IDENTITIES INVOLVING RATIONAL SUMS BY INVERSION AND PARTIAL FRACTION DECOMPOSITION

HELMUT PRODINGER

Abstract

Identities appearing recently in [2] are treated by inverting them; the resulting sums are evaluated using partial fraction decomposition, following Wenchang Chu [1]. This approach produces a general formula, not only special cases.

1. Introduction

In [2], we find the sums

$$
\begin{aligned}
\sum_{k=1}^{n}\binom{n}{k}(-1)^{k-1} \frac{1}{\binom{x+k}{k}} \sum_{1 \leq i \leq j \leq k} \frac{1}{x^{2}+(i+j) x+i j} & =\frac{n}{(x+n)^{3}} \\
\sum_{k=1}^{n}\binom{n}{k}(-1)^{k-1} \operatorname{complicated}(k) & =\frac{n}{(x+n)^{4}}
\end{aligned}
$$

Here, we will discuss an alternative approach to such identities, which will produce the general formula.

It is based on two principles: inverse pairs and partial fraction decomposition.
I am sure that many other approaches will also work, but I have chosen one that I find useful and appealing. Of course, it is not limited to the sums treated in this paper.

2. Inverse pairs

The following inverse relations are well-known:

$$
b_{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k-1} a_{k} \longleftrightarrow a_{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k-1} b_{k}
$$

They are also easy to prove, e.g., with the use of exponential generating functions.
So, if we want a "nice" answer, like $b_{n}=\frac{n}{(x+n)^{2}}$, we must compute

$$
a_{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k-1} b_{k}
$$

to find the "complicated" term.
A technical comment: We will treat $x=0$ as a limiting case, otherwise we would have trouble with b_{0}, and we would have to artificially define it as 0 .

The computation of

$$
a_{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k-1} \frac{k}{(x+k)^{2}}
$$

(and similar quantities) will be treated in the next section.

3. Partial fraction decomposition

The following approach is based on [1].
Consider (for $n \geq 1$)

$$
T:=\frac{n!}{z(z-1) \ldots(z-n)} \frac{z}{(x+z)^{2}}
$$

and perform partial fraction decomposition:

$$
T=\sum_{k=1}^{n}\binom{n}{k}(-1)^{n-k} \frac{k}{(x+k)^{2}} \frac{1}{z-k}+\frac{\lambda}{(x+z)^{2}}+\frac{\mu}{x+z}
$$

Now we multiply this relation by z and let $z \rightarrow \infty$ to find

$$
0=\sum_{k=1}^{n}\binom{n}{k}(-1)^{n-k} \frac{k}{(x+k)^{2}}+\mu
$$

This evalutes the sum:

$$
\sum_{k=1}^{n}\binom{n}{k}(-1)^{k-1} \frac{k}{(x+k)^{2}}=(-1)^{n} \mu
$$

Now

$$
\begin{aligned}
(-1)^{n} \mu & =(-1)^{n}\left[(x+z)^{-1}\right] \frac{n!}{z(z-1) \ldots(z-n)} \frac{z}{(x+z)^{2}} \\
& =(-1)^{n}\left[(x+z)^{1}\right] \frac{n!}{(z-1) \ldots(z-n)} \\
& =\left[z^{1}\right] \frac{n!}{(1+x-z) \ldots(n+x-z)} \\
& =\frac{n!}{(1+x) \ldots(n+x)} \sum_{k=1}^{n} \frac{1}{k+x} .
\end{aligned}
$$

This produces the identity

$$
\sum_{k=1}^{n}\binom{n}{k}(-1)^{k-1} \frac{1}{\binom{k+x}{x}} \sum_{j=1}^{k} \frac{1}{j+x}=\frac{n}{(x+n)^{2}}
$$

This instance was the warm-up for the general instance $b_{n}=\frac{n}{(x+n)^{d+1}}$, which is not much more complicated.

Analogous computations lead to

$$
\sum_{k=1}^{n}\binom{n}{k}(-1)^{k-1} \frac{k}{(x+k)^{d+1}}=(-1)^{n} \mu
$$

with

$$
\begin{aligned}
(-1)^{n} \mu & =(-1)^{n}\left[(x+z)^{-1}\right] \frac{n!}{z(z-1) \ldots(z-n)} \frac{z}{(x+z)^{d+1}} \\
& =(-1)^{n}\left[(x+z)^{d}\right] \frac{n!}{(z-1) \ldots(z-n)} \\
& =\left[z^{d}\right] \frac{n!}{(1+x-z) \ldots(n+x-z)} \\
& =\frac{n!}{(1+x) \ldots(n+x)}\left[z^{d}\right] \frac{1}{\left(1-\frac{z}{1+x}\right) \ldots\left(1-\frac{z}{n+x}\right)} \\
& =\frac{1}{\binom{x+n}{n}}\left[z^{d}\right] \exp \left(\log \frac{1}{1-\frac{z}{1+x}}+\cdots+\log \frac{1}{1-\frac{z}{n+x}}\right) \\
& =\frac{1}{\binom{x+n}{n}}\left[z^{d}\right] \exp \left(\sum_{k=1}^{n} \sum_{j \geq 1} \frac{z^{j}}{j(k+x)^{j}}\right) \\
& =\frac{1}{\binom{x+n}{n}}\left[z^{d}\right] \exp \left(\sum_{j \geq 1} \frac{s_{n, j} z^{j}}{j}\right) \\
& =\frac{1}{\binom{x+n}{n}}\left[z^{d}\right] \prod_{j \geq 1} \sum_{l \geq 0} \frac{s_{n, j}^{l} z^{j l}}{l!j^{l}},
\end{aligned}
$$

with

$$
s_{n, j}=\sum_{k=1}^{n} \frac{1}{(k+x)^{j}} .
$$

Consequently

$$
(-1)^{n} \mu=\frac{1}{\binom{x+n}{n}} \sum_{l_{1}+2 l_{2}+3 l_{3}+\cdots=d} \frac{s_{n, 1}^{l_{1}} s_{n, 2}^{l_{2}} \ldots}{l_{1}!l_{2}!\ldots 1^{l_{1}} 2^{l_{2}} \cdots}
$$

Theorem 1.

$$
\sum_{k=1}^{n}\binom{n}{k}(-1)^{k-1} \frac{k}{(x+k)^{d+1}}=\frac{1}{\binom{x+n}{n}} \sum_{l_{1}+2 l_{2}+3 l_{3}+\cdots=d} \frac{s_{n, 1}^{l_{1}} s_{n, 2}^{l_{2}} \ldots}{l_{1}!l_{2}!\ldots 1^{l_{1}} 2^{l_{2}} \ldots}
$$

with

$$
s_{n, j}=\sum_{k=1}^{n} \frac{1}{(k+x)^{j}} .
$$

For instance, we recover the formula for $d=2$, since

$$
\frac{s_{n, 1}^{2}+s_{n, 2}}{2}=\sum_{1 \leq i \leq j \leq n} \frac{1}{x^{2}+(i+j) x+i j}
$$

as one can easily check. The other instance $d=3$, given in [2] evaluates here handily as $s_{n, 1}^{3} / 6+s_{n, 1} s_{n, 2} / 2+s_{n, 3} / 3$.

References

[1] Wenchang Chu. A binomial coefficient identity associated with Beukers' conjecture on Apéry numbers. Electron. J. Combin., 11(1):Note 15, 3 pp. (electronic), 2004.
[2] J.L. Díaz-Barrero, J. Gibergans-Báguena, and P.G. Popescu. Some identities involving rational sums. Applicable Analysis and Discrete Mathematics, 1, 397-402, 2007.

Helmut Prodinger, Department of Mathematics, University of Stellenbosch, 7602 Stellenbosch, South Africa

E-mail address: hproding@sun.ac.za

