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ON THE AVERAGE HYPEROSCILLATIONS
OF PLANTED PLANE TREES

Peter KIRSCHENHOFER and Helmut PRODINGER
Received 16 September 1981

Assume that the leaves of a planted plane tree are enumerated from left to right by 1, 2, . . . .
The j-th s-turn of the tree is defined to be the root of the (unique) subtree of minimal height with
leaves j, j + 1, . . ., j + s -1 . If all trees with n nodes are regarded equally likely, the average level
number of the j-th s-turn tends to a finite limit a . (j), which is of order j 1/2 . The j-th "s-hyper-
oscillation" al(j)-a,+1(i) is given by I al(s)+O(j-1"=) and therefore tends (for j --oo) to
a constant behaving like Y817r.s11 2 for s --ee . These results are obtained by setting up appro-
priate generating functions, which are expanded about their (algebraic) singularities nearest to
the origin, so that the asymptotic formulas are consequences of the so-called Darboux-P6lya-
method .

1. Introduction

In a recent paper [11] R. Kemp studies the average oscillation of a stack
during postorder traversing of a binary tree. The problem turns out to be equivalent
with the study of the average level number of the so-called "MAX-turns" resp .
"MIN-turns" of a planted plane tree, which are defined in the following way

The MAX-turns are just the leaves of the tree (i.e . the nodes having no son),
which are assumed to be enumerated from left to right by the natural numbers . The
j-th MIN-turn is the root of the (uniquely determined) subtree of minimal height
which has exactly the two leaves j and j+1 . (Compare the examples in [11] .) The
average level number of the j-th MAX- (MIN-)turn of all planted plane trees with
exactly n nodes (where all such trees are regarded equally likely) converges for n---
to a finite limit a l (j) resp . a2 (j) . (In Kemp's notation these numbers equal al (j) =
= lim en (j), a2 (j) = lim rn (j).) Kemp shows that these numbers have the followingn_o

	

n_o

asymptotic behaviour for j-- - : [11, Corollary 6]
8

al (j) = 8 j112 + I + O (j -112),

8
a2 (j) =

2n
.1/2 _ 1-I- O (j -1 /2) .
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The difference
(1 .2)

	

a1(J)- a2(j) = 2+O(j -1/2)

describes the average oscillation of the contour of the trees .
Regarding these results, it is natural to consider the following more general

problem : Define the J-th "s-turn" (for a tree with at least J+s-1 leaves) to be the
root of the (uniquely determined) subtree of minimal height with leaves j, j+ l ; . . .
. . . ,J+s-1 . The 1-turns (2-turns) are just the MAX-turns (MIN-turns) from above . Let
as (j) denote the average level number of the j-th s-turn of all planted plane trees
with exactly n nodes "for large n" (that means the limit of the mean value for n--).
We will show that the differences a1(J) - as +1(J), which can be called the j-th "s-
hyperoscillations" of the trees, behave like

a10)-as+1(J) =
a2(s)+0(j-1/2),

(1 .3)

and therefore

with

a.1+1(J) =
2~

j1/2-QS+O(j -1 /2), (j
l

Lo s = F s1/2 -2+ 0(S -1/2) , (S
°O)

We would like to emphasize that the interest of this paper is largely metho-
dological : Our way of handling the problem does not follow the classical approach of
first deriving exact enumeration results and afterwards using approximations, but it
heavily relies on the pure use of appropriate generating functions and the principle
that the coefficients of a generating function are largely determined by the location
and nature of its singularities . The advantage of this method is, that it will be appli-
cable even in those cases where no exact enumeration formulas are available . (Com-
pare e.g . [5], [13], [15], where a similar philosophy is underlying .)

At the end of the paper we give an extensive list of papers dealing with related
problems .
Remark. In the following we will frequently use the abbreviation (f(x) ; x') for the
coefficient of x' in the (formal) power series f(x).

2. Generating functions

Using a suggestive terminology due to Ph . Flajolet [3] the family -4 of planted
plane trees (sometimes also called "ordered trees") can be defined by the following
formal equation.
(2.1) °.JJ=o+o+ 0 + 0 + . . . .

An immediate consequence is the well-known equation

(2.2)

	

C(z) = z+zC(z)+zC2(z)+ . . . =

	

z
1-C(z)



for the generating function of the numbers (C(z), z°) of planted plane trees with
exactly n nodes (Catalan numbers) .

For the sequel it is necessary to make some definitions : ("tree" will always
denote a planted plane tree)

15(n, A .) . . . the number of trees with n nodes and 2 s-turns

(2 .3)

	

F, (z, y) := Z Z is (n, 2)z"Y z ; F(z, y) := Fl (z, y) .
n=1 . 0

(That means C(z)=F(z, 1) .)
Relation (2.1) implies (compare [11])

zF(z, y)

	

z
(2.4)

	

F(z, y) = zY + 1- F(z, y) = z
(y-1)

+ 1- F(z, Y)
Further we set
(2.5)

	

Fs; j (z, y) *:=

	

is (n, 2)z"y'`, Cs ; ; := Fs; ; (Z, 1)
"R=1 ) j

for the corresponding generating functions of the trees with at least j s-turns .
Let GS';' ; (z) denote the generating function of the number of trees with at

least j s-turns and a level number of the j-th s-turn which is greater than h (i-= 0) and

(2.6)
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HS; j (z) := Z Gsh j (z) .
hi-=O

The coefficient of z" in this last power series is just the sum of level numbers of the
j-th s-turn . In order to derive a recurrence relation for the functions H,, j we first
observe that the following holds

Lemma 1 . For all h ?=- 0, j- 1

t-1

	

j-1
(2.7)

	

Gsti;1J(z) = z

	

C(z)t -1-r Z (F(z, y)r, y`) GS'', -,(z) .
92--- 1 r=0

	

i O

Proof. Observe that by h+ 1 z 1 only those trees give a nonzero contribution to the
series Gsh ; 11 , the j-th s-turn of which is not situated in the root. Let r+ 1 denote the
number of that one of the t subtrees of the root, in which the j-th s-turn is situated .
The first factor in the sum over r in (2.7) is constituted by the fact; that there is no
restriction for the subtrees r+2, . . ., t (because they are situated on the right of the
subtree in question) . The sum-over-i-term originates from the observation, that the
j-th s-turn of the tree is the j-i-th s-turn of the r+l-st subtree of the root iff the
first r subtrees contain together i leaves. (If the j-th s-turn does not lie in the root, it
must be situated in the same subtree as the j-th leaf.)

Lemma 2. For all j' 1

Z

	

j-1
(2 .8)

	

H,; j (z) = Cs; j (z)+

	

Z C

	

1

	

, Y~ Hs; j - • (z)
1- C (Z) t=o 1- F(z, y)'

Proof. Summing up in (2.7) and regarding that

GS°, (Z) = Cs ; j (Z)
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yields

which equals
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t-1

	

i-i
Hs;i(z) = Cs;i(z)+z Z' C(z)t _

1_r Z (F(z, y)r,Y`)Hs;j (z)tzl r=0

	

i=0

i-i
Cs;i (z) +z Z Hs;i - i(z) Z (F(z, Y)r , Y i) Z C(z)t-l-r

i=0

	

r?0

	

t-1?r

and this is just the right side of equation (2.8) .

The following considerations simplify very much by the use of the double
generating function
(2.9)

	

Hs (z, y)

	

~' Hs ; i (z) yi .
j 1

Lemma 3. Hs (z, y) = z (1
	 Y	

y)Z
d (z, y) . As (z, y), where

(2.10)

	

d (z, y)

	

C (z)- F(z, Y), As (z, y)

	

C (z) - Fs (z, y
Proof. By (2.8)

H, (z, y) = iZY'Cs;i(z)+1-::Z

	

1 -F(z,Y) H5(z' Y) .

Abel's summation formula shows that

Y
I+1 _	 y

jZ Y3C5; i (z) _ jZ
6-1

[Cs; i (z) - CS; i + l (z)] Y-1 =
i+1 -

_

	

(Fs (z, y), Yi)Y	Y = Y ds (z, Y)Aii-l

	

Y-1

	

1-Y

Relations (2.2) and (2.4) establish

[1- C(z)] [1- F(z, y)]

	

A (z Y) l l - C(z) 1- F(z, Y)1 -

_

	

1
d (z' Y) [d (z' Y) z(1 -Y)]

from which the result is immediate .
The desired average level numbers a s (j) of the j-th s-turn "for large n" are

given by the limit
(H ; • (z), z")(2.11)

	

«s(j) = -	 (C(`),	z")

In the following we will derive a theorem characterizing the generating functions
(2.12)

	

As (Y)

	

Z «s (j) Yii-1

of these numbers, the proof of which is established by investigating the behaviour
of the functions C(z) and Hi(z) around their (algebraic) singularity q (= 1/4)
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nearest to the origin and does not depend on any knowledge of the explicit values
of is(n, A) .

By (2.2) we have

(2.13)

	

C(z) = 2 [1-)TI-_4z] = C(q) - (q- z)'12, (z -- q -)

where q=
4 is the unique singularity of C(z) on its circle of convergence .

A similar expansion holds for the functions Hs ; j (z)

Lemma 4.

(2.14)

	

Hs; ; (z) = Hs;, (q) - as, ; (q - z)112 + 0 ((q - z)), (z -+ q - )

where q=
4

is the unique singularity on the circle of convergence .

Proof. Lemma 2 and Relations (2.2), (2.4) show that

'-i	Hs;; (z) = Cs ;; (z) + C (z) [Hs; ; (z) +

	

F(z, y)
C z + 1 - Y, Y`> H,; j - i (z))

or equivalently

Hs; ; (z) = Z C (z) Cs; ; (z) + z C2(Z) iZ CF(, Y) _Y, Y') Hs.. ; (z) for all j z 1 .-

From this, by induction, it is sufficient for the proof of the lemma to show
a) that each of the functions Cs ; j (z) allows an expansion

(2.15)

	

C.; ;(z) = Cs ; ;(q)-(q-2)112+0((q-z)), (z q) and

b) that for any fixed i the series (F(z, y), yi) in z has a radius of convergence
greater than q . (In fact it is 1 .) Observing that a tree has j s-turns, iff it has j+s-1
leaves (for jz1 ; the case j=0 corresponds to a number of leaves in the interval
[1, s-1])

;+s-2
Cs;i(z) = Ci; ;+s-1(z) = C(z)-

	

(F(z, y), y')
~=1

and (2.15) is proved, if we prove assumption b) . Now (2.4) shows

(2.16)

	

F(z, y) = 2 (1-z(1-y)-~(1+z (1-y))2-4z),

which means, that for any fixed 0<Yo51 the series F(z, yo) has radius of convergence
(1 + J) -2 (the term beyond the square root vanishes for z=(1 f Y) -2) . A for-
tiori, each of the coefficient series (F(z, y), y') must converge for IzI <(1 + ~) -2
(0 <yo 51), which means for any z with (z I < 1 (t i (n; Z)!-=: 0 ! ). I
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(2.17)
(HS ; ; (z), z") -

and therefore

(2.18)

	

a., (j) = as, ;

This last relation may be expressed in a shorter form

HS (q, y)- H.,(z,y)(2.19)

	

AS(Y) = lim	
(q
- z)1/2Z q-

where the limit shall be understood as to be carried out for each coefficient of the
term, which is considered as a formal power series in y . Lemma 3 leads now to the
following
Theorem 1. The generating function of the average level numbers of the j-th s-turn
(j i~ 1) "for large n" is given by

(2.20)

	

A., (Y) _ (14Y)2 (A (q, y)+ As (q, y)) .

Proof. Let Oy (q-z) denote a formal power series in y, the coefficients f; (z) of which
are functions in z behaving like fj(z)=0(q-z) for z-'-q -. (The 0-constant may
depend on j.) With this notion we have

A(z, y) = A(q, y)-(q-z)1/2+0y(q-z)
(2.21)

	

Fs (z, Y) = FS(q, Y)+0y (q- z)
by the same argument as in the proof of Lemma 4, and therefore

(2.22)

	

A.,(z,y) = 45(q,y)-(q-z)1/2+Oy(q-z) .

Inserting (2.21) and (2.22) in Lemma 3 completes the proof.

Observing
(2.23)

	

F(z, y) = y . F2 (z, y)
the theorem allows to determine AI (y) and A2 (y) immediately :

Corollary 1 . The generating function of the average level numbers of the j-th MAX-
(MIN-)turn "for large n" is given by

1	2 I
(

1-y) 1/2
A1(Y) = 1-y+(1-y)3/2

l+ 8
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By a well-known theorem of Darboux-Polya (comp . [2, p. 277), [7, p. 211f],

1
(C(z), z") ^' 2 F7t q-"n -3/2

q q-"n-3/2 (n

(2.24)

as ,;
2

A2(Y) = A1(Y)- 1 ?y+ 12y -A1(Y) .
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Proof. By (2.16) we obtain

d(q, y) = C(q)-F(q,Y) = i 8Y+(12Y1/2
(i+1-

g
Y)"2

(2.25)

	

f-2
thereby the first equation of (2.24) . By (2.23)

d2(Y) = C(I)-
F(q, Y)

and thus
Y

A (Y)+d2(Y) = (2 + 1 YY)A(y)- 1 YY C(q)

yielding the second identity of (2 .24) . 1
So A1(y) and A2(y) have algebraic singularities at y=1, and the Darboux

Polya-theorem establishes (1 .1) .

3. The average hyperoscillation

This section is devoted to the analysis of the asymptotic behaviour of the num-
bers a.,(j) for general sand j-- -. We start with the investigation of the functions
A1 (y) -As+1(y), that is with the generating functions of the j-th "s-hyperoscillations"
a1(j)-as+1(j) (compare the comments in the introduction) . The following theorem
shows that there is an interesting symmetry in the behaviour of a1(j)-as+1(j) if

considered as a function either of j (with'fixed s) or of s (with fixed j) .

Theorem 2. The double generating function

(3.1)

	

MY, u) := Z zY'us(al(1)- as+1(1))
~21s?1

of the j-th "s-hyperoscillation" fufills

(3.2)

	

A (Y, u) =

	

4uy

	

(d (q, u) -,d (q,y)1
(1-y)(1-u)

	

y-u

Proof. We will make use of the fact that, by the definitions,

(3 .3)

	

F, (z, y) =
F1 z1Y)

+[C(Z)-C,;s(Z)J •
By Theorem 1

A (Y, u) = Z us[A1(Y) - As+1(Y)J = (1y2 s
us[d (q, y) - ds+1(q, Y)J

s~1
=4 )

and with Abel's summation formula
4yu	

[d (q, Y) + Z (1-us)[ds+2(q, y)y)] =(1-y)2 (1- )

	

s 1

4yu

	

[A (q,Y)-42(q, y) - Z us[ds+2(q, y)-ds+1(q,Y)J] _(1 -Y),(1 - u)

	

s=_1
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which equals by (2 .23) and (3 .3)

4yu

	

[- F(q, y) +
F(q, Y) + (1 _ y)

	

us
Fl; s+s (q,y)

J(1-y)2(1-u)

	

y

	

szl

	

y

and again by Abel's summation formula

4yu
(1 - y)(l - u)

u

	

u
	 4yu	

[!F(

	

1	 y
(1 - Y) (1-u) y

q,y)+ysE 1 u

y

X [F,;s+1(q, Y)-FI;s+2(q, y)]] =

(1 - Y) (1 - u) [y F(q,
y) + y y u u F1 ; 2 (q, y) -

` s+1

1_
U sz u

s+1(F(q, y), Ys+1)y

	

_

(1 -
y(1

- u) [-- F(q,Y)+I Y u u[F(q, y)-Y(C(q)-C1 ;2(q))]-

1
y _u [F(q, u)-u(C(q)-C1;2(q))] _]

LO s

P. KIRSCHENHOFER, H . PRODINGER

s

[1 F(q,y)+ 1 Z(ul Fl;s+1(q,Y)}
Y

	

Y $;-=i Y

(1 - y)(1- u) [y 1 u F(q>Y) - y 1 u F(q, u),

from which (3.2) follows immediately .

Theorem 2 allows to transfer the knowledge about the asymptotic behaviour
of al (j), j---, (Relation' (1 .1)) to the behaviour of as+1(j) :

Corollary 2.

(3.4)

	

a,+1(j) = al (j) « 2S) +O(j -112), (j

or equivalently

with

a3+1(j) = 2=j1/2-es+0(j -1/2), (j
l

7S 1/2 - +O (S-1/2), (s w

x

oo)



r

Proof. Using the notion O„(f(y)) as defined in the proof of Theorem 1, we have
by (3 .2) and (2.25)

4u

	

4(q, u)+O((1-y)1/2)
A(y, u) = (1 - y)(1-u)

	

1-y

	

(1+o(1-y)) _
(1-u) (1-1-u)

4ud (q, u) +O ((1 _y)- 1/`) ,(1 -y)(1 - u)2

1 A1 (u)
= 1_

y
2 +O„((1- y) -1'2), (y

and therefore by Darboux's theorem

a,2(S) +O(j -1/2), (j

Observing (1 .1) the result is now immediate .
Remark . The exact value of al (s) follows from Kemp [11, (37a)] resp . our generating
function (2.24) to be

4

	

16

	

'-1 ;-1

	

1

	

5(3.6) al (s) = 3 (s+2)-
9 S(s) where S(s) = .,

k=1 k (k + 1) 3-kP'`(3 )
(Pk denotes the derivative of the k-th Legendre polynomial) .

Corollary 2 implies

(3.7)

	

os = 3+ 3 s- 8 S (S) .

The values computed by the asymptotic formula (3.5) coincide even for small s very
well with the exact values computed by (3 .6) and (3.7) :
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s Q, (exact value) Q, (asymptotic
formula)

I
1 1 .0000 1 .0958
2 1 .6667 1.7567
3 2.1852 2.2640
4 2.6214 2.6915
5 3 .0046 3.0682
6 3.3502 3.4088
7 3 .6673 3.7220
8 3.9622 4.0135
9 4.2387 4.2873
10 4.5000 4.5463
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