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1. INTRODUCTION

Two classical problems in combinatorial analysis are the enumeration of i
subsets with linear successions and subsets with circular successions, which °
were first solved by Kaplansky [4]. Hwang [2] and Hwang, Korner and
Wei [3] considered the more general cases of these distribution problems
where several circles respective lines are considered simultaneously. The
original proofs, which are by direct combinatorial or inductive arguments, 2
are rather lengthy. In this note we want to show that by the exclusive use
of generating functions short and easy proofs can be achieved. Also this
approach leads in a natural way to alternative and new formulae.

In the following we write [z"] f(z) for the coefficient of z” in the formal
Laurent series f(z).
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2. SUBSETS WITH CIRCULAR SUCCESSIONS

NP

Let g, ,, denote the number of k-subsets of a circle of size n with exactly l

circular successions. By Kaplansky [4] one has (except for trivial cases) ‘
_n(k\(n—k—1 N
Enki ™ k\ ] k—1—1 4-
K\(n—k—1\ [k—=1\/n—k ‘B
= , 2.1) B
(J(k—l—l)*( 1 Xk—l) e
o
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gui(1) = &usat’ (2.2) % '
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denote a corresponding generating function. Following [1; (2.3.22)],
kg,,'k(t)=n[w”](wt+w2+w3+ )k, gaolt)=1. (2.3)

(This follows easily by decomposing the circle into parts starting with each
selected node; each of the k parts contributes a factor wt + w2 w4 e
Considering all n-node patterns we apply all n rotations to get each of the
desired configurations k times.) Hence

gz )= Y gault) "

k=0

2 Nk k
=1+n[w"] ), (wt+1yiw> %

k=1
l—(1+tz)w+z(t—1)w?

i ‘ =1—n[w"] log T

_, * =0"(z;t)+1"(z; 1) —0np0, (2.4)
with

i o+1=1+1z or=z(t—1). . (2.5)

After these preliminaries we turn to the case of m nonempty circles with
- ny,.., B, nodes respectively. Let

g (nrunm}(Z 1) = Y. &l nm},k(i)zk . (2.6)

k=20

denote the polynomial such that the coefficiént of z*#' is the number of
#% k-subsets with / circular successions in total. Thus

m

im0 = 11 galz =] (c"+7) (27)

.....

i=1 i=1

§8  In order to evaluate this product we use some shorthand notations:
& n=n,+ - +n, and, for any subset S& M={1,.,m}, n(S)=csn:

g{m ,,,, "m}(Z; t)= Z o.n(S)rn—n(S)
SseM .
- Z (O.n(S),tn—n(S)+O.n—n(S),tn(S))+ Z o™ S)gn(S)
ScM v SeM

2n(S)<n 2n(S)=n
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Regarding that gt =z(r — 1) this can be written as

Y. (1=1)"® 7SN gn=2S =S 5 s10)

such that

8 (nyreunmi i) = Z (1—1)"® &n—2n(s)k —nes)(E)s (2.8)
SeM

which is the main result of Hwang [2]. p
In order to demonstrate the advantages of the generating functions 5
approach, we deduce the following alternative formula (2.11). ;
For preparation let ¢ be the solution of (2.5) with 6(0; 1) = 1. We will use .
“formal residue composition”, i.e., an equivalent to Lagrange inversion for- Q
mula (compare [1;(1.2.2)]), with the substitution 3

u(l+u) ' |
= 29) 28
T Y (29) !
so that |
and
dz_.l—}-Zu—l-tu2 T__(z—l)u
du (1+mw)? "’ 14w’
14 2u+ tu?
l—roitH PR (2.10)
1+ tu 1+ tu

Starting from (2.7) we have
g{"l ..... nm}(z, t) = H (U”i—f— .L,n,-)
1T (om+omma—1y27)
=1

(I _ 1 )n(S) Zn(S)o.n — 2n(S).

With substitution (2.9) from above the calculus of formal residues shows
that
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k+1
ok (H dz )
- [u ] <Z> du g{m ..... nm}(Z, t)

(14 )t 1+ 2u+ti? s WO+ u)"S
=[] (1+w)*+Y (14 tu)? L (=1 (1 4 tu)"S
SeM

X (1 4u)*= S

’ = Z (z_l)n(S) [uk—"(s)](1+2u+tu2)(1+u)n——n($)—k-—-l
: SeM

x (14 tu)<=1=ms),

Accordlng to 1+ 2u+ tu*=u(l + tu)+ (1 +u) we have
g (1o} (1)
_ (S ; f(k—n(S) <n-—n(S)—k—1
ng (r=1) jgot {< J > k_n(S)—‘j_1>
k—1—n(S)\/n—n(S)—k _
(T —

: (Note that the coefficient of #/ in the j-sum coincides With g, _2.s).x - n(s).j
B whenever these indices are nonnegative, which will not be true for all
B values of S< M. Thus (2.8) and (2.11) are similar but essentially different.)

3. SUBSETS WITH LINEAR SUCESSIONS
Let Sk denote the number of k- subsets of a chain of size n with exactly /
hncar successions. By Kaplansky [4]:
2 k—1\/n—k+1\-

L - } : 3.1
fu= (TNl (3.1)
Let

: k()= et :

f,k( ) Igof,k,/ | (32)

hen, following [1; (2.3.15)], compare (2.3) for the idea of proof,

.k(t)= [w  (w+w?+ - ) we+w2+w + VI +wHw?--), fo(t) =1
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and further

fn(z; t) = z fn,k(t) zk

- n k -2 wo VT
'=1+[W]k§1W(1—W) <1+m> z
=0 (1 ey (L= () wt o= 1) )

=[w,,]l—(z-nzw( 1 1 >

w(o — 1) l—ow 1—1w

1
O'_

1
6—

("t ="t —(t—=1)ze"+(t—1) z1") °

[}

("' (1=1)—1"*}(1=0)). (3.3) -

]

As in Section 2 we consider now the case of k-selections of m nonempty
chains with cardinalities #,,.., n,,. Using analogous notations as in Sec-
tion 2 we find

k=20 i=1

=(c—1)"" [] (e"*'(1 —1)=1"*} (1 —-0)).
i=1
With the substitution (2.9) this yields
| [Zk] f{nl ..... n,,.}(Z;z)

(I+m)* ' 14 2u+t?  (1+m)”
(I+w)**' (A 4+m)? (14 2u+?)”

= [u*]

m A 1+u u(t_l)n;+lun,+l)
. ni+1
XBI <(1+u) 1+zu+ (1 4+ n)™*?

(14 )k-1-n
(14 2u+ )" (1 +u)+!

= [u*]

x TT (14 u)"*2 (14 )™ 4 (1= 1)+ )
i=1
= Z [uk_"(s)_zlsl](l+2u+lu2)_(’"_”(t_l)n(S)+lS|
SeM

X (I + tu)k—l—n(S) (1 + u)n—n(S)+2m—-2|Sl—k—]. (34)
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Writing 1 +2u + tu? as (1 +u)* + (¢t — 1) u* we get:

f{m ..... n,,.}.k(t)= Z Z (—(m_—-l)) (t___l)n(S)+lS[+i

SSM iz0 L

x [k =)= 21S1=20(] 4. )n =)= 2SI k=204 1({ | g )= 1=n(S)
_ Z Z (—(m'—l)> (t_1)n(S)+|SI+itj<k—1—.n(S)>

SSM ij>0 ! J

X-(n—n(S)—2 |S|—k—2i+1>

k—n(S)—2|S|—2i— (3:5)

For ¢t =0 this is Theorem 1 of [3]. We note also that

-y ¥ <z+m 2><n(S)l—}:_|f|+i>

SeM ij=z0

X (= 1)U +ISI=1+ <k—1—n(S))<n—n(S)—2 |S| —2i—k+ 1)
j k—n(S)—2|S|—=2i—j )

(3.6)

Using the identity 1 + tu=1+u+ (t— 1) u we get the alternate formula

f{”l ,,,,, nm}.k(t).= Z Z <—(mi_1)> (t_l)n(s)+l8|+i+j

SeM ij=20

k—1—n(S) ﬁ—2n(S)—2 |S| —2i—j
X( J )<k_n(S)_2|S|—2i—j>' (3.7)

A third formula of similar type is obtained by writing 1+ 2u+ t? in
(34) as (1+4+u)+u(l+ tu):

f{m ..... nm} k(1) = Z Z ( (mz 1)> (t_l)"(5)+|5|>tj

i+k—1—n(S)\/n—n(S)+m—2|S|~k—i
"(' j >< k—n(S)—218|—i—j > ()
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