NOTE

ON THE INTERPOLATION OF DOL-SEQUENCES

Helmut PRODINGER

Institut für Mathematische Logik und Formale Sprachen, TU Wien, 1040 Wien, Austria

Communicated by A. Salomaa Received April 1979 Revised June 1979

Abstract. For a DOL-sequence $(h^n(w))_{n=0}^{\infty}$ a method is described to see this sequence as a function $\alpha \in \mathbb{R}^+ \mapsto h^{\alpha}(w) \in \mathcal{U}'$, where $\mathcal{U}' \supseteq \Sigma^*$ is a convenient structure.

Let Σ^* be the free monoid with unit ε generated by Σ and $\binom{x}{y}$ the binomial coefficients for words [1, 3, 4, 5, 6, 7] (i.e. the number of representations of $x = x_0y_1x_1 \cdots y_nx_n$, where $y = y_1 \cdots y_n$, $y_i \in \Sigma$).

Let

$$\mathcal{U} = \left\{ \sum_{w \in \Sigma^*} a_w w \mid a_w \in \mathbf{R}, \ a_\varepsilon = 1 \right\},\$$

i.e. the subset of $\mathbb{R}\langle\!\langle \Sigma^*\rangle\!\rangle$ with $(a, \varepsilon) = 1$ (notation from [9]). In [5],¹ among other things, the following is shown: \mathscr{U} with the Cauchy product is a group, the equation $\xi^n = w$, $n \in \mathbb{N}$, $w \in \mathscr{U}$ has a unique solution, and it is possible to make \mathscr{U} to a topological space by means of the product topology of \mathbb{R} . The mappings $(x, y) \mapsto xy$, $x \mapsto x^{-1}$, $x \mapsto x^{1/n}$ are continuous. Furthermore Σ^* can be embedded into \mathscr{U} by means of the mapping $w \mapsto \sum_{z \in \Sigma^*} {w \choose z} z$. Here it is convenient to allow the coefficients to be complex numbers; the same statements are valid. Let \mathscr{U}' be obtained by replacing \mathbb{R} by \mathbb{C} in the definition of \mathscr{U} .

In [3, 4, 8] it is implicitly shown that for a given homomorphism h and given words w, z

$$\binom{h^n(w)}{z} = \eta_1' M^n \eta_2$$

where η_1 , η_2 are $(m \times 1)$ -vectors and M is a $(m \times m)$ -matrix with entries in \mathbb{N}_0 . $(m, \eta_1, \eta_2, M$ depending on h, w, z.)

Now let be $\alpha \ge 0$ and $z \in \mathbb{C}$. z^{α} is defined by $|z|^{\alpha} e^{i \operatorname{Arg} z \alpha}$.

¹ Available from the author; submitted for publication.

The theory of functions of matrices [2; Ch. V] yields a representation of f(M), where M is a $n \times n$ -matrix and $f: \mathbb{C} \to \mathbb{C}$ by

$$f(M) = \sum_{k=1}^{n} [f(\lambda_k) Z_{k1} + f'(\lambda_k) Z_{k2} + \cdots + f^{(m_k-1)}(\lambda_k) Z_{km_k}]$$

provided the derivatives exist. Here Z_{kj} are independent from f and λ_i are the eigenvalues of M with multiplicity m_i . Thus with $f_{\alpha}(z) = z^{\alpha}$ the matrix M^{α} can be defined and

$$\binom{h^{\alpha}(w)}{z} \coloneqq \eta_1^t M^{\alpha} \eta_2.$$

From the above representation of M^{α} it can be concluded that $\alpha \mapsto M^{\alpha}$ is continuous. Hence $\alpha \mapsto \binom{h^{\alpha}(w)}{z}$ is continuous for each z, and this means that $\alpha \in \mathbb{R}^+ \mapsto h^{\alpha}(w) \in \mathcal{U}'$ is continuous.

Remark that the Cayley-Hamilton theorem gives a representation

$$M^n = \sum_{i=1}^s P_i(n)\lambda_i^n$$

where the P_i 's are polynomials with matrices as coefficients and the λ_i 's are eigenvalues. By a continuity argument

$$M^{\alpha} = \sum_{i=1}^{s} P_{i}(\alpha) \lambda_{i}^{\alpha}$$

is obtained.

References

- [1] S. Eilenberg, Automata, Languages and Machines, Vol. B (Academic Press, New York, 1976).
- [2] F. R. Gantmacher, *Matrizenrechnung, Teil 1* (VEB Deutscher Verlag der Wissenschaften, Berlin, 1958).
- [3] P. Johansen, The generating function of the number of subpatterns of a DOL sequence, *Theoret.* Comput. Sci. 8 (1979) 57-68.
- [4] P. Ochsenschläger, Verallgemeinerte Parikh-Abbildungen und D0L-Systeme, Bericht Nr. AFS-33/77, Darmstadt (1977).
- [5] H. Prodinger, Erweitungen des freien Monoides Σ^* , Dissertation TU Wien (1978).
- [6] H. Prodinger, On a generalization of the Dyck-language over a two letter alphabet, *Discrete Math.* 28(3) (1979) 269-276.
- [7] H. Prodinger, Übertragung kombinatorischer Begriffe auf Halbgruppen, Diplomarbeit TU Wien (1976).
- [8] C. Reutenauer, Sur les séries associées à certains systèmes de Lindenmayer, Theoret. Comput. Sci. 9(3) (1979) 363-375.
- [9] A. Salomaa and M. Soittola, Automata-theoretic Aspects of Formal Power Series (Springer, Berlin, 1978).