
Generating Random Derangements�Conrado Mart��nezy Alois Panholzerz Helmut ProdingerxO
tober 8, 2007Abstra
tIn this short note, we propose a simple and eÆ
ientalgorithm to generaterandom derangements, that is,permutations without �xed points. We dis
uss thealgorithm
orre
tness and its performan
e and
ompareit to other alternatives. We �nd that the algorithm hasexpe
ted linear
omplexity, works in-pla
e with littleadditional auxiliary memory and qualitatively behaveslike the well-known Fisher-Yates shu�e for randompermutations or Sattolo's algorithm for random
y
li
permutations.1 Introdu
tionDerangements are permutations without �xed points,i.e., a permutation � : [1::n℄ ! [1::n℄ is a derangementif and only if it does not exist a value i, 1 � i � n,su
h that �(i) = i. In other words, for the
lassi
alrepresentation of a permutation as a set of
y
les, aderangement is a permutation whi
h does not
ontainany singleton
y
le.Derangements were �rst introdu
ed by Pierre Ray-mond de Montmort. Their enumeration was also solvedby de Montmort and about the same time by Ni
holasBernoulli [1℄. Later L. Euler would give an independentproof (see [3, 4℄).The number Dn of derangements of size n is givenby(1.1)Dn = n!�� 10! � 11! + 12! � 13! + � � �+ (�1)nn! � = �n! + 1e � :�The �rst author was supported by the Spanish Min. of S
ien
eand Te
hnology proje
t TIN2006-11345 (ALINEX). The se
ondauthor was supported by the Austrian S
ien
e Foundation FWF,grant S9608-N13. The third author was supported by the SouthAfri
an S
ien
e Foundation NRF, grant 2053748.yDepartament de Llenguatges i Sistemes Inform�ati
s, Univer-sitat Polit�e
ni
a de Catalunya. E-08034 Bar
elona, Spain. Email:
onrado at lsi dot up
 dot es.zInstitut f�ur Diskrete Mathematik und Geometrie, Te
hnis
heUniversit�at Wien. Wiedner Hauptstra�e 8-10/104. 1040 Wien,Austria. Email: Alois.Panholzer at tuwien dot a
 dot at.xDepartment of Mathemati
s, University of Stellenbos
h. 7602Stellenbos
h, South Afri
a. Email: hproding at sun dot a
 dotza.

The number Dn is often written !n; these numbers arealso
alled subfa
torials [7, 8℄ and are a parti
ular
aseof the so-
alled ren
ontres numbers [14℄. Sin
e !n � n!=ethe probability that a random permutation of size n isa derangement qui
kly
onverges to 1=e � 0:36788.The goal of this short note is to present a newalgorithm for the generation of random derangementsand provide a pre
ise analysis of its performan
e. Ourbaseline for
omparison is the
ombination of an eÆ
ientalgorithm for the generation of random permutations,like the Fisher-Yates shu�e [5, pp. 26{27℄ (also knownas Knuth shu�e), together with the reje
tion method.Sin
e the probability that a random permutation isa derangement is roughly 1=e, the average number oftimes that we have to generate a random permutationuntil we get a derangement is e. If we measure the
omplexity of our algorithms as the number of randomnumbers1 that we need to generate, the algorithmsket
hed above has average
ost e � n + o(n). Anadditional drawba
k of the approa
h using the reje
tionmethod is that it needs to
he
k whether the generatedpermutation is a derangement or not.2 The AlgorithmOur basis for random derangement generation arethe modern implementation of the Fisher-Yates shuf-
e given by Durstenfeld [2℄ and later popularized byKnuth [10℄, and Sattolo's algorithm [15℄. Sattolo's algo-rithm is a very simple modi�
ation of the Fisher-Yatesshu�e that generates random
y
li
 permutations, thatis, permutations that
onsist of a single
y
le. The per-forman
e of this algorithm has been throughly analyzedin [11, 12, 17℄.We modify Sattolo's algorithm so that, with appro-priate probability, some elements get marked and willnot be moved from their position afterwards. Ea
h ofthese elements is part of a di�erent
y
le, but none ofthese
y
les will be of length 1.The algorithm starts �lling the array A with theidentity permutation, and with no marked elements.1More pre
isely, random numbers of O(log n) bits.

The variable u re
ords the number of unmarked ele-ments in the subarray A[1::i℄.Then we start a s
anning of the array, from rightto left. At iteration i, if A[i℄ was marked in someprevious iteration we just jump to the next positioni � 1. Otherwise, we
hoose at random one unmarkedelement, say A[j℄, from A[1::i � 1℄. We use a simpleloop to sele
t su
h an element. Then A[i℄ and A[j℄ areswapped. But now, in order to be able to
lose the
y
le to whi
h j belongs, we might de
ide to mark theposition j, so that no new element \joins" the
y
leto whi
h j belongs. We do so with some
arefully
hosen probability: we will show later that, indeed,(u � 1)Du�2=Du is the
orre
t probability that willguarantee that any derangement is produ
ed by thealgorithm with the same probability. Then we move tothe next element to the left. Sin
e A[i℄ was not marked,u must be de
remented by one; furthermore, if duringiteration i we de
ide to mark position j < i, then wemust de
rement u by an additional unit.The algorithm just dis
ussed is more formally pre-sented as Algorithm 1.Algorithm 1 Generation of random derangements.1: pro
edure RandomDerangement(n)2: for i 1 to n do A[i℄ i;mark[i℄ false3: i n;u n4: while u � 2 do5: if :mark[i℄ then6: repeat j Random(1; i� 1)7: until :mark[j℄8: A[i℄$ A[j℄9: p Uniform(0; 1)10: if p < (u� 1)Du�2=Du then11: mark[j℄ true; u u� 112: u u� 113: i i� 114: return A2.1 Corre
tness By
onstru
tion, Algorithm 1 pro-du
es always derangements. The �rst observation isthat the elements in A[i + 1::n℄ never get involved inany further swap from iteration i downwards. Thus if avalue k > i has been moved to A[1::i℄ during some pre-vious iteration it will never be moved ba
k to its originalposition. In this respe
t, our algorithm shares this im-portant property with its
lose relatives Fisher-Yates'and Sattolo's: any given item
an move some numberof times to the left (i.e., to positions with lower index),but it
an move to the right only on
e. The se
ond ob-servation is that a marked element is never sitting at itsoriginal position: we only mark elements on
e they have

been swapped and then they never move again. Last butnot least, as in Sattolo's algorithm, a swap involves A[i℄and A[j℄ with i 6= j, thus we
annot
reate singleton
y-
les (
ompare to Fisher-Yates' algorithm, where a swapA[i℄$ A[i℄ in iteration i o

urs with probability 1=i).To
on
lude the proof of
orre
tness of Algorithm 1,we show that ea
h derangement of size n has probability1=Dn of being produ
ed by the algorithm. The keyidentity to prove this is the re
urren
e for Dn:Dn = (n� 1)(Dn�1 +Dn�2); n � 2;with D0 = 1 and D1 = 0.We prove this by indu
tion on n. Suppose u =n = 2. Then A[1℄ = 1 is swapped with A[2℄ = 2 andsin
e D0 = D2 = 1, A[1℄ is marked and we updateu := 0, so nothing else happens and the algorithm hasgenerated A = [2; 1℄, the unique derangement of size2|with probability 1.For u = n > 2, the algorithm will probabilisti
allyde
ide whether n is part of a
y
le of two elementsor not. In the former
ase, whi
h has probability(u� 1)Du�2=Du, the algorithm has
hoosen one of theremaining u � 1 elements, say A[j℄, and swaps A[j℄and A[n℄ to
onstru
t the 2-
y
le. Then position j ismarked so that the element sitting there does not getinvolved in any further step of the algorithm, and we\re
ursively" generate a random derangement of sizeu = n� 2 with the other elements. In the se
ond
ase,whi
h has probability 1� (u�1)Du�2Ds , we might think asif the algorithm has \reserved" uniformly at random oneof the u� 1 available slots, say j, and then re
ursivelygenerates a random derangement of size u = n� 1 withthe remaining elements. The swap between A[j℄ andA[n℄
orresponds to the insertion of n into the slot wehad \reserved" previously.Thus, the probability that we generate a parti
ularderangement is given either by(u� 1)Du�2Du 1u� 1 1Du�2 = 1Du ;or by �1� (u� 1)Du�1Du � 1u� 1 1Du�1 = 1Du ;as we wanted to prove.Algorithm 1
an be seen as a
lever implementationof the straightforward random generation based on there
ursive method (see for instan
e [6, 13, 16℄). There
ursive method needs to generate 2n random numbers,but it is only well suited if we represented a permutationas a set of
y
les, using some linked data stru
ture tostore them.

Our algorithm is equivalent to the one stemmingfrom the re
ursive method, but we have removed re
ur-sion, the derangement is stored in an array and it isgenerated in-situ without need of additional data stru
-tures other than the n bits for marks and some table tostore the Dn values (whi
h the pure re
ursive methodneeds too). Also, if the elements whi
h we wanted to\derange" were the numbers 1 to n, we
ould dispensethe array of marks altogether; we
ould
hange the signof A[i℄ at iteration j > i to indi
ate that it is marked,and multiply it by �1 again at iteration i (sin
e we donot need that mark any longer).The signi�
ant di�eren
e of our method with re-spe
t to the pure re
ursive method is that to �nd non-marked j's we are using a simple generate-and-reje
tloop (lines 6-7 of Algorithm 1). This loop will performa single iteration most of the times, but it might gener-ate many unusable values in a given round, so that the
ost of our algorithm might be, in prin
iple, very large.3 Analysis of the performan
eWe measure the
omplexity of our algorithms by thenumber of times that we need to generate randomnumbers. Under this model, the
omplexity of Fisher-Yates shu�e and Sattolo's algorithm is obviously n, butthe loop in lines 6 to 7 make the analysis of Algorithm 1not entirely trivial. Additionally, the running time ofany of these algorithms is
learly and dire
tly related tothe number of random numbers used.Noti
e that if u = 0 and i > 1, all iterationsfrom that point on would simply s
an the leftmost imarked elements, had we not stopped the main loop ofthe algorithm. Hen
e, Algorithm 1 is equivalent to onewhere the outer loop stops when i = 1. The algorithmgenerates a uniform random number in (0; 1) at ea
hiteration su
h that the
orresponding A[i℄ is not marked(line 9 of Algorithm 1). Sin
e the number of markedelements is the number of
y
les in the derangement,the expe
ted number of
alls is n � E [Cn℄, where Cndenotes the number of
y
les in a random derangement.So we
on
entrate from now on in the number ofrandom integers generated in line 6. Let us denote thisnumber by G, and let Gi denote the number of randomnumbers generated during iteration i. Then we simplyhave E [G℄ = nXi=2 E [Gi℄ ;by linearity of expe
tations. On the other hand, if A[i℄were marked we just jump to the next iteration andGi = 0. Let Mi be the indi
ator random variable su
hthat Mi = 1 if A[i℄ gets marked by the algorithm and

Mi = 0 otherwise. Hen
e,E [G℄ = nXi=2 E [Gi jMi = 0℄P[Mi = 0℄ :Let Ui denote the value of u at the beginning ofiteration i. If A[i℄ is not marked then at iteration i wehave to
hoose one of the Ui � 1 unmarked elementsamong the i � 1 elements to the left of A[i℄. Thenumber Gi is
learly geometri
ally distributed, with(Ui � 1)=(i� 1) the probability of su

ess. So we haveE [Gi jMi = 0℄ = E � i� 1Ui � 1 jMi = 0� :Looking ba
k again to Algorithm 1 we might saythat we de
rement u in every iteration and, in addition,we add to u some �i whi
h might be �1 (if some A[j℄gets marked), +1 (if A[i℄ was already marked) or 0(otherwise). That is, the dynami
s of Ui is given byUi = Ui+1 � 1 +�i+1 if i < n and Un = n.Unwinding the re
ursion we getUi = i+�i+1 + � � �+�nand de�ning Bi := �(�i + � � �+�n) we �nally obtainUi +Bi+1 = i:In other words, Bi+1 denotes the number of markedelements in A[1::i℄ when our algorithm rea
hes iterationi. The dynami
s of Bi is also simple: Bi = Bi+1 ��i,with Bn+1 = 0. For this reason, we may also think ofBi as a \balan
e". On
e we introdu
e Bi we
an writeE [G℄ asE [G℄ = nXi=2 E � i� 1i� 1�Bi+1 jMi = 0�P[Mi = 0℄ :Why do we prefer to write E [G℄ in terms of Bi'srather than in terms of Si's? To answer this questionwe must
onsider the
anoni
al
y
le representation ofpermutations. In this form, the
y
les are listed inde
reasing order of the
y
le leaders, and ea
h
y
leis listed so that the leader is its �rst element. In orderto understand better some important fa
ts that relate�i and Mi to the
y
le de
omposition of the generatedderangement, it is useful to look at some parti
ularexample, su
h as the one shown in Figure 1. Ea
hrow shows the
ontents of the array at the beginningof the
orresponding iteration, the number i of theiteration and the value of the variable u at the startof the iteration. We use a
ir
le to indi
ate that aparti
ular element is marked, and we show the usualrepresentation of the generated derangement as a set of
y
les below.

Permutation i Ui �i Bi+11 2 3 4 5 6 7 8 9 10 11 12 12 12 �1 01 2 3 4 5 6 7 12 9 10 11 8 11 10 0 11 2 3 4 11 6 7 12 9 10 5 8 10 9 �1 11 2 3 4 11 6 10 12 9 7 5 8 9 7 0 29 2 3 4 11 6 10 12 1 7 5 8 8 6 +1 29 2 3 4 11 6 10 12 1 7 5 8 7 6 +1 19 2 3 4 11 6 10 12 1 7 5 8 6 6 0 06 2 3 4 11 9 10 12 1 7 5 8 5 5 �1 011 2 3 4 6 9 10 12 1 7 5 8 4 3 0 111 2 4 3 6 9 10 12 1 7 5 8 3 2 �1 111 4 2 3 6 9 10 12 1 7 5 8 2 0 +1 211 4 2 3 6 9 10 12 1 7 5 8 1 0 +1 1
1 9 11 6 5 2 43 710 812Figure 1: A sample exe
ution of Algorithm 1 and itsoutput.

Proposition 1. For any derangement � of size n, andany i, 1 � i � n, the following properties hold:1. Mi = 1 if and only if i is the leader of some
y
lein the generated permutation.2. �i = 1 if i is the leader of some
y
le in thepermutation.3. �i = �1 if i is the se
ond smallest element of its
y
le.4. �i = 0 if i is neither the smallest nor the se
ondsmallest element of its
y
le.5. B1 = 0, B2 = 1.6. Bi � Cn, where Cn denotes the number of
y
lesin a random derangement.7. 0 � Bi+1 � i.8. If Mi = 0 then Bi+1 < i� 1. Moreover, for any i,1 � i � n, Bi+1 6= i� 1.Proof.1. Suppose Mi = 1, that is, by de�nition, that A[i℄is marked. A moment's thought reveals that there
an't be any j < i su
h that A[j℄ = i. In otherwords, no element j < i
an be
ome part of the
y
le to whi
h i belongs|re
all that a given item
an move several times to the left of the array,but only on
e to the right|. Conversely, if i isthe leader of its
y
le, then we have to \
lose" its
y
le at iteration i, not before, not after. Supposewe mark the
y
le at some iteration j (ne
essarilyj 6= i), then A[j℄ is swapped to some other pla
e say` < j, so we mark A[`℄. No element at a positionsmaller than `
an be in
luded in the same
y
le,and thus it must hold ` = i. Hen
e, the elementat position i must be marked. When the algorithmrea
hes position i, it skips the position and the
y
leis �nally \
losed."2. Trivial. Sin
e �i = 1 if Mi = 1, the statementfollows.3. We
lose the
y
le to whi
h j belongs when rea
hingsome marked element A[j℄, so that j is the leader ofthat
y
le. Position j was marked at some previousiteration k, hen
e the element u sitting at positionk is moved to A[j℄ and the element v formerly atA[j℄ moves to position k. The
y
le will be \
losed"when the main loop rea
hes position j, but no otherelement may enter the
y
le in the meanwhile. Sowhat we want to proof is that k is part of the
y
le,

as no other value between j and k
an be part ofthe
y
le. And indeed it must be part of the
y
le,as the element v that we moved to position k ispart of the
y
le.4. By de�nition, �i = 0 when neither A[i℄ is marked,nor any other element gets marked. So i is notthe leader nor the se
ond smallest element of the
y
le, be
ause otherwise at iteration i we wouldeither mark the leader's position or would be atthe leader's position.5. Sin
e 1 is a leader of its
y
le, it must be markedwhen i = 1. Therefore the number of unmarkeditems U1 in A[1::1℄ is 0 and hen
e B2 = 1�U1 = 1.As B1 = B2 ��1 and �1 = 1, we have B1 = 0.6. This follows from points 2.-4. of this proposition.7. This follows dire
tly from the identity Ui+Bi+1 = iand obvious bounds on Ui.8. Re
all that Ui +Bi+1 = i. Hen
e Bi+1 = i�Ui. IfUi � 2 then the statement is trivially true. Thesituation Ui = 1
annot happen; otherwise, thealgorithm would try to
onstru
t a derangementof size 1 and that's impossible. In
identally, thisproves that Bi+1 6= i�1 for any i. Finally, we haveonly to show that happens when Ui = 0. Thismeans that A[1℄; : : : ; A[i℄ are marked and hen
eMj = 1, for 1 � j � i. I.e., 1; 2; : : : ; i are leaders oftheir respe
tive
y
les, and in parti
ular Mi = 1,whi
h
ontradi
ts the hypothesis of the proposition.Now we
an �nd a
rude estimate of E [G℄ whi
h isenough for all pra
ti
al purposes. To begin with,E [G℄ = nXi=2 E � i� 1i� 1�Bi+1 jMi = 0�P[Mi = 0℄� nXi=2 E ����� i� 1i� 1�Bi+1 ���� jMi = 0�P[Mi = 0℄� nXi=2�E ����� i� 1i� 1�Bi+1 ���� jMi = 0�P[Mi = 0℄+ E ����� i� 1i� 1�Bi+1 ���� jMi 6= 0�P[Mi 6= 0℄�= nXi=2 E ����� i� 1i� 1�Bi+1 ����� :Using the bounds given in Proposition 1(6-8) and
on-

ditioning in the number of
y
les we haveE [G℄ � nXi=2 E �min�i� 1; i� 1i� 1� Cn��� bn=2
Xk=1 P[Cn = k℄ � "k+1Xi=1(i� 1) + nXi=k+2 i� 1i� 1� k#� bn=2
Xk=1 P[Cn = k℄ � ��k2�+ n� k � 1 + kHn�1�k�= 12 E �C2n�+ n� 1� E [Cn℄ +O(E [Cn ln(n� Cn)℄)= n+O(E �C2n�) +O(logn � E [Cn℄);where Hn = P1�j�n(1=j) � lnn + O(1) denotes then-th harmoni
 number.The required results for the r.v. Cn
an be obtainedeasily via a generating fun
tions approa
h studyingC(z; v) = Xn�0 E �vCn�Dn znn! :By using the natural de
omposition of a derangementas a produ
t of
y
les of length � 2, we getC(z; v) = e� log � 11�z ��z�v = e�vz 1(1� z)v :Basi
 singularity analysis leads then to the follow-ing asymptoti
 expansion of the probability generatingfun
tion E �vCn�, whi
h holds uniformly in a
omplexneighbourhood of v = 1, with an arbitrary � > 0:E �vCn� = n!Dn [zn℄C(z; v)= e1�v(v � 1)!e(v�1) logn �1 +O(n�1+�)� :A dire
t appli
ation of Hwang's quasi power theorem[9℄ shows then that the normalized r.v. Cn�E[Cn℄pV[Cn℄
on-verges in distribution to a standard normal distributedr.v. together with the asymptoti
 expansions E [Cn℄ =logn+O(1) and V[Cn℄ = logn+O(1). It follows fromthese results thatE [G℄ � n+O(log2 n)Sin
e E [G℄ � n� E [Cn℄, we further have thatE [G℄ = n+O(log2 n);so that the following theorem holds.Theorem 3.1. The expe
ted total number of randomnumbers used by Algorithm 1 to generate a randomderangement of size n is 2n+O(log2 n).This
ompares favorably to the average
omplexityof random generation based upon a straightforwardimplementation of the re
ursive method.

3.1 The number of moves Even though the num-ber of times a parti
ular element is swapped by Algo-rithm 1 has not dire
t impa
t on its performan
e, itsanalysis raises interesting mathemati
al
hallenges, as inthe
orresponding analysis for Sattolo's algorithm andFisher-Yates shu�e [11, 12, 17℄.Let us denote by Mn;p the number of moves ofelement p when generating a random derangement oflength n and by Mn := Mn;Un the number of movesmade by a random element. Here Un is uniformlydistributed on f1; 2; : : : ; ng.First we introdu
e the probability generating fun
-tions for the number of moves of spe
i�
 elements:'n;p(v) := Xm�0P[Mn;p = m℄ vm; n � 2; 1 � p � n:We obtain then the following re
urren
es for the fun
-tions 'n;p(v), if we additionally de�ne 'n;p(v) = 0 ifn � 1 or p < 1 or p > n:'n;n(v) = (n� 1)Dn�2Dn v(3.2) + Dn�1Dn v n�1Xk=1 'n�1;k(v); n � 2;'n;p(v) = Dn�2Dn �v + (p� 1)'n�2;p�1(v)(3.3) + (n� 1� p)'n�2;p(v)�+ Dn�1Dn �v + (n� 2)'n�1;p(v)�; 1 � p < n:These re
urren
es are obtained when distinguishingthe
ases, where element n is
ontained in a
y
le oflength 2 (whi
h appears with probability (n�1)Dn�2Dn) orin a
y
le of length � 3 (whi
h appears with probability(n�1)Dn�1Dn).We will use the re
urren
es (3.2) and (3.3) tostudy the r.v. Mn and thus the number of movesof a random element and introdu
e the probabilitygenerating fun
tion n(v) := Xm�0P[Mn = m℄ vm = 1n nXk=1'n;k(v)and the abbreviation ~ n(v) := n n(v).Equation (3.2)
an then be rewritten as(3.4) 'n;n(v) = (n� 1)Dn�2Dn v + Dn�1Dn v ~ n�1(v);

whereas we obtain by summation for p from 1 up to nfrom (3.3):~ n(v)� 'n;n(v) = v + Dn�2(n� 1)Dn ~ n�2(v)(3.5) + Dn�1(n� 2)Dn ~ n�1(v):After
ombining (3.4) and (3.5) this gives the followinglinear re
urren
e for ~ n(v):~ n(v) = �1 + (n� 1)Dn�2Dn � v+ (n� 2 + v)Dn�1Dn ~ n�1(v)+ (n� 1)Dn�2Dn ~ n�2(v); n � 2;(3.6)with initial values ~ 0(v) = ~ 1(v) = 0. To treatthis re
urren
e we introdu
e the bivariate generatingfun
tion (z; v) := Xn�2Dn ~ n(v)znn! = Xn�2Dn n(v) zn(n� 1)! :Re
urren
e (3.6)
an then be translated into the fol-lowing �rst order linear di�erential equation for (z; v):(3.7)(1�z) ��z (z; v)+(1�z�v) (z; v) = vz(2� z)e�z(1� z)2 ;with initial
ondition (0; v) = 0. This di�erentialequation has the following exa
t solution:(3.8) (z; v) = e�z �1 + v(2� v)(1� z)2 � 2(2� v)(1� z)v� :Extra
ting
oeÆ
ients leads then from (3.8) to thefollowing exa
t solution for the probability generatingfun
tion n(v) (with n � 2): n(v) = (n� 1)!Dn [zn℄ (z; v) = (�1)nnDn+ v2� v �1 + 1n + Dn�1Dn �� (n� 1)!Dn 22� v nXk=0 (�1)kk! �n� k + v � 1n� k �:(3.9)Additionally one easily obtains via singularity anal-ysis the asymptoti
 expansion(3.10) n(v) = v2� v +O(n�1) +O(nv�2);

whi
h holds uniformly for jvj � 2 � � and � > 0.Thus the sequen
e of probability generating fun
tions n(v)
onverges uniformly in a
omplex neighbourhoodof v = 1 to v2�v , whi
h is the probability generatingfun
tion of a geometri
 r.v. with parameter 12 . ThereforeMn
onverges in distribution to a geometri
 distributionwith parameter 12 .Referen
es[1℄ P.R. de Montmort. Essay d'analyse sur les jeuxde hazard. Se
onde Edition, Revue & augment�ee deplusieurs Lettres. Ja
que Quillau, Paris, 1713.[2℄ R. Durstenfeld. Algorithm 235: Random permutation.Communi
ations of the ACM, 7(7):420, July 1964.[3℄ L. Euler. Cal
ul de la probabilit�e dans le jeu deren
ontre. Memoires de l'A
ademie des S
ien
es deBerlin, (7):255{270, 1753.[4℄ L. Euler. Solutio quaestionis
uriosae ex do
trina
ombinationum. Memoires de l'A
ademie des S
ien
esde St. Petersbourg, 3:57{64, 1811.[5℄ R.A. Fisher and F. Yates. Statisti
al tables for biologi-
al, agri
ultural and medi
al resear
h. Oliver & Boyd,London, 3rd edition, 1948.[6℄ Ph. Flajolet, P. Zimmerman, and B. Van Cutsem. A
al
ulus for the random generation of
ombinatorialstru
tures. Theoreti
al Computer S
ien
e, 132(1-2):1{35, 1994.[7℄ I. Goulden and D. Ja
kson. Combinatorial Enumera-tions. John Wiley & Sons, 1983.[8℄ R. L. Graham, D. E. Knuth, and O. Patashnik.Con
rete Mathemati
s. Addison{Wesley, 2nd edition,1994.[9℄ Hwang H.-K. On
onvergen
e rates in the
entral limittheorems for
ombinatorial stru
tures. European J.Combin., 19:329{343, 1998.[10℄ D.E. Knuth. The Art of Computer Programming:Seminumeri
al Algorithms (volume 2). Addison-Wesley, 3rd edition, 1997.[11℄ H.M. Mahmoud. Mixed distributions in Sattolo'salgorithm for
y
li
 permutations via randomizationand derandomization. J. Appl. Probability, 40:790{796,2003.[12℄ H. Prodinger. On the analysis of an algorithm to gen-erate a random
y
li
 permutation. Ars Combinatoria,65:75{78, 2002.[13℄ E.M. Reingold, J. Nievergelt, and N. Deo. Combina-torial Algorithms: Theory and Pra
ti
e. Prenti
e-Hall,1977.[14℄ J. Riordan. An Introdu
tion to Combinatorial Analy-sis. Wiley, New York, 1958.[15℄ S. Sattolo. An algorithm to generate a random
y
li
 permutation. Information Pro
essing Letters,22(6):315{317, 1986.[16℄ H. S. Wilf and A. Nijenhuis. Combinatorial Algo-rithms. A
ademi
 Press, 2nd edition, 1978.

[17℄ M. C. Wilson. Probability generating fun
tions for Sat-tolo's algorithm. J. Iranian Statisti
s So
., 3(2):297{308, 2004.

