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Abstract

An alternative method is presented to compute the moments of the probability distribution
de'ned by the Gaussian polynomials. It computes the cumulants 'rst.
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Di Bucchianico (1999) has considered the probability distribution de'ned by the
(probability) generating function

Fm;n(q) =

[m+n
m

]
q(m+n

m

) ;

with the Gaussian polynomials
[
m+n

m

]
q
=

(1− q)(1− q2) · · · (1− qm+n)
(1− q)(1− q2) · · · (1− qm) (1− q)(1− q2) · · · (1− qn) :

He discussed several methods to compute the moments of this distribution.
In this short note, I want to draw the attention of the reader to another (potentially

superior) method that is due to Panny (1986). This method 'rst computes the cumu-
lants and translates them into the moments by a standard formula. This yields explicit
formul8 for all the moments.
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Note that

Fm;n(q) =
g1(q) · · · gm+n(q)

g1(q) · · · gm(q)g1(q) · · · gn(q)
with

gk(q) =
1− qk
k(1− q) ;

where gk(q) is a probability generating function of a random variable Xk . The function
log gk(eit) is the generating function of the cumulants. 1 Panny has computed that as

log gk(eit) =
(k − 1)it

2
+
∑
j¿1

B2j
2j
(k2j − 1)(it)

2j

(2j)!
; |t|¡ 2�

k
;

where Bi denotes the ith Bernoulli number.
Reading oC coeDcients we 'nd the cumulants of Xk as

�1 =
k − 1
2
; �2r =

(k2r − 1)B2r
2r

; �2r+1 = 0; r = 1; 2; 3; : : : :

Since

logFm;n(eit) =
m+n∑
k=1

log gk(eit)−
m∑
k=1

log gk(eit)−
n∑
k=1

log gk(eit);

the cumulants �m;nr are obtained by summing the �r’s.
So we get

�m;n1 =

(m+n
2

)
2

−
(m
2

)
2

−
( n
2

)
2
=
mn
2
;

�m;n2r =
B2r

2r(2r + 1)
(B2r+1(m+ n+ 1)− B2r+1(m+ 1)− B2r+1(n+ 1));

�m;n2r+1 = 0:

Here is a little list:

�m;n1 =
mn
2
;

�m;n2 =
mn(m+ n+ 1)

12
;

�m;n4 =−mn(m+ n+ 1)(m(m+ 1) + mn+ n(n+ 1))
120

:

1 We write log x for the (natural) logarithm with base e.
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The formula to compute the moments �r from this is

�r =
∑

�1+2�2+···+r�r=r

(�1
1!

)�1 (�2
2!

)�2 · · ·
(�r
r!

)�r r!
�1!�2! : : : �r!

;

which is a 'nite sum since �k ∈{0; 1; : : : ; r}. Hence
�1 =

mn
2
;

�2 = �21 + �2 =
mn(m+ n+ 3mn+ 1)

12
;

�3 = �31 + 3�1�2 + �3 =
m2(m+ 1)n2(n+ 1)

8
;

...

We 'nish by mentioning that, as in (Panny, 1986), one could also get asymptotic
formul8.
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