
Generating Random Derangements�Conrado Mart��nezy Alois Panholzerz Helmut ProdingerxOtober 8, 2007AbstratIn this short note, we propose a simple and eÆientalgorithm to generaterandom derangements, that is,permutations without �xed points. We disuss thealgorithm orretness and its performane and ompareit to other alternatives. We �nd that the algorithm hasexpeted linear omplexity, works in-plae with littleadditional auxiliary memory and qualitatively behaveslike the well-known Fisher-Yates shu�e for randompermutations or Sattolo's algorithm for random ylipermutations.1 IntrodutionDerangements are permutations without �xed points,i.e., a permutation � : [1::n℄ ! [1::n℄ is a derangementif and only if it does not exist a value i, 1 � i � n,suh that �(i) = i. In other words, for the lassialrepresentation of a permutation as a set of yles, aderangement is a permutation whih does not ontainany singleton yle.Derangements were �rst introdued by Pierre Ray-mond de Montmort. Their enumeration was also solvedby de Montmort and about the same time by NiholasBernoulli [1℄. Later L. Euler would give an independentproof (see [3, 4℄).The number Dn of derangements of size n is givenby(1.1)Dn = n!�� 10! � 11! + 12! � 13! + � � �+ (�1)nn! � = �n! + 1e � :�The �rst author was supported by the Spanish Min. of Sieneand Tehnology projet TIN2006-11345 (ALINEX). The seondauthor was supported by the Austrian Siene Foundation FWF,grant S9608-N13. The third author was supported by the SouthAfrian Siene Foundation NRF, grant 2053748.yDepartament de Llenguatges i Sistemes Inform�atis, Univer-sitat Polit�enia de Catalunya. E-08034 Barelona, Spain. Email:onrado at lsi dot up dot es.zInstitut f�ur Diskrete Mathematik und Geometrie, TehnisheUniversit�at Wien. Wiedner Hauptstra�e 8-10/104. 1040 Wien,Austria. Email: Alois.Panholzer at tuwien dot a dot at.xDepartment of Mathematis, University of Stellenbosh. 7602Stellenbosh, South Afria. Email: hproding at sun dot a dotza.

The number Dn is often written !n; these numbers arealso alled subfatorials [7, 8℄ and are a partiular aseof the so-alled renontres numbers [14℄. Sine !n � n!=ethe probability that a random permutation of size n isa derangement quikly onverges to 1=e � 0:36788.The goal of this short note is to present a newalgorithm for the generation of random derangementsand provide a preise analysis of its performane. Ourbaseline for omparison is the ombination of an eÆientalgorithm for the generation of random permutations,like the Fisher-Yates shu�e [5, pp. 26{27℄ (also knownas Knuth shu�e), together with the rejetion method.Sine the probability that a random permutation isa derangement is roughly 1=e, the average number oftimes that we have to generate a random permutationuntil we get a derangement is e. If we measure theomplexity of our algorithms as the number of randomnumbers1 that we need to generate, the algorithmskethed above has average ost e � n + o(n). Anadditional drawbak of the approah using the rejetionmethod is that it needs to hek whether the generatedpermutation is a derangement or not.2 The AlgorithmOur basis for random derangement generation arethe modern implementation of the Fisher-Yates shuf-e given by Durstenfeld [2℄ and later popularized byKnuth [10℄, and Sattolo's algorithm [15℄. Sattolo's algo-rithm is a very simple modi�ation of the Fisher-Yatesshu�e that generates random yli permutations, thatis, permutations that onsist of a single yle. The per-formane of this algorithm has been throughly analyzedin [11, 12, 17℄.We modify Sattolo's algorithm so that, with appro-priate probability, some elements get marked and willnot be moved from their position afterwards. Eah ofthese elements is part of a di�erent yle, but none ofthese yles will be of length 1.The algorithm starts �lling the array A with theidentity permutation, and with no marked elements.1More preisely, random numbers of O(log n) bits.

The variable u reords the number of unmarked ele-ments in the subarray A[1::i℄.Then we start a sanning of the array, from rightto left. At iteration i, if A[i℄ was marked in someprevious iteration we just jump to the next positioni � 1. Otherwise, we hoose at random one unmarkedelement, say A[j℄, from A[1::i � 1℄. We use a simpleloop to selet suh an element. Then A[i℄ and A[j℄ areswapped. But now, in order to be able to lose theyle to whih j belongs, we might deide to mark theposition j, so that no new element \joins" the yleto whih j belongs. We do so with some arefullyhosen probability: we will show later that, indeed,(u � 1)Du�2=Du is the orret probability that willguarantee that any derangement is produed by thealgorithm with the same probability. Then we move tothe next element to the left. Sine A[i℄ was not marked,u must be deremented by one; furthermore, if duringiteration i we deide to mark position j < i, then wemust derement u by an additional unit.The algorithm just disussed is more formally pre-sented as Algorithm 1.Algorithm 1 Generation of random derangements.1: proedure RandomDerangement(n)2: for i 1 to n do A[i℄ i;mark[i℄ false3: i n;u n4: while u � 2 do5: if :mark[i℄ then6: repeat j Random(1; i� 1)7: until :mark[j℄8: A[i℄$ A[j℄9: p Uniform(0; 1)10: if p < (u� 1)Du�2=Du then11: mark[j℄ true; u u� 112: u u� 113: i i� 114: return A2.1 Corretness By onstrution, Algorithm 1 pro-dues always derangements. The �rst observation isthat the elements in A[i + 1::n℄ never get involved inany further swap from iteration i downwards. Thus if avalue k > i has been moved to A[1::i℄ during some pre-vious iteration it will never be moved bak to its originalposition. In this respet, our algorithm shares this im-portant property with its lose relatives Fisher-Yates'and Sattolo's: any given item an move some numberof times to the left (i.e., to positions with lower index),but it an move to the right only one. The seond ob-servation is that a marked element is never sitting at itsoriginal position: we only mark elements one they have

been swapped and then they never move again. Last butnot least, as in Sattolo's algorithm, a swap involves A[i℄and A[j℄ with i 6= j, thus we annot reate singleton y-les (ompare to Fisher-Yates' algorithm, where a swapA[i℄$ A[i℄ in iteration i ours with probability 1=i).To onlude the proof of orretness of Algorithm 1,we show that eah derangement of size n has probability1=Dn of being produed by the algorithm. The keyidentity to prove this is the reurrene for Dn:Dn = (n� 1)(Dn�1 +Dn�2); n � 2;with D0 = 1 and D1 = 0.We prove this by indution on n. Suppose u =n = 2. Then A[1℄ = 1 is swapped with A[2℄ = 2 andsine D0 = D2 = 1, A[1℄ is marked and we updateu := 0, so nothing else happens and the algorithm hasgenerated A = [2; 1℄, the unique derangement of size2|with probability 1.For u = n > 2, the algorithm will probabilistiallydeide whether n is part of a yle of two elementsor not. In the former ase, whih has probability(u� 1)Du�2=Du, the algorithm has hoosen one of theremaining u � 1 elements, say A[j℄, and swaps A[j℄and A[n℄ to onstrut the 2-yle. Then position j ismarked so that the element sitting there does not getinvolved in any further step of the algorithm, and we\reursively" generate a random derangement of sizeu = n� 2 with the other elements. In the seond ase,whih has probability 1� (u�1)Du�2Ds , we might think asif the algorithm has \reserved" uniformly at random oneof the u� 1 available slots, say j, and then reursivelygenerates a random derangement of size u = n� 1 withthe remaining elements. The swap between A[j℄ andA[n℄ orresponds to the insertion of n into the slot wehad \reserved" previously.Thus, the probability that we generate a partiularderangement is given either by(u� 1)Du�2Du 1u� 1 1Du�2 = 1Du ;or by �1� (u� 1)Du�1Du � 1u� 1 1Du�1 = 1Du ;as we wanted to prove.Algorithm 1 an be seen as a lever implementationof the straightforward random generation based on thereursive method (see for instane [6, 13, 16℄). Thereursive method needs to generate 2n random numbers,but it is only well suited if we represented a permutationas a set of yles, using some linked data struture tostore them.

Our algorithm is equivalent to the one stemmingfrom the reursive method, but we have removed reur-sion, the derangement is stored in an array and it isgenerated in-situ without need of additional data stru-tures other than the n bits for marks and some table tostore the Dn values (whih the pure reursive methodneeds too). Also, if the elements whih we wanted to\derange" were the numbers 1 to n, we ould dispensethe array of marks altogether; we ould hange the signof A[i℄ at iteration j > i to indiate that it is marked,and multiply it by �1 again at iteration i (sine we donot need that mark any longer).The signi�ant di�erene of our method with re-spet to the pure reursive method is that to �nd non-marked j's we are using a simple generate-and-rejetloop (lines 6-7 of Algorithm 1). This loop will performa single iteration most of the times, but it might gener-ate many unusable values in a given round, so that theost of our algorithm might be, in priniple, very large.3 Analysis of the performaneWe measure the omplexity of our algorithms by thenumber of times that we need to generate randomnumbers. Under this model, the omplexity of Fisher-Yates shu�e and Sattolo's algorithm is obviously n, butthe loop in lines 6 to 7 make the analysis of Algorithm 1not entirely trivial. Additionally, the running time ofany of these algorithms is learly and diretly related tothe number of random numbers used.Notie that if u = 0 and i > 1, all iterationsfrom that point on would simply san the leftmost imarked elements, had we not stopped the main loop ofthe algorithm. Hene, Algorithm 1 is equivalent to onewhere the outer loop stops when i = 1. The algorithmgenerates a uniform random number in (0; 1) at eahiteration suh that the orresponding A[i℄ is not marked(line 9 of Algorithm 1). Sine the number of markedelements is the number of yles in the derangement,the expeted number of alls is n � E [Cn℄, where Cndenotes the number of yles in a random derangement.So we onentrate from now on in the number ofrandom integers generated in line 6. Let us denote thisnumber by G, and let Gi denote the number of randomnumbers generated during iteration i. Then we simplyhave E [G℄ = nXi=2 E [Gi℄ ;by linearity of expetations. On the other hand, if A[i℄were marked we just jump to the next iteration andGi = 0. Let Mi be the indiator random variable suhthat Mi = 1 if A[i℄ gets marked by the algorithm and

Mi = 0 otherwise. Hene,E [G℄ = nXi=2 E [Gi jMi = 0℄P[Mi = 0℄ :Let Ui denote the value of u at the beginning ofiteration i. If A[i℄ is not marked then at iteration i wehave to hoose one of the Ui � 1 unmarked elementsamong the i � 1 elements to the left of A[i℄. Thenumber Gi is learly geometrially distributed, with(Ui � 1)=(i� 1) the probability of suess. So we haveE [Gi jMi = 0℄ = E � i� 1Ui � 1 jMi = 0� :Looking bak again to Algorithm 1 we might saythat we derement u in every iteration and, in addition,we add to u some �i whih might be �1 (if some A[j℄gets marked), +1 (if A[i℄ was already marked) or 0(otherwise). That is, the dynamis of Ui is given byUi = Ui+1 � 1 +�i+1 if i < n and Un = n.Unwinding the reursion we getUi = i+�i+1 + � � �+�nand de�ning Bi := �(�i + � � �+�n) we �nally obtainUi +Bi+1 = i:In other words, Bi+1 denotes the number of markedelements in A[1::i℄ when our algorithm reahes iterationi. The dynamis of Bi is also simple: Bi = Bi+1 ��i,with Bn+1 = 0. For this reason, we may also think ofBi as a \balane". One we introdue Bi we an writeE [G℄ asE [G℄ = nXi=2 E � i� 1i� 1�Bi+1 jMi = 0�P[Mi = 0℄ :Why do we prefer to write E [G℄ in terms of Bi'srather than in terms of Si's? To answer this questionwe must onsider the anonial yle representation ofpermutations. In this form, the yles are listed indereasing order of the yle leaders, and eah yleis listed so that the leader is its �rst element. In orderto understand better some important fats that relate�i and Mi to the yle deomposition of the generatedderangement, it is useful to look at some partiularexample, suh as the one shown in Figure 1. Eahrow shows the ontents of the array at the beginningof the orresponding iteration, the number i of theiteration and the value of the variable u at the startof the iteration. We use a irle to indiate that apartiular element is marked, and we show the usualrepresentation of the generated derangement as a set ofyles below.

Permutation i Ui �i Bi+11 2 3 4 5 6 7 8 9 10 11 12 12 12 �1 01 2 3 4 5 6 7 12 9 10 11 8 11 10 0 11 2 3 4 11 6 7 12 9 10 5 8 10 9 �1 11 2 3 4 11 6 10 12 9 7 5 8 9 7 0 29 2 3 4 11 6 10 12 1 7 5 8 8 6 +1 29 2 3 4 11 6 10 12 1 7 5 8 7 6 +1 19 2 3 4 11 6 10 12 1 7 5 8 6 6 0 06 2 3 4 11 9 10 12 1 7 5 8 5 5 �1 011 2 3 4 6 9 10 12 1 7 5 8 4 3 0 111 2 4 3 6 9 10 12 1 7 5 8 3 2 �1 111 4 2 3 6 9 10 12 1 7 5 8 2 0 +1 211 4 2 3 6 9 10 12 1 7 5 8 1 0 +1 1
1 9 11 6 5 2 43 710 812Figure 1: A sample exeution of Algorithm 1 and itsoutput.

Proposition 1. For any derangement � of size n, andany i, 1 � i � n, the following properties hold:1. Mi = 1 if and only if i is the leader of some ylein the generated permutation.2. �i = 1 if i is the leader of some yle in thepermutation.3. �i = �1 if i is the seond smallest element of itsyle.4. �i = 0 if i is neither the smallest nor the seondsmallest element of its yle.5. B1 = 0, B2 = 1.6. Bi � Cn, where Cn denotes the number of ylesin a random derangement.7. 0 � Bi+1 � i.8. If Mi = 0 then Bi+1 < i� 1. Moreover, for any i,1 � i � n, Bi+1 6= i� 1.Proof.1. Suppose Mi = 1, that is, by de�nition, that A[i℄is marked. A moment's thought reveals that therean't be any j < i suh that A[j℄ = i. In otherwords, no element j < i an beome part of theyle to whih i belongs|reall that a given iteman move several times to the left of the array,but only one to the right|. Conversely, if i isthe leader of its yle, then we have to \lose" itsyle at iteration i, not before, not after. Supposewe mark the yle at some iteration j (neessarilyj 6= i), then A[j℄ is swapped to some other plae say` < j, so we mark A[`℄. No element at a positionsmaller than ` an be inluded in the same yle,and thus it must hold ` = i. Hene, the elementat position i must be marked. When the algorithmreahes position i, it skips the position and the yleis �nally \losed."2. Trivial. Sine �i = 1 if Mi = 1, the statementfollows.3. We lose the yle to whih j belongs when reahingsome marked element A[j℄, so that j is the leader ofthat yle. Position j was marked at some previousiteration k, hene the element u sitting at positionk is moved to A[j℄ and the element v formerly atA[j℄ moves to position k. The yle will be \losed"when the main loop reahes position j, but no otherelement may enter the yle in the meanwhile. Sowhat we want to proof is that k is part of the yle,

as no other value between j and k an be part ofthe yle. And indeed it must be part of the yle,as the element v that we moved to position k ispart of the yle.4. By de�nition, �i = 0 when neither A[i℄ is marked,nor any other element gets marked. So i is notthe leader nor the seond smallest element of theyle, beause otherwise at iteration i we wouldeither mark the leader's position or would be atthe leader's position.5. Sine 1 is a leader of its yle, it must be markedwhen i = 1. Therefore the number of unmarkeditems U1 in A[1::1℄ is 0 and hene B2 = 1�U1 = 1.As B1 = B2 ��1 and �1 = 1, we have B1 = 0.6. This follows from points 2.-4. of this proposition.7. This follows diretly from the identity Ui+Bi+1 = iand obvious bounds on Ui.8. Reall that Ui +Bi+1 = i. Hene Bi+1 = i�Ui. IfUi � 2 then the statement is trivially true. Thesituation Ui = 1 annot happen; otherwise, thealgorithm would try to onstrut a derangementof size 1 and that's impossible. Inidentally, thisproves that Bi+1 6= i�1 for any i. Finally, we haveonly to show that happens when Ui = 0. Thismeans that A[1℄; : : : ; A[i℄ are marked and heneMj = 1, for 1 � j � i. I.e., 1; 2; : : : ; i are leaders oftheir respetive yles, and in partiular Mi = 1,whih ontradits the hypothesis of the proposition.Now we an �nd a rude estimate of E [G℄ whih isenough for all pratial purposes. To begin with,E [G℄ = nXi=2 E � i� 1i� 1�Bi+1 jMi = 0�P[Mi = 0℄� nXi=2 E ����� i� 1i� 1�Bi+1 ���� jMi = 0�P[Mi = 0℄� nXi=2�E ����� i� 1i� 1�Bi+1 ���� jMi = 0�P[Mi = 0℄+ E ����� i� 1i� 1�Bi+1 ���� jMi 6= 0�P[Mi 6= 0℄�= nXi=2 E ����� i� 1i� 1�Bi+1 ����� :Using the bounds given in Proposition 1(6-8) and on-

ditioning in the number of yles we haveE [G℄ � nXi=2 E �min�i� 1; i� 1i� 1� Cn��� bn=2Xk=1 P[Cn = k℄ � "k+1Xi=1(i� 1) + nXi=k+2 i� 1i� 1� k#� bn=2Xk=1 P[Cn = k℄ � ��k2�+ n� k � 1 + kHn�1�k�= 12 E �C2n�+ n� 1� E [Cn℄ +O(E [Cn ln(n� Cn)℄)= n+O(E �C2n�) +O(logn � E [Cn℄);where Hn = P1�j�n(1=j) � lnn + O(1) denotes then-th harmoni number.The required results for the r.v. Cn an be obtainedeasily via a generating funtions approah studyingC(z; v) = Xn�0 E �vCn�Dn znn! :By using the natural deomposition of a derangementas a produt of yles of length � 2, we getC(z; v) = e� log � 11�z ��z�v = e�vz 1(1� z)v :Basi singularity analysis leads then to the follow-ing asymptoti expansion of the probability generatingfuntion E �vCn�, whih holds uniformly in a omplexneighbourhood of v = 1, with an arbitrary � > 0:E �vCn� = n!Dn [zn℄C(z; v)= e1�v(v � 1)!e(v�1) logn �1 +O(n�1+�)� :A diret appliation of Hwang's quasi power theorem[9℄ shows then that the normalized r.v. Cn�E[Cn℄pV[Cn℄ on-verges in distribution to a standard normal distributedr.v. together with the asymptoti expansions E [Cn℄ =logn+O(1) and V[Cn℄ = logn+O(1). It follows fromthese results thatE [G℄ � n+O(log2 n)Sine E [G℄ � n� E [Cn℄, we further have thatE [G℄ = n+O(log2 n);so that the following theorem holds.Theorem 3.1. The expeted total number of randomnumbers used by Algorithm 1 to generate a randomderangement of size n is 2n+O(log2 n).This ompares favorably to the average omplexityof random generation based upon a straightforwardimplementation of the reursive method.

3.1 The number of moves Even though the num-ber of times a partiular element is swapped by Algo-rithm 1 has not diret impat on its performane, itsanalysis raises interesting mathematial hallenges, as inthe orresponding analysis for Sattolo's algorithm andFisher-Yates shu�e [11, 12, 17℄.Let us denote by Mn;p the number of moves ofelement p when generating a random derangement oflength n and by Mn := Mn;Un the number of movesmade by a random element. Here Un is uniformlydistributed on f1; 2; : : : ; ng.First we introdue the probability generating fun-tions for the number of moves of spei� elements:'n;p(v) := Xm�0P[Mn;p = m℄ vm; n � 2; 1 � p � n:We obtain then the following reurrenes for the fun-tions 'n;p(v), if we additionally de�ne 'n;p(v) = 0 ifn � 1 or p < 1 or p > n:'n;n(v) = (n� 1)Dn�2Dn v(3.2) + Dn�1Dn v n�1Xk=1 'n�1;k(v); n � 2;'n;p(v) = Dn�2Dn �v + (p� 1)'n�2;p�1(v)(3.3) + (n� 1� p)'n�2;p(v)�+ Dn�1Dn �v + (n� 2)'n�1;p(v)�; 1 � p < n:These reurrenes are obtained when distinguishingthe ases, where element n is ontained in a yle oflength 2 (whih appears with probability (n�1)Dn�2Dn) orin a yle of length � 3 (whih appears with probability(n�1)Dn�1Dn).We will use the reurrenes (3.2) and (3.3) tostudy the r.v. Mn and thus the number of movesof a random element and introdue the probabilitygenerating funtion n(v) := Xm�0P[Mn = m℄ vm = 1n nXk=1'n;k(v)and the abbreviation ~ n(v) := n n(v).Equation (3.2) an then be rewritten as(3.4) 'n;n(v) = (n� 1)Dn�2Dn v + Dn�1Dn v ~ n�1(v);

whereas we obtain by summation for p from 1 up to nfrom (3.3):~ n(v)� 'n;n(v) = v + Dn�2(n� 1)Dn ~ n�2(v)(3.5) + Dn�1(n� 2)Dn ~ n�1(v):After ombining (3.4) and (3.5) this gives the followinglinear reurrene for ~ n(v):~ n(v) = �1 + (n� 1)Dn�2Dn � v+ (n� 2 + v)Dn�1Dn ~ n�1(v)+ (n� 1)Dn�2Dn ~ n�2(v); n � 2;(3.6)with initial values ~ 0(v) = ~ 1(v) = 0. To treatthis reurrene we introdue the bivariate generatingfuntion (z; v) := Xn�2Dn ~ n(v)znn! = Xn�2Dn n(v) zn(n� 1)! :Reurrene (3.6) an then be translated into the fol-lowing �rst order linear di�erential equation for (z; v):(3.7)(1�z) ��z (z; v)+(1�z�v) (z; v) = vz(2� z)e�z(1� z)2 ;with initial ondition (0; v) = 0. This di�erentialequation has the following exat solution:(3.8) (z; v) = e�z �1 + v(2� v)(1� z)2 � 2(2� v)(1� z)v� :Extrating oeÆients leads then from (3.8) to thefollowing exat solution for the probability generatingfuntion n(v) (with n � 2): n(v) = (n� 1)!Dn [zn℄ (z; v) = (�1)nnDn+ v2� v �1 + 1n + Dn�1Dn �� (n� 1)!Dn 22� v nXk=0 (�1)kk! �n� k + v � 1n� k �:(3.9)Additionally one easily obtains via singularity anal-ysis the asymptoti expansion(3.10) n(v) = v2� v +O(n�1) +O(nv�2);

whih holds uniformly for jvj � 2 � � and � > 0.Thus the sequene of probability generating funtions n(v) onverges uniformly in a omplex neighbourhoodof v = 1 to v2�v , whih is the probability generatingfuntion of a geometri r.v. with parameter 12 . ThereforeMn onverges in distribution to a geometri distributionwith parameter 12 .Referenes[1℄ P.R. de Montmort. Essay d'analyse sur les jeuxde hazard. Seonde Edition, Revue & augment�ee deplusieurs Lettres. Jaque Quillau, Paris, 1713.[2℄ R. Durstenfeld. Algorithm 235: Random permutation.Communiations of the ACM, 7(7):420, July 1964.[3℄ L. Euler. Calul de la probabilit�e dans le jeu derenontre. Memoires de l'Aademie des Sienes deBerlin, (7):255{270, 1753.[4℄ L. Euler. Solutio quaestionis uriosae ex dotrinaombinationum. Memoires de l'Aademie des Sienesde St. Petersbourg, 3:57{64, 1811.[5℄ R.A. Fisher and F. Yates. Statistial tables for biologi-al, agriultural and medial researh. Oliver & Boyd,London, 3rd edition, 1948.[6℄ Ph. Flajolet, P. Zimmerman, and B. Van Cutsem. Aalulus for the random generation of ombinatorialstrutures. Theoretial Computer Siene, 132(1-2):1{35, 1994.[7℄ I. Goulden and D. Jakson. Combinatorial Enumera-tions. John Wiley & Sons, 1983.[8℄ R. L. Graham, D. E. Knuth, and O. Patashnik.Conrete Mathematis. Addison{Wesley, 2nd edition,1994.[9℄ Hwang H.-K. On onvergene rates in the entral limittheorems for ombinatorial strutures. European J.Combin., 19:329{343, 1998.[10℄ D.E. Knuth. The Art of Computer Programming:Seminumerial Algorithms (volume 2). Addison-Wesley, 3rd edition, 1997.[11℄ H.M. Mahmoud. Mixed distributions in Sattolo'salgorithm for yli permutations via randomizationand derandomization. J. Appl. Probability, 40:790{796,2003.[12℄ H. Prodinger. On the analysis of an algorithm to gen-erate a random yli permutation. Ars Combinatoria,65:75{78, 2002.[13℄ E.M. Reingold, J. Nievergelt, and N. Deo. Combina-torial Algorithms: Theory and Pratie. Prentie-Hall,1977.[14℄ J. Riordan. An Introdution to Combinatorial Analy-sis. Wiley, New York, 1958.[15℄ S. Sattolo. An algorithm to generate a randomyli permutation. Information Proessing Letters,22(6):315{317, 1986.[16℄ H. S. Wilf and A. Nijenhuis. Combinatorial Algo-rithms. Aademi Press, 2nd edition, 1978.

[17℄ M. C. Wilson. Probability generating funtions for Sat-tolo's algorithm. J. Iranian Statistis So., 3(2):297{308, 2004.

