and 5 corresponds to our $f_{1,4}(z)$. We compute (with Maple):

$$f_{1,4}(z) = 1 + 2z^2 + 5z^4 + 14z^6 + 42z^8 + 131z^{10} + 417z^{12} + 1341z^{14} + 4334z^{16} + 14041z^{18} + 45542z^{20} + 147798z^{22} + 479779z^{24} + 1557649z^{26} + 5057369z^{28} + \ldots,$$

in agreement with [1].

Since (by Cauchy’s integral formula or Lagrange inversion)

$$[z^{2n}]f_{h,k}(z) = [v^n](1 + v)^{2n} \frac{(1 - v^{2h+2})(1 - v^{2k+2})}{(1 - v^{2h+2k+4})} = [v^n](1 + v)^{2n} \frac{(1 - v^{k+1})(1 - v^{k+1})}{(1 - v^{k+2})}$$

$$= \sum_{j\geq 0} \left[\binom{2n}{n - j(h + k + 2)} - \binom{2n}{n - j(h + k + 2) - h - 1} - \binom{2n}{n - j(h + k + 2) - k - 1} + \binom{2n}{n - (j + 1)(h + k + 2)} \right],$$

we have even an explicit formula. For $h = 1$ and $k = 4$, this gives the sequence

$$1, 2, 5, 14, 42, 131, 417, 1341, 4334, 14041, 45542, 147798, 479779, 1557649, 5057369, \ldots,$$

as expected.

References