Generating Random Derangements*

Conrado Martinez?

Alois Panholzer!

Helmut Prodinger®

October 8, 2007

Abstract

In this short note, we propose a simple and efficient
algorithm to generaterandom derangements, that is,
permutations without fixed points. We discuss the
algorithm correctness and its performance and compare
it to other alternatives. We find that the algorithm has
expected linear complexity, works in-place with little
additional auxiliary memory and qualitatively behaves
like the well-known Fisher-Yates shuffle for random
permutations or Sattolo’s algorithm for random cyclic
permutations.

1 Introduction

Derangements are permutations without fixed points,
i.e., a permutation 7 : [1..n] — [1l..n] is a derangement
if and only if it does not exist a value i, 1 < i < n,
such that 7(i) = i. In other words, for the classical
representation of a permutation as a set of cycles, a
derangement is a permutation which does not contain
any singleton cycle.

Derangements were first introduced by Pierre Ray-
mond de Montmort. Their enumeration was also solved
by de Montmort and about the same time by Nicholas
Bernoulli [1]. Later L. Euler would give an independent
proof (see [3, 4]).

The number D,, of derangements of size n is given
by
(1.1)

1 1 1 1

()" |nl+1
— | - — _ —
L TR TR R TR - p

" *The first author was supported by the Spanish Min. of Science
and Technology project TIN2006-11345 (ALINEX). The second
author was supported by the Austrian Science Foundation FWF,
grant S9608-N13. The third author was supported by the South
African Science Foundation NRF, grant 2053748.

tDepartament de Llenguatges i Sistemes Informatics, Univer-
sitat Politécnica de Catalunya. E-08034 Barcelona, Spain. Email:
conrado at 1lsi dot upc dot es.

Hnstitut fiir Diskrete Mathematik und Geometrie, Technische
Universitdt Wien. Wiedner Hauptstrafie 8-10/104. 1040 Wien,
Austria. Email: Alois.Panholzer at tuwien dot ac dot at.

§Department of Mathematics, University of Stellenbosch. 7602
Stellenbosch, South Africa. Email: hproding at sun dot ac dot
za.

The number D, is often written !n; these numbers are
also called subfactorials [7, 8] and are a particular case
of the so-called rencontres numbers [14]. Since In = n!/e
the probability that a random permutation of size n is
a derangement quickly converges to 1/e = 0.36788.

The goal of this short note is to present a new
algorithm for the generation of random derangements
and provide a precise analysis of its performance. Our
baseline for comparison is the combination of an efficient
algorithm for the generation of random permutations,
like the Fisher-Yates shuffle [5, pp. 26-27] (also known
as Knuth shuffle), together with the rejection method.
Since the probability that a random permutation is
a derangement is roughly 1/e, the average number of
times that we have to generate a random permutation
until we get a derangement is e. If we measure the
complexity of our algorithms as the number of random
numbers' that we need to generate, the algorithm
sketched above has average cost e - n + o(n). An
additional drawback of the approach using the rejection
method is that it needs to check whether the generated
permutation is a derangement or not.

2 The Algorithm

Our basis for random derangement generation are
the modern implementation of the Fisher-Yates shuf-
fle given by Durstenfeld [2] and later popularized by
Knuth [10], and Sattolo’s algorithm [15]. Sattolo’s algo-
rithm is a very simple modification of the Fisher-Yates

- shuffle that generates random cyclic permutations, that

is, permutations that consist of a single cycle. The per-
formance of this algorithm has been throughly analyzed
in [11, 12, 17].

We modify Sattolo’s algorithm so that, with appro-
priate probability, some elements get marked and will
not be moved from their position afterwards. Each of
these elements is part of a different cycle, but none of
these cycles will be of length 1.

The algorithm starts filling the array A with the
identity permutation, and with no marked elements.

TMore precisely, random numbers of O(logn) bits.

The variable u records the number of unmarked ele-
ments in the subarray A[1..i].

Then we start a scanning of the array, from right
to left. At iteration i, if A[{] was marked in some
previous iteration we just jump to the next position
i — 1. Otherwise, we choose at random one unmarked
element, say A[j], from A[l..i — 1]. We use a simple
loop to select such an element. Then A[i] and A[j] are
swapped. But now, in order to be able to close the
cycle to which j belongs, we might decide to mark the
position 7, so that no new element “joins” the cycle
to which j belongs. We do so with some carefully
chosen probability: we will show later that, indeed,
(u — 1)Dy—o/D,, is the correct probability that will
guarantee that any derangement is produced by the
algorithm with the same probability. Then we move to
the next element to the left. Since A[i] was not marked,
u must be decremented by one; furthermore, if during
iteration ¢ we decide to mark position j < i, then we
must decrement u by an additional unit.

The algorithm just discussed is more formally pre-
sented as Algorithm 1.

Algorithm 1 Generation of random derangements.
1: procedure RANDOMDERANGEMENT(n)
2 for i « 1 to n do A[i] < i;mark][i] « false
3 14 N;u<n

4 while u > 2 do

5: if —mark[i] then

6

7

8

9

repeat j «+ RanpoMm(1,i —1)
until —mark[j]

Ali] & A[j]
: p < UNIFORM(0, 1)
10: if p < (u—1)Dy_»/D, then
11: mark[j] < true; u < v — 1
12: u—u-—1
13: 11— 1
14: return A
2.1 Correctness By construction, Algorithm 1 pro-

duces always derangements. The first observation is
that the elements in A[i + 1..n] never get involved in
any further swap from iteration i downwards. Thus if a
value k > i has been moved to A[l..i] during some pre-
vious iteration it will never be moved back to its original
position. In this respect, our algorithm shares this im-
portant property with its close relatives Fisher-Yates’
and Sattolo’s: any given item can move some number
of times to the left (i.e., to positions with lower index),
but it can move to the right only once. The second ob-
servation is that a marked element is never sitting at its
original position: we only mark elements once they have

been swapped and then they never move again. Last but
not least, as in Sattolo’s algorithm, a swap involves A[i]
and A[j] with i # j, thus we cannot create singleton cy-
cles (compare to Fisher-Yates’ algorithm, where a swap
Ali] +» A[i] in iteration i occurs with probability 1/7).

To conclude the proof of correctness of Algorithm 1,
we show that each derangement of size n has probability
1/D,, of being produced by the algorithm. The key
identity to prove this is the recurrence for D,,:

D,=n-1)(D,-1+D,_3), n>2
with DO =1 and D1 = 0.
We prove this by induction on n. Suppose u =

n = 2. Then A[l] = 1 is swapped with A[2] = 2 and
since Dy = Dy = 1, A[l] is marked and we update
u := 0, so nothing else happens and the algorithm has
generated A = [2,1], the unique derangement of size
2 with probability 1.

For w = n > 2, the algorithm will probabilistically
decide whether n is part of a cycle of two elements
or not. In the former case, which has probability
(u—1)D,_5/D,, the algorithm has choosen one of the
remaining u — 1 elements, say A[j], and swaps A[j]
and A[n] to construct the 2-cycle. Then position j is
marked so that the element sitting there does not get
involved in any further step of the algorithm, and we
“recursively” generate a random derangement of size
u = n — 2 with the other elements. In the second case,
which has probability 1 — w, we might think as
if the algorithm has “reserved” Gniformly at random one
of the u — 1 available slots, say j, and then recursively
generates a random derangement of size u = n — 1 with
the remaining elements. The swap between A[j] and
Aln] corresponds to the insertion of n into the slot we
had “reserved” previously.

Thus, the probability that we generate a particular
derangement is given either by

opPiz 111
b Dy, u—1D, 5 D,
or by
Dya\ 1 1 1
1—(u—1 -
((u)Du>u1Du1 Dy’

as we wanted to prove.

Algorithm 1 can be seen as a clever implementation
of the straightforward random generation based on the
recursive method (see for instance [6, 13, 16]). The
recursive method needs to generate 2n random numbers,
but it is only well suited if we represented a permutation
as a set of cycles, using some linked data structure to
store them.

Our algorithm is equivalent to the one stemming
from the recursive method, but we have removed recur-
sion, the derangement is stored in an array and it is
generated in-situ without need of additional data struc-
tures other than the n bits for marks and some table to
store the D,, values (which the pure recursive method
needs too). Also, if the elements which we wanted to
“derange” were the numbers 1 to n, we could dispense
the array of marks altogether; we could change the sign
of A[i] at iteration j > ¢ to indicate that it is marked,
and multiply it by —1 again at iteration i (since we do
not need that mark any longer).

The significant difference of our method with re-
spect to the pure recursive method is that to find non-
marked j’s we are using a simple generate-and-reject
loop (lines 6-7 of Algorithm 1). This loop will perform
a single iteration most of the times, but it might gener-
ate many unusable values in a given round, so that the
cost of our algorithm might be, in principle, very large.

3 Analysis of the performance

We measure the complexity of our algorithms by the
number of times that we need to generate random
numbers. Under this model, the complexity of Fisher-
Yates shuffle and Sattolo’s algorithm is obviously n, but
the loop in lines 6 to 7 make the analysis of Algorithm 1
not entirely trivial. Additionally, the running time of
any of these algorithms is clearly and directly related to
the number of random numbers used.

Notice that if v = 0 and ¢ > 1, all iterations
from that point on would simply scan the leftmost i
marked elements, had we not stopped the main loop of
the algorithm. Hence, Algorithm 1 is equivalent to one
where the outer loop stops when ¢ = 1. The algorithm
generates a uniform random number in (0,1) at each
iteration such that the corresponding A[i] is not marked
(line 9 of Algorithm 1). Since the number of marked
elements is the number of cycles in the derangement,
the expected number of calls is n — E[C,,], where C,,
denotes the number of cycles in a random derangement.

So we concentrate from now on in the number of
random integers generated in line 6. Let us denote this
number by G, and let GG; denote the number of random
numbers generated during iteration ¢. Then we simply
have

E[G] = ZE[Gi] ;

by linearity of expectations. On the other hand, if A[i]
were marked we just jump to the next iteration and
G; = 0. Let M; be the indicator random variable such
that M; = 1 if A[i] gets marked by the algorithm and

M; = 0 otherwise. Hence,

E[G] =Y E[Gi| M; = 0] P[M; = 0].
=2
Let U; denote the value of u at the beginning of
iteration 7. If A[é] is not marked then at iteration i we
have to choose one of the U; — 1 unmarked elements
among the i — 1 elements to the left of A[i]. The
number G; is clearly geometrically distributed, with
(U; —1)/(i — 1) the probability of success. So we have

1—1
U;—-1

E[Gi|Mi:0]:E[Mi:0:|-

Looking back again to Algorithm 1 we might say
that we decrement u in every iteration and, in addition,
we add to u some A; which might be —1 (if some A[j]
gets marked), +1 (if A[i] was already marked) or 0
(otherwise). That is, the dynamics of U; is given by
Ui=U;41 71+Ai+1 if i <n and U, = n.

Unwinding the recursion we get

Ui=i+Aipr+--+ 4,
and defining B; := —(A; + --- + A,) we finally obtain
Ui + Bl’+1 - Z

In other words, B;11 denotes the number of marked
elements in A[1..i] when our algorithm reaches iteration
i. The dynamics of B; is also simple: B; = B;y1 — A,
with B,4+1 = 0. For this reason, we may also think of
B; as a “balance”. Once we introduce B; we can write
E[G] as

- i—1
=2

Why do we prefer to write E[G] in terms of B;’s
rather than in terms of S;’s? To answer this question
we must consider the canonical cycle representation of
permutations. In this form, the cycles are listed in
decreasing order of the cycle leaders, and each cycle
is listed so that the leader is its first element. In order
to understand better some important facts that relate
A; and M; to the cycle decomposition of the generated
derangement, it is useful to look at some particular
example, such as the one shown in Figure 1. Each
row shows the contents of the array at the beginning
of the corresponding iteration, the number i of the
iteration and the value of the variable u at the start
of the iteration. We use a circle to indicate that a
particular element is marked, and we show the usual
representation of the generated derangement as a set of
cycles below.

PROPOSITION 1. For any derangement © of size n, and
any i, 1 <1 <mn, the following properties hold:

1. M; =1 if and only if i is the leader of some cycle
in the generated permutation.

2. A; = 1 if i is the leader of some cycle in the

permutation.
3. A; = =1 if i is the second smallest element of its
cycle.

4. A; = 0 if i is neither the smallest nor the second
smallest element of its cycle.

Permutation i Ui A; Biy
1 2 34 5 6 7 8 9 10 11 12|12 12 -1 0
1 2 34 5 6 7 9 10 11 8 (11 10 O 1

9 10 5 8|10 9 -1 1

NeJlENe)
NN
w W
=
—_ =
—_ =
S O

17 5 8|7 6 +1 1

©
[N
w
S
—
—
D
—
EN|
(S}
oo
D
D
o

5. B, =0, By = 1.

6. B; < C,,, where C,, denotes the number of cycles
in a random derangement.

7. 0 < By <.

8. If M; =0 then B;11 <i— 1. Moreover, for any i,
].SZSTL, Bi+17éi*]..

Proof.

1. Suppose M; = 1, that is, by definition, that A[i]
is marked. A moment’s thought reveals that there
can’t be any j < i such that A[j] = i. In other
words, no element j < i can become part of the
cycle to which i belongs recall that a given item
can move several times to the left of the array,
but only once to the right—. Conversely, if i is

®
@ A D« A
@) ® O
@ >0 ~O©
&
Figure 1: A sample execution of Algorithm 1 and its
output.

the leader of its cycle, then we have to “close” its
cycle at iteration i, not before, not after. Suppose
we mark the cycle at some iteration j (necessarily
J # 1), then A[j] is swapped to some other place say
¢ < j, so we mark A[f]. No element at a position
smaller than £ can be included in the same cycle,
and thus it must hold ¢ = ¢. Hence, the element
at position ¢ must be marked. When the algorithm
reaches position i, it skips the position and the cycle
is finally “closed.”

2. Trivial. Since A; = 1 if M; = 1, the statement
follows.

3. We close the cycle to which j belongs when reaching
some marked element A[j], so that j is the leader of
that cycle. Position j was marked at some previous
iteration k, hence the element u sitting at position
k is moved to A[j] and the element v formerly at
Alj] moves to position k. The cycle will be “closed”
when the main loop reaches position 7, but no other
element may enter the cycle in the meanwhile. So
what we want to proof is that & is part of the cycle,

as no other value between j and k can be part of
the cycle. And indeed it must be part of the cycle,
as the element v that we moved to position k is
part of the cycle.

4. By definition, A; = 0 when neither A[i] is marked,
nor any other element gets marked. So 7 is not
the leader nor the second smallest element of the
cycle, because otherwise at iteration 7 we would
either mark the leader’s position or would be at
the leader’s position.

5. Since 1 is a leader of its cycle, it must be marked
when ¢ = 1. Therefore the number of unmarked
items Uy in A[1..1] is 0 and hence By =1-U; = 1.
As By = By — A7 and A =1, we have B; = 0.

6. This follows from points 2.-4. of this proposition.

7. This follows directly from the identity U;+B;+1 =i
and obvious bounds on Uj;.

8. Recall that U; + B;j;1 = i. Hence By =i —U;. If
U; > 2 then the statement is trivially true. The
situation U; = 1 cannot happen; otherwise, the
algorithm would try to construct a derangement
of size 1 and that’s impossible. Incidentally, this
proves that B;11 # i —1 for any i. Finally, we have
only to show that happens when U; = 0. This
means that A[l],..., A[i] are marked and hence
M;=1,for1<j<i. le,1,2,...,iare leaders of
their respective cycles, and in particular M; = 1,
which contradicts the hypothesis of the proposition.

Now we can find a crude estimate of E[G] which is
enough for all practical purposes. To begin with,

gEL_l_ Biy

<Z]E[
<Z([

: |Mi:0} P[M; = 0]

Mi:O} P[M; = 0]

t—1-B i+1

1

T | M;=0|PM; =0
zflfBiH‘ i }P[Z)

i—1
-HE{ﬁ |Mi7é0} IP’[MHEO])
i—1
_ZE[Z_l_ Biy

Using the bounds given in Proposition 1(6-8) and con-

ditioning in the number of cycles we have

~ [. i—1
G] S ;E[mln{lllm}}
[n/2]

k+1 n
> BC, =K [Z(i1)+ >

i=1 i=k+2

IN

1—1
i—1—-k

k] - [(’;) +nk1+an1k}

= %E[C%] +n—1-E[Cn] + OE[CyIn(n — Cy)])

=n+ O(E[C}]) + O(logn - E[Cn)),

where Hy, = 37, .;,(1/j) ~ Inn + O(1) denotes the
n-th harmonic number.

The required results for the r.v. C,, can be obtained
easily via a generating functions approach studying

= ZE[UO"

n>0

IN
i\
=,
Q
S
Il

By using the natural decomposition of a derangement
as a product of cycles of length > 2, we get

o R
(1—2)"

Basic singularity analysis leads then to the follow-

ing asymptotic expansion of the probability generating

function E[vc"], which holds uniformly in a complex

neighbourhood of v = 1, with an arbitrary € > 0:

i)fz)v — efvz

C(z,v)

E[0C] = Dli[z”]c*(z,v)

elfv

— (v—1)logn 1 ‘71+e]

(v—l)!e (1+0(m)
A direct application of Hwang’s quasi power theorem
[9] shows then that the normalized r.v. Cn—HCu]

VICn]

verges in distribution to a standard normal distributed
r.v. together with the asymptotic expansions E[C,,] =
logn + O(1) and V[C,] = logn + O(1). It follows from
these results that

E[G] < n + O(log® n)
Since E[G] > n — E[C,,], we further have that
E[G] = n + O(log® n),

con-

so that the following theorem holds.

THEOREM 3.1. The expected total number of random
numbers used by Algorithm 1 to generate a random
derangement of size n is 2n + O(log® n).

This compares favorably to the average complexity
of random generation based upon a straightforward
implementation of the recursive method.

3.1 The number of moves Even though the num-
ber of times a particular element is swapped by Algo-
rithm 1 has not direct impact on its performance, its
analysis raises interesting mathematical challenges, as in
the corresponding analysis for Sattolo’s algorithm and
Fisher-Yates shuffle [11, 12, 17].

Let us denote by M, , the number of moves of
element p when generating a random derangement of
length n and by M, n,U, the number of moves
made by a random element. Here U, is uniformly
distributed on {1,2,...,n}.

First we introduce the probability generating func-
tions for the number of moves of specific elements:

Pn,p(v) = Z P[Mnp = m]o™,

m>0

n>2

)

We obtain then the following recurrences for the func-
tions ¢p p(v), if we additionally define ¢, ,(v) = 0 if
n<lorp<lorp>n:

(3.2)
o) = D2,
—0) n-1a()n > 2,
(3.3)
onp(®) = 22 (04 (0 Dpn2p1(0)

n

(1 p)pn2,(v))

n 2)9071*1,12(”)):

+ 5

(v+(n— 1<p<mn.
These recurrences are obtained when distinguishing

the cases, where element n is contained in a cycle of

length 2 (which appears with probability ()ﬁ) or

in a cycle of length > 3 (which appears with probablhty
n—1)D, _1
(1[))n).

We will use the recurrences (3.2) and (3.3) to

study the r.v. M, and thus the number of moves
of a random element and introduce the probability
generating function

Z P[M, = m]v™" =

m>0

n(v) =

1 n
n Z Pni(v)
k=1
and the abbreviation 1, (v) := ny, (v).
Equation (3.2) can then be rewritten as
(n — 1)Dn72

D1 -
v+ v, (v),

3.4
(3.4) D, D,

Pn.n(v) =

1<p<n

whereas we obtain by summation for p from 1 up to n
from (3.3):

Gulo) — pnne) = v+ 2201
4 Dna(n—2)

2) -
Dy,

(35) n,Q(’U)

nfl('l)).

After combining (3.4) and (3.5) this gives the following
linear recurrence for ¢, (v):

Gnlv) = (1+ &> .

D,
e
(3.6) + Mzﬁn,g(u), n>2,

n

with initial values to(v) = 1 (v) = 0. To treat
this recurrence we introduce the bivariate generating
function

=" Dpthu(v

n>2

= Dutpu(v

n>2 N)
Recurrence (3.6) can then be translated into the fol-

lowing first order linear differential equation for v (z, v):
(3.7)

0
(1—-2)=—¢Y(z,v)+ (1 —z—v)(z,v) =
0z
with initial condition ¢(0,v) = 0. This differential
equation has the following exact solution:

(3.8)

v 2
)=e¢e |1 — .
e =< (14 G —p -)
Extracting coefficients leads then from (3.8) to the
following exact solution for the probability generating
function ¢, (v) (with n > 2):

onto) = T L e, = S

+- Y (141D
2—v n D,

n-1! 2 (—1)k<n—k+v—1>-

D, 2—-w k! n—k
k=0

Additionally one easily obtains via singularity anal-
ysis the asymptotic expansion

(3.10) Yalv) = 57— + O~ + O(n"2),

which holds uniformly for |v] < 2 — € and ¢ > 0.
Thus the sequence of probability generating functions
¥, (v) converges uniformly in a complex neighbourhood
of v = 1 to 5%, which is the probability generating
function of a geometric r.v. with parameter % Therefore
M, converges in distribution to a geometric distribution
with parameter %

References

[1] P.R. de Montmort. Essay d’analyse sur les jeuz
de hazard. Seconde Edition, Revue € augmentée de
plusieurs Lettres. Jacque Quillau, Paris, 1713.

[2] R. Durstenfeld. Algorithm 235: Random permutation.
Communications of the ACM, 7(7):420, July 1964.

[3] L. Euler. Calcul de la probabilité dans le jeu de
rencontre. Memoires de [’Academie des Sciences de
Berlin, (7):255-270, 1753.

[4] L. Euler. Solutio quaestionis curiosae ex doctrina
combinationum. Memoires de I’Academie des Sciences
de St. Petersbourg, 3:57-64, 1811.

[6] R.A. Fisher and F. Yates. Statistical tables for biologi-
cal, agricultural and medical research. Oliver & Boyd,
London, 3rd edition, 1948.

[6] Ph. Flajolet, P. Zimmerman, and B. Van Cutsem. A
calculus for the random generation of combinatorial
structures. Theoretical Computer Science, 132(1-2):1-
35, 1994.

[7] I. Goulden and D. Jackson. Combinatorial Enumera-
tions. John Wiley & Somns, 1983.

[8] R. L. Graham, D. E. Knuth, and O. Patashnik.
Concrete Mathematics. Addison-Wesley, 2nd edition,
1994.

[9] Hwang H.-K. On convergence rates in the central limit
theorems for combinatorial structures. Furopean J.
Combin., 19:329 343, 1998.

[10] D.E. Knuth.
Seminumerical Algorithms (volume 2).
Wesley, 3rd edition, 1997.

[11] HM. Mahmoud. Mixed distributions in Sattolo’s
algorithm for cyclic permutations via randomization
and derandomization. J. Appl. Probability, 40:790 796,
2003.

[12] H. Prodinger. On the analysis of an algorithm to gen-
erate a random cyclic permutation. Ars Combinatoria,
65:75 78, 2002.

[13] E.M. Reingold, J. Nievergelt, and N. Deo. Combina-
torial Algorithms: Theory and Practice. Prentice-Hall,
1977.

[14] J. Riordan. An Introduction to Combinatorial Analy-
sis. Wiley, New York, 1958.

[15] S. Sattolo. An algorithm to generate a random
cyclic permutation. Information Processing Letters,
22(6):315 317, 1986.

[16] H. S. Wilf and A. Nijenhuis. Combinatorial Algo-
rithms. Academic Press, 2nd edition, 1978.

The Art of Computer Programming:
Addison-

[17] M. C. Wilson. Probability generating functions for Sat-
tolo’s algorithm. J. Iranian Statistics Soc., 3(2):297
308, 2004.

