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In this paper we give exact and asymptotic analysis for variance of the external path length in 
a symmetric digital trie. This problem was open up to now. We prove that for the binary sym- 
metric trie the variance is asymptotically equal to 4.35.. - n + nf(Iog2 n) where n is the number of 
stored records and f(x) is a periodic functi~m with a very small amplitude. 

1. Introduction 

Digital searching is a well-known technique for storing and retrieving information 
using lexicographical (digital) structure of words. A radix trie (in short: trie) is such 
a digital search tree that edges are labelled by elements from aa alphabet (e.g., 
binary alphabet consisting of O’s and l’s) and leaves (external nodes) contain keys 
[ 1,4,9]. More precisely, in a binary case a key is a (possible infinite) sequence of O’s 
and l’s, where 0 means “go left” and 1 means “go right”. The keys are stored in 
external nodes and the access path from the root to a leaf is the minimal prefix infor- 
mation contained in an external node (see Fig. I for an example of a trie). There are 
a number of applications of tries in computer science and telecommunications, e.g., 
dynamic hashing, radix exchange sort [4,9], partial match retrieval of muhidimen- 
sional data, lexicographical sorting (111, tree-type conflict resolution algorithm for 
broadcast communications [lo, 141, etc. 

Two quantities of a digital trie are of special interest: the depth of a leaf and the 
external path length. The average depth of a leaf has been studied in [3,9], the 
variance in [6] (binary case) and 1141 (general tries) and higher moments of the depth 
in [14]. The average value of the external path length is closely related to the average 
depth of a leaf, but not the variance. The variance of the external path length was 
never determined up to now, although the external path length finds important ap- 
plications in practice, e.g., for modified lexicographical sorting [I 11 and for conflict 

* This research wa! supported in part by National Science Foundation under grant NCR-87021 IS. 

0166-218X/89/%3.50 0 1939, Elsevier Science Publishers R.V. (North-Holland) 



130 P. Kirschenhofer, et al. 

resolution session in conflict resolution algorithms [lo]. Furthermore, it was argued 
in [14] that the variance of the depth and the external path length provide informa- 
tion on how well is a trie balanced in a random environment, that is, under random 
insertions and deletions of records. This paper deals with the exact and asymptotic 
approximation for the variance of the external path length. 

In Section 2, we state the problem to solve and show that the variance of the exter- 
nal path length is associated with a recurrence equation. This equation is solved ex- 
actly in Section 3. Section 2 contains our main result which is formally proved in 
Section 3. In particular, in Section 3 we derive the exact formula on the variance 
for an asymmetric trie, that is, when the occurrences of O’s and l’s in a key are not 
the same. The asymptotic approximation for the variance is restricted to symmetric 
(binary) tries. We prove that the variance for the binary symmetric tries is equal to 
4.35... -n +nf(log, n), where f(x) is a periodic fluctuating function with a very 
small amplitude (see the theorem in Section 2). To find the asymptotic approxima- 
tion we apply either Rice’s method or a generalized Mellin transform approach. In 
fact, these approaches are useful to find an asymptotic approximation for a class 
of alternative sums. Moreover, the technique used in this paper is novel in the sense 
that certain properties of the periodic fluctuating functionf(x) are exploited to pro- 
ve our result; in particular, to show that the term at n* in the formula on the 
variance vanishes (for more details see also [8]). 

2. Statement of the problem and male results 

Let T, be a family of tries built from n records with keys from random bit 
streams. A key consists of O’s and l’s (binary case), and we assume that the pro- 
bability of appearance of 0 and 1 in a stream is equal top and q = 1 -p respectively. 
The occurences of these two elements in a bit stream are independent of each other. 
This defines the so-called Bernoulli model. 

Let L,, denote the external path length (random variable) in T,, that is, the sum 
of the lengths of all paths from the root to all external nodes. We are interested in 
the average value of L,, and the variance var L,. In order to find them, we define 
the probability generating function L,(z) of L,, that is, L,(z) =EzLn. Note that in 
the Bernoulii model the n records are split randomly into left subtree and right sub- 
tree of the root. If X denotes the number of keys in the left subtree, then X is Ber- 
noulli distributed with parameter n and p. Then, for X= k, L,, = n + Lk + L,, _ k, and 
finally 

E{zL” 1 X = k) = znEzL”EzL”-$ (2.1) 

where Lk, Ln_k represent the external path length in the left subtree (with k keys) 
and right subtrees (n-k keys). Hence, we obtain: 

Lemma 1. The probability generating function L,(z) satisfies the following re- 
currence 
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Lo(z) = L,(z) = 1, 

L,(z) = z+c ; 
0 

(2.2) 
pkq”-kLk(z)L,_k(Z), n 2 2. 

Let I,E’EL,, and L,“= EL,,(L,, - l), that is, I,, is the average value of the external 
path length and L,‘,’ is the second factorial moment of L,. Note that 1, = L&l) and 
L;= L:(l), where Li( 1) and L:( 1) denote the first and the second derivative of L,(z) 
at z= 1. Simple algebra applied to (2.2) reveals that I,, and L: satisfy the following 
recurrences 

and 

1, = 1, = 0, 

pkqn-k(lk+in_k), n 2 2, 

L;=L;=Q 

Li= 2nl,,-n(n+l)+2 i n 
0 k=O k 

pkqn-klkLn_k 

(2.3) 

(2.4) 

+kio ; pkq”-k[L;+L;_k]. 0 
Knowing I,, and Li one immediately obtains the variance of L,, as 

var L, = Li+ I, - (1,)*. (2.5) 

The recurrence (2.4) is a linear one. Hence, let us define three quantities on, u, 
and W, as 

00 = 01 = 0, 

o,=n(n+l)+ f n 
k=O 

0 
k 

pkq”-k(ok+u,-k), n 2 2, 
(2.6) 

(2.7) 
uo=uI =o , 

pkqnvk(ut + u,_k), n 1 2, 

w, = WI = 0, 

pktf-klkl,_k+ i n pk‘f-k[Wk+ w,,_kj, 
0 

(2.8) 
n 2 2. 

k=O k 

Then 
L;=2u,-vn+2w,. (2.9) 

Note that to compute u, and w, we need I, from recurrence (2.3). 
In order to find a uniform approach to solve the recurrences (2.3)-(2.8), we note 

that all of them are of the same type and they differ only by the first term which 
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we call the additive term. Let, in general, the additive term be denoted by a,, 
where a,, is any sequence of numbers. Then the pattern for recurrences (2.3)-(2.8) 
is 

xc = x1 = 0, 

x,=a,+ f ’ 
0 

(2.10) 

k=O k 
pkq”-k(xk+x,,_k), n 12. 

To solve (2.10), we define a sequence d,, (binomial inverse relations [12]) as 

(-1)k n 
0 k 

ak 
k=O 

* an =kio (-l)‘( L)ik- (2.11) 

Note that the exponential generating function of & and a, satisfies A(-z) =A(z)emz. 
Using this in [14] (see also [9]) it is proved that 

Lemma 2. (i) The recurrence (2.10) possesses the following solution 

(ii) The inverse relatives Z,, of x, satisfy 

9n = 
6,+nal -a0 

l-p”_qn 3 
n r 2. 

(2.12) 

(2.13) 

Finally, to find asymptotic approximations for x,, we apply a general approach 
proposed either in [3] (Rice’s method) or in [13,15] (Mellin-like approach, see also 
Knuth [9]). Namely, we consider an alternative sum of the form CE=, (-!)k(E)f(k) 
where f(k) is any sequence. This sum appears in our Lemma 2. Then: 

Lemma 3. (i) (Rice’s method [3,6]). Let C be a curve surrounding the points 
23 , , . . . , n and f(z) be an analytical continuation of f(k) in C. Then 

with 

n 

z(> n (-l)kf(k) = 2 1 
k=2 k 

tn; zlf(zWz (2.14) 

’ [n; z] = z(z(~‘::“-~~!n) . 
- . . . 

(ii) (Mellin-like approach [ 13,151). Let 

%,An) =k$mC-l)k( x>( q)f(k), 

and f (-z) is an analytical continuation of f(k) left to the line (4 - [m - r]+ - ioo, 
+ - [m - r]+ + ia), where a+ = max{O, a}. Then 
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$Jn+r) = q j r(z)j’(r-zWZdz+e,, 
- (1/2-[m-r]+) 

(2.15) 

where ICC) stands for 1/2ni jz_‘;z; T(z) is the gamma function [ 1,5], and 

en = O(n-‘) [ zT(z)f(r - zWzdz, 

that is, e,, = o(n). 

JWZ-[m-4) 

Proof. Both formulas are a consequence of Cauchy’s Theorem [5]. The proof of 
(2.14) is given in [3], while (2.15) is established in [15]. Note, however, that some 
restrictions on f(z) must be imposed. Roughly speaking, f(z) cannot grow too fast 
at infinity. The details can be found in [15]. q 

To apply Lemma 3(i) for asymptotic analysis, we change C to a larger curve 
around which the integral is small, and take into account residues at poles in the 
larger enclosed area. To apply Lemma 3(ii) we find residues right to the line (c-i=, 
c+ioo) where c=+ -[m-r]+. It is proved that (for simplicity r=O is assumed in 

(2.15)) 

j2(-1)*( z) f(k) = C res{ ]n; zlf(z)} + W+9 

= C res{r(zlf(-z)nWz} + O(neM) (2.16) 

for any M>O, and the sums are taken over all poles of the functions under the in- 
tegrals (2.14) and (2.15) in the appropriate regions respectively. By (2.16), the 
asymptotics of the alternative sum of type (2.12) (Lemma 2) is reduced to compute 
the residues of the functions under the integrals, which is usually an easy task. 

Using Lemmas l-3 we prove in Section 3 our main result: 

Theorem. The variance of the external path length in a binary symmetric trie (i.e., 
p = q = 0.5) consisting of n records (external nodes) is asymptotically equal to 

var L, = n [A + f(log2 n)] + O(ln2 n), (2.17) 
where 

1 1 
/l=l+--- 

2 In 2 In2 2 + &+“)+r, In 2 
(2.18) 

(2.19) 

4n2 OD 
-c k r = - In3 2 k= 1 sinh(2kn2/ln 2) 

(2.20) 

and f(x) is a continuous periodic funtion with period 1 and very small amplitude 
and mean zero (the contribution from T is also very small). 
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Numerical evaluation reveals that var L, = 4.35. . . - n + nf(logz n). 
Before we proceed to the proof of the theorem, we first offer some remarks and 

extension of the main result. 

Remark. (i) Why the symmetric case? The reader may be surprised why, having 
Lemmas 2 and 3, we restrict our asymptotic analysis to the symmetric case. In fact, 
in the next section we shall see that after applying Lemma 2 an exact formula on 
Ll is available. Nevertheless, for asymptotics, according to Lemma 3, we need an 
analytical continuation of 6 (see (2.12)), where a, is the additive term in the recur- 
rence (2.10). This is easy to achieve for v, and u, (see (2.6) and (2.7)), but very dif- 
ficult for W, (see (2.8)). Fortunately, in the symmetric case, such an analytical 
continuation is available (see equation (3.16)). An easy extension to the asymmetric 
case is not known up to date. Our guess is that for a symmetric case another ap- 
proach is necessary (see also Remark (ii)). 

(ii) Extension to Vary tries. The methodology provided in this paper can be used 
to derive exact and asymptotic (symmetric case) analysis for V-ary digital tries. To 
define this trie, let A be an alphabet containing V elements, i.e., A = {o,,02, . . . . 
oy}, and let S denote the set of finite numbers, say n, of strings (keys) from A. 
The probability of occurrence of an element from A, say cri, i = 1,2, . . . , V, in a 
string is denoted as pi, where C,[, pi= 1. The branching policy on level k in a V- 
ary trie is based on the kth element of a key. For example, if the kth element is oI, 
then we go to the leftmost subtree, if it is 02, we move to the next leftmost subtree, 
etc. An example of a 3-ary digital trie is shown in Fig. 1. 

Let now L, be the length of the externai path in a I/-ary digital trie. Under our 
Bernoulli model, the Vsubtrees of the root contain k,, k2, . . . , kV elements with pro- 
bability 

A=000 
B = 010 
c = 012 
D=lOO 
E=200 
F=221 

E F 

Fig. 1. Example of 3-ary digital trie with n=6. 
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where 

(/&)= k,!&,:i..,*J and kt+k2a*WW+kv=n. 

Then L,=n+&,+ ... + Lkv and the probability generating function L,(z) of L,, 
satisfies 

Lo(z) = L,(z) = 1, 

(2.21) 

In particular, the average value of L, is equal to L;(l) and the variance is related 
to LidLfL;(l) as in (2.5). The exact formula for L: follows from the same type of 
analysis as before. Also, the same type of difficulties arise to obtain asymptotic ap- 
proximation, hence restriction to the symmetric case (i.e., p1 =p2= --- =pv = l/V) 
is imposed. Then, copying the analysis from the binary case, one proves that the 
theorem holds with 

1 1 V 
A=l+------- 

VlnV ln2V+ InV 
-(P+o)+r, 

where 

(2.22) 

r is very small and can be savely ignored in practice. Finally, let us point out that 
the variance of the external path length in the asymmetric case is qualitatively dif- 
ferent from the symmetric case. Although we do not present the analysis here, it is 
possible to prove, using the results from [14], that in the asymmetric case var L,, = 
SZ(n log2 n). 

(iii) The covariance analysis. The theorem and the results from [6,14], where the 
variance of the depth of an external node was established, provide asymptotics for 
the covariance between two different depths of leaves in a trie. Let D, be a depth 
of an external node, and let 0:’ be a path from the root to the ith external node. 
Note that the external path length L, is defined in terms of 0:’ as L, = Cy=, 0:‘. 
Then 

and this implies (see [14]) 

var L,, = n var D, + 2 c cov{ D$‘, 0:’ > . 
i*j 

(2.23) 

The variance of the depth, var D,, was analyzed in [6,14]. In particular, it was 
proved that for binary symmetric tries var D,, = 3.507... . Using our main result and 
(2.23), we find 

2 c cov(D;),Dy)} = O-84... - n. (2.24) 
i*j 
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This also implies, in the symmetric case, that cov{D~),D~)} - 0.84/n. 
(iv) The methodology established in this paper can be also applied to estimate the 

variance of the external path length for other digital trees, that is, Patricia tries and 
we shall show that 
should be pointed 

digital search tries [1,4]. In particular, in a forthcoming paper, 
for the Patricia trie var L, - 0.35.. . - n + nf(log2 n), however, it 
out that the analysis in that case is much more intricate. 

3. The analysis 

In this section, we present an exact solution for recurrences (2.3)-(2.8), and 
asymptotic analysis for the binary symmetric case (p = q = 0.5). 

3. I. Exact analysis 

To solve (2.3) for I,, 
Kronecker delta. Then, 

” 

note that a,, =n and &=-S,,, [9,12], where S,,, is the 
immediately from Lemma 2 we find 

n Z 2, 

r;,= n 
l-p”-qn’ n 2 2. 

(3.1) 

(3.2) 

To solve (2.6) for on, note that a,=n(n+1)=2(2)+2n. From [9,12], we know 
that for 6, = (F) the inverse relation is 6,, = (- 1)‘6,,. Hence, fin = 2~5,~ - 26,. 1 . By 
Lemma 2 we obtain 

n(n - 1) 
v, = l_p2_q2 (3.3) 

For u, given by (2.7), we need the inverse relation for a, = n I,, . Using generating 
functions and the fact a(-~) = A(z)edZ one easily proves that & = n&, - n&,_, where 
& is given by (3.2). Hence by Lemma 2 

The most difficult is w, since a, = cEfo (E)pkqnmkf&_k. However, let a(z) and 
l(z) denote the exponential generating functions for a, and 1, respectively. Then, 
a(z) = I(zp)Z(zq), and this implies ci(-z) = f(-zp)f(-zq). Hence 

n-2 n 

ci,= c 

0 k=2 k 
pkq”-k&&_k, n 2 4, (3.5) 
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and &=ci, =ci2 =ci3 =O. Then the solution for w,, follows from Lemma 2. We 
return to that problem later, since (3.5) is not very suitable for analytical continua- 
tion needed in Lemma 3. 

3.2. Asymptotic approximation 

Hereafter we assume p = q = 0.5, that is, only binary symmetric tries are con- 
sidered. We obtain asymptotic approximations for II, and w, , through Lemma 3(ii) 
and for w, by Lemma 3(i), however, both methods are equivalent. 

Let us start with 0,. Note that u, = 21, + 2n2 - 2~. Using the asymptotic expres- 
sion for I,, from [6,9,14] we immediately obtain (see also (3.24)) 

v,=2n2+ 
2nlnn 2y 
-+n 

L [ 1 - - 1 
L 

+ 2n6(log* n), 

where y=O.577... is the Euler constant, LdAfln 2, and 

k+O 

where 
2kni 

wk=l+- 
L - 

(3.6) 

(3.7) 

(3.8) 

The ok, k=O, kl,..., are solutions of the following equation 

1-21-z = 0 , (3.9) 

where z is a complex number. 
The evaluation of u, is much more intricate. Using (3.4) with p =q=O.5 one 

proves 

3 = 8n+ i (-1)k 
k=2 (3 (I-1-k)’ [ 2(2k:-l) -11. 

Hence by Lemma 3(ii) 

u,,l_gn= 
n+l s Ilz)n-” -Z 

(-3,2) (1 - 22)* 2(2-z-’ - 1) 
-1 dz+O(n-I). 1 (3.10) 

The evaluation of the integral is standard and appeals to the residue theorem. Note 
that the function under the integral has two poles: -cc)k given by (3.8) and 
xk=2kni/L for k=O, + 1, +2,... (mk= 1 +Xk). For k=O, -oo= -1 iS a double 
pole, while x0 = 0 is a triple pole since z = 0 and z = - 1 are singular points for f(z). 
It is also well known that the main contribution to the asymptotic approximation 
comes from the real part of the poles, that is, -o. and x0. For -00 = - 1 we use 
the following Taylor expansions. Let w = z + 1, then 

T(z) = -w-l -(y-1)+0(w), (3.lla) 
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n-Z=n(l-wlnn)+O(w2), (3.11b) 

1 -1 
2_Z_*_1 = --(l+:Lw+9LW). (3.1 lc) 

For x0 = 0 we have [l, 5] 

f(z)=z-‘+y++[+n2+y2]z+o(z2), 

n-‘= l-zlnn++z21n2n+0(z3), 

(3.12a) 

(3.12b) 

1 

2(2-z-’ - i) 
= -(l+Lz), 

1 1 

(l-2-92 =m( 1 +Lz+$L2z2). 

(3.12~) 

(3.12d) 

Multiplying (3.11) and (3.12) and taking the coefficient at z-’ and w-l we find the 
contribution from -cue and x0 which yields 

n 
4, I = - L [ 

2n lnn+n(2y-L)+ &ln2n+ 
r+l > 

--1 Inn 
L 

( 

n2 y2 
+ ;+- -1zL-l-y . 

12L + Z + 12 I 
(3.13) 

The contribution from -q and &, k + 0 can be found in a similar way. Calcula- 
tions reveal that 

n2 m 
U “,J = 7 kc?= exp[2kni log, n] 2 c@(-ok)+ y - 

I[ 

o f 

k#O 

L-;-Uk)] 

+ (-mk)[(-wk)f(-mk)h n + akr’(-wk)-r(-Lc)k) 

-Lr(--wk)-r(--ok)(l+&!,jfk)] 

I 

(3.14) 

cl = -+&~kr(--c+). (3.15) 

Finally, u, - u,, , + 2.4, 2 and it turns out that the contribution from u,,~ is very 
small. 

The most difficult part is the asymptotic approximation for w,, since we need an 
analytical continuation for & given by (3.9, where a, is the additive term in the 
recurrence (2.8) on w,,. Fortunately for the symmetric case, it is relatively easy to 
obtain ci,, however, we need a further consideration to find it. Note that for 
a, = 2-” Cz=, <i>&_k the exponential generating functions a(z) and L(z) are 
related as a(z) = [l(+z)12, and i(z) = [&z)12. From (2.3) with p = q = 0.5 we im- 
mediately find 

Hence 
r(z) = z(ez - 1) + 2&z). 
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[fiz)]2 = z2(e2z - 2eZ + 1) + 4z(ez - l)@z) + [I^(-tz)]2 

and equating coefficients of both sides of the above, we finally obtain for n ~3 (note 
that f’(z) = G(2z)) 

,. n(n-1) 
1 1 . 

a = - n 2 y-2-1 2”-3-1+ i 
j=l 

2n-2_1 1 . (3.16) 

Hence, by Lemma 2, w, has a solution 

W 
2 = ki2 wk(;) z & 

x l-2k-2+ 
i 1 -jir (“;‘) j&j. 2J+r-1 (3.17) 

For asymptotic analysis of (3.17), we apply Rice’s method to illustrate how it 
works. Note that the analytical continuation of f(k) in (3.17) is easy, since the last 
series in (3.17) can be extended as CT= 1 (“J ’ )(1/(2J- 1)) (it can be proved that the 
series is convergent for all z). Hence, using Rice’s method 

W n+l 1 ’ 
- = - - n+l 1 2ni c 

[n ; z]_/-(z)&, 

where 
z2’-1 

AZ) = (2z-l)(2z-’ -1) I 
1-2Z-2+ -A- -j!, (“I’) &I. 21-l-1 (3.18) 

We extend now the circle of the integration such that the poles of f(z) are included, 
that is, the points ok and xk, k=O, f I, -.. . We evaluate separately the residues of 
the function under the integral for cue= 1, x0 = 0 and ok, Xk, k#O. We use the 
Taylor expansions already presented in (3.11) and (3.12). In addition, we have for 
w=z-1 (see [3,5,7]) 

[n;z]-t 1+w(H,_,-l)+w2(1-H,_1++H,Z_r++H~2_),) , (3.19a) 1 
-pw+O(w’) for z-, 1, 

Y- -0+0(z) for z-+0, 

(3.19b) 

(3.19c) 

where H,, HA” are harmonic and generalized harmonic numbers [9], ~1 and u are 
defined in (1.3). Then the contributions from o. = 1 and x0= 0 to w,, denoted as 
W II, 1 9 wn, 2 are respectively 

wn.1 =- E2 I +n ln2n+yn Inn- +Ln lnn+ncw-+ln2n 

+(+L-y-+)lnn-a++L-]y-+ , 
1 

(3.20) 
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where a=+L’- +Ly-L,u++y’++n’, and 

n 
W II,2 = - 

L I 1 
-++fJ . (3.21) 

TO find the contribution from ok and Xk, k#O, we use the following Taylor ex- 
pansions for u = z - ok : 

where 
c3 = O.SXkWkr’(-Ok)-~(-Ok)Xk-0.5r(-0k), 

and cl is given in (3.15). Then the contribution w,,~ from o_+, k#O is 

n2 Inn n2 n Inn 
W 43 - - -y-- wJg2 n) + 3 ~lmz2 n) + 7 ~22(1%2 n) 

(3.22) 

where 6(x) is defined in (3.7) while oi(x), i= 1,2,3 are complicated fluctuating 
functions with very small amplitude (see also (3.27b)). Finally, the contribution 
from &, kZ0 is 

W&4 - - i ,j nWkT(-ok)~kxk [-i-j, (x:-l)&] 
(3.23) 

k+: 

and w, = wn, I + w,,~ + w,,~ + w,,~ + O(ln’ n). 

To complete our analysis, we need an asymptotic approximation for 6. But 
from [6,14] we have 

n Inn 
In - - 

L 
+ n t + + + 6(log2 n) 

[ I 
- $ + 6r(log2 n), (3.24) 

where 6(x) is defined in (3.7) and 

a&) = - i k;O +.$Xkr(-c&)eZxkiw. (3.25) 

Now, the variance of L,, is given by var L,,=2u,-0,,+2w,,+I,,-l,f, and after 
some tedious algebra, one finds 

var L, = Bn2 + A n + O(ln’ n) (3.26) 

where 
11 2.u 112 

B= -12---L+ 
- -f_S2(log2n)+ 
CL2 

&log2 n) 

(3.27a) 
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a&) = i e2nkix 
kc-ra 

Q-wk) - +LoJe-ok) - okry-ok) 

k#O 

(3.27b) 

and A is given in the main theorem (see (2.18)). 
To prove the main theorem, we need to show that B=O. Let us first consider the 

Fourier coefficient of S2(x) for k=O. We denote it by So. Then from (3.7) 

6,=$ c ~/%lr(--~~)~(--%I) 
I+m=O 
l,m*O 

where { = n2/L. The last equality follows from [1,5] 

Ir(M12 = n 
y sinh(sry) * 

We further can transform (3.28) as 

so = - f. f, 5 nco e-21c(2n+1) = $ f. log(l - e25(2n+ ‘1). 

This can be rewritten as 

S,=gln fi 
n=t l-:-z@ - I, 

?ln ifi 
1 

n-l l-e -4tn * 

(3.28) 

(3.29) 

Using a functional equation for the Dedekind t;l-function Kirschenhofer, Prodinger 
and Schoissengeier [6] have proved that So can be reduced to (see Appendix A) 

x2 11 
60=-$-12-2;. (3.30) 

Hence the term B in (3.27) can be transformed into 

B = -&log2 n) + &log2 n) + $ ol(log2 n) = 6s(log2 n), 

where &f(x) is the Function S2(x) -So. Note that now B is expressed in terms of 
periodic function as(x), with very small amplitude and mean zero. This function is 
continuous (since the Fourier series associated with the function is absolutely con- 
vergent). Assume now as(x) is not identically zero. Then, as(x) would take values, 
say less than -E, for arguments in an interval, say [a, b]. Since log2 n is dense 
modulo 1, the leading factor of the variance would be negative for infinitely many 
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values of n. This is a contradiction, since var L,,rO for all n. Hence ~&(x)=0 and 
thus B=O. This completes the proof of the main theorem. 

Appendix A 

Proof of (3.30). Let us define a function 

g(x) = ‘G, 1 _e!&WX - 

Then, by (3.24) 

8, = $g(Un)- ;g(Wrr), 

where < = n2/L. To estimate (A.2), we introduce a new function 

(A.11 

(A-2) 

(A.3) 

which can be rewritten as 

f(x) = C_ ln(1 + e-“x) = 
n=l 

Note that p as defined in (2.14) is equal to 

Since n,“=, (l+q”)=n,“=, 1/(1-q’“+‘) the function f(x) 
terms of g(x) as 

p =f(ln 2). 

f(x) = ln J0 I _ ,_tzn + ,rx = g(xi2n) - g(xW 

(A.41 

can be represented in 

(A-5) 

To estimate the RHS of (A.5), we apply a functional equation for the Dedekind 
q-function. The q-function is defined as [2] 

tl(x) = eni.u/12 nfi, (1-e2ninx), Imx>O, 

and it satisfies the following functional equation [2] 

In q(i/x) - In q(i) = +ln x. 

But in [2, p.481, it is also shown that 

In q(ix) = +Xx-g(x), 

(A.@ 

(A-7) 

where g(x) is defined in (A.1). Therefore, the above and (A-7) imply 

g(l/x)-g(x)=&W(x-l/x)-+lnx, x>O. (A-8) 
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Using now (AS), (A.8) and the following 

f(x) = g(x/2n) - g(x/st) - g(2lc/x) + g(st/x) -f(2&x) 

one proves immediately that 

f(x) = 8 
n2 
; - *In 2 + &x-f(2n2/x), 

and by (A.2) 

(A.9) 

(A.10) 

But f(ln 2) =p, so by (A.9) 

R2 
jf=&~ - +ln2++ln2-f(2& 

and (3.30) follows from (A-10) and the above. q 
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