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The average stack size after n units of time of a stack where the three
operations insertion, deletion, interrogation are allowed, is

3r _
2
+ 0(n~g n), n -* oo, for all e > 0 .

Some related results are given .

1 . INTRODUCTION AND PRELIMINARIES

De Bruijn, Knuth, Rice [2] have determined the asymptotic behaviour
of the average height of planted plane trees ; this result is easily reformu-
lated in terms of, say, random walks or paths or Dyck-words or ballot
sequences or binary trees .

If a path (or closed path) of length n means a sequence (0, so),
(l, s,), . . . , (n, sn) with so = s„ = 0, s, > 0, Isi_, - s, l = 1 and the height
of this path is max s,, then the average height of a path of length 2n is

odi4n

V1n-2+O(nogn ,n-~oo,foralle>0 .

Kemp [8] has computed further terms of this asymptotic series and also
higher moments .

In sections 2 to 4 an analogous problem is considered, namely the
following: The condition Is,+, - sil = 1 is replaced by s, +I - s, E {- 1, 0, 1} .
This situation can be reformulated in terms of the history of a stack (see
Flajolet [5]), where the 3 operations insertion (+1), deletion (-1) and
interrogation (0) are allowed . The result is : The average height of such a
path ("of 3 symbols") of length n is

~3 -2 ;-0 n~gn I 17 00, for all e>0 .

The result of [2] is obtained by approximating the binomial coefficients by
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means of the Stirling's formula by the normal distribution .
Here the' situation is more complicated: the so-called trinomial coeffi-

cients appear (i .e . the coefficients of (1 + x + x 2)"), and these must be
approximated by the normal distribution (Section 3) .

In Section 4 the restriction s, > 0 is dropped (the classical case
Is,+, - s, l = 1 is again considered). The average height (max Is;l) of such

O 1 na path of length 2n is

(log 2)

	

12 + 0
l
n ,

n

R . Kemp [8] has computed the average stack size after t units of time
during postorder-traversing of a binary tree with n leaves . His result is

2 -,/r(2n - t) 1 + U( l ) + G(	
'

	 )}, t -~ oo, n - t -~ 00 .
V7rn

	

t

	

n - t

A reformulation of this result in terms of paths gives : The average value
s, of apath (so =sn =0, s,>0,Is,+,-s ;l = 1) is

- I -}- -	
~ ~rn

	 ?~/ t(2n - t ) 1 + 0( t ) + 0(
tt 1 t) ' t -~ oo , n - t -~ ao .

In [10, 11) Kemp has computed the average height of a prefix of the
Dyck-language over a two-letter-alphabet, which can be seen as a path,
where the restriction s,, = 0 is dropped . (This will sometimes be for-
mulated by "a path leading from (0, 0) to (n, .)" .) In section 6 the
following result is given : The average value s, of a path leading from
(0, 0) to (n, •) is

/

	

3 '- 1 + I
i
i + U(I ) ~- 0( n)}, t -~ oo, t3/n --* 0 .

AN T

	

\

	

)r

To obtains, Kemp [8] has derived two combinatorial identities . In
section 7, first a combinatorial identity is given which generalises an
identity in Riordan's book (13) by introducing a parameter . From this
identity a further identity is easily derived which contains Kemp's iden-
tities as special cases .

A crucial point to obtain all these identities is a certain umbral
identity. Some identities are stated which can be derived from this umbral
identity .

In section 8 some concluding remarks are made .

2. ENUMERATION RESULTS CONCERNING PATHS BUILT UP BY -1, 0, 1

Let k > 0 be fixed and 9 1(y) (0 < j < k) be the generating function
where the coefficient of y" is the number of paths with height <k leading
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to the point (n, j) . The recurrences for these functions can be formulated
as follows :

1-y -y
-y 1 - y -y

1

-y .

- y

-y 1 - y

k/

	

0

289

Now let ak(y) be the determinant of this matrix with k + 1 rows . Expand-
ing, the determinant yields

ak+2 - (1 - Y)ak+1 + y 2ak = 0, a0 = 1 - y, a 1 = I - 2y.

The solution is

ak(Y) =	
l	-y +v/ I - 2y -3y2)k+2

1 - 2y - 3y2 [(
1	

2

	

)

k+2

1 - y - 1/ 1 - 2y - 3y2
k+2

2

	

)

By Cramer's rule

Po(Y) = as1(y)

k(Y)

Now A k(y) _

	

A"ky" will be written for po(y). By the substitution
n~0

y = v/(1 + v + v 2)
(1/(1 + V +v2))k+1 - (v2/(l + v 4. v2))k+1

Ak(Y) _ ( 1 /0 + v + v2))k+2 - (v 2/(1 + v + v2))k+2
i - v2k '

= (1 -f- v + v2) 1 - v2kt4
Hence

i •('(0+) dy

	

2 I - v2k+2

Ank =2Iri

	

yn+1 ( 1 +v+v) I - v2k+4

= 2;ri
f"r) vd+1 (1 + V + v 2)"( I - v2 ) 1 -	

v2k+4
.

Bnk := Ann - Ank

1

	

(0+) dv

	

2)n (1 - v2)2v2k+2
„+1 (1

	

- v-}- v + v

	

2k+4 .2rr i

	

v

	

1

The coefficient of v' in (1 + v + v2)" is called trinomial coefficient [3, 12J

and is denoted by Cn '1 3 ' . With this notation

Vol . S_ No 4 (1OR(1)



Thus
Al=A3=As =0, A2= 1,

A4 = (2)2K4 = (2)2(x4 - 3a2) = 2(1 - 3 . a) _ 2,

A6 = (z)3 K6 = (2)3(x6 - 15a2aq + 30a2) = (2)2(1 - 15 . a + 30 (3)2) = q9.

~ (r)(x) _ (-1)r Hr(x)e-x'12 , with' the Chebyshev-Hermite polynomials of1/27r
p. 193 .

n 3 _3

	

'

	

1

	

39
n + k

	

2n ~' + n

	

2) 24 H4 12 + n2 (4.720 H6 . 9

+4.1152 Hs - 9)} + o(n-5 /2)

(The arguments
kN 2n are omitted .

P

	

2_

	

2 3_ ~/2n ~Z7r
ex p

	

k Zn 1 - 16n (/42_ n6k Zn + 3

+ 960
13
n2 (k6 gn

27
3 - 15k449 2 + 45k2 Zn + 15)

27
+ 512n2 (/cs

16n4 - 28k6 8n + 2100 4n
2

- 420/c2 2n + 105 + o(n' 512 )

3

	

_ 3k2

	

_ 3

	

1

	

2
9 -

81
47rn exp ( 4n ){ 1

	

16n + 512n 2 + k (16n2 256n3

- k4(64n
9

-
477

3

	

1024n4) k6 5 20n5 + kg 8192n 6 + °(n
-s/2) .

The "o" will be replaced by an ""0"; for k < n 112 the
0-term can be essentially distributed in the sum
in parentheses .

3-" n, 3
n-2k)

2

	

3

	

9

	

9
47rn eXp ( 4n ){ 1 - 16n + 16n 2 k2 - 64n3 k4 +4(n_

2)

2
_ J 47rn exp (- n )t1

- 16n + 4n2 k2 - 4n3 k4 + Q(n_
2) '

Now k will be substituted by k - a, fixed a. After some manipulations
n 3

	

3 ex

	

3k2 l

	

3

	

3a2
=~

3-n( n + 2(a - k))

	

477n p ( n ){

	

16n

	

n
(6a - 45a _ 18a3 )

	

2( 9

	

18a2
+ k n

	

8n2

	

n2 + k 4n2 + n2 )

+ k3(2 _ + 3n i3) k{
4n3 - k5 2na + O(n-2) .
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n 3

	

n, 3

	

n, 3
3-nL(n + 2(1 - k))-2 (n - 2k) + (n + 2(-1 - k))

36k2
=

4n
exp ( 3k2 ) .{-

	

-
6 + 3 n2 -}- 0(n-2)~ .

For k > nuu2+E the cited theorem in the general form gives
3-"

(

nn, 3k) - 0(n-- ) for all m >, 1,

since in this case the 0-term is dominant .

4. ASYMPTOTIC EVALUATION

First it will be remarked that

~2(z) = E d(k)/kz,
k>_l

where C(z) is Riemann's C-function . Let

hb(n) = E kbd(k)e-'k-1"

As in (2),

Thus

k31

hb(n) = 9b 3
,

where gb is defined in [2] . Hence for all m > 1

fixed b .

1 ~C+ice
r(z)x- Z dz, c > 0, x > 1 .2Tri c_,a,

1

	

+rro

J

	

kbd(k)r(z)
(3k2)_z dzk, l f C_,~

	

n

l fc+j°° n)Zr(Z)42(2z
- b) dz .

C-f DO

(log 3 + 3y - 2 log 2) + 4 + O(n'm),

h2(n) 24nj
3

(log 3
+ 2 + 3y - 2 log 2) + O(n'm ) .

Now consider
n

	

tt, 3

	

n 3

	

n, 3
3-" kr,

d(k) Rn -1- 2(1 - k))_21 n _ 2k) + (n + 2(-1 - k))] .

The sum will be splitted into three parts, according to I < k < n 1
n 1 J 2 < k < n 1/2+E , n112+E < k G n . The third sum is n2O(n-"') for all n1 > 1 .
To evaluate the second sum the approximation by the normal distri-
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distribution will be used, but the 0-term (outside the parentheses) must be
regarded .

d(k) <

	

d(k)
n 1Ja<k<n1 1 2+E

	

1 <k<n1Ia+E

By an elementary result (due to Dirichlet, see [1]) the last expression is
0(n 1/2+,, log n) . The first sum gives the main contribution, and here the
approximation by the normal distribution will be used, and it makes only
an exponently small error to extend the range of summation to infinity .
Thus one can continue

-
47rn( 2n J

47
3
-n (log3+ 3y-21oab 2)- n

+ Zn ~?3t log 3 + 2 + 3y - 2 log 2) + O(n-2ho(n)))

_

	

g
4Tn (n 3

	

2n + O( 1 n3 12 ))

Now the number A nn of all nonnegative paths is, as an application of the
mirror principle of Andre (see [4])

nn3 -
n+32

=
3ntil4'Tn(n

3 3
+ 0(n- 1/2 log n) .

(

	

)

	

(n

	

)

Therefore the desired quantity is
1

	

3 J~~
Ann

=

	

4Tn n}

	

4~rn (n 3

	

+ O(n-312 log n))

Fn-= Jc3 -
L
+ O(n-112 log n) .

The contribution to the sum where n' 12 < k < n 112+* is

n311 .O(n' 12+E log n) .O(n-512) = 0(n- 112+, log n),

and this is the reason why the e appears in the following

THEOREM 4.1 . The average height of a path from (0, 0) to (n, 0), built
up by 3 symbols is

AJ3 -2-}-O no`gn)'n-moo,
for alle>0 .

5 . THE AVERAGE HEIGHT OF A PATH WITHOUT RESTRICTION

Let k > 0 be fixed and'p j(y) (I j! < k) be the generating function where
the coefficient of yn is the number of paths with height < k leading to the
point (n, j) . The recurrences can be formulated again as a system of
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linear equations :

1 --Y
-y 1 -y

-y

am+2 -

Now let am(y) be the determinant of this matrix with m rows .
this determinant yields

The solution is

am(y) =

	

1

	

1 +

	

2 'n+1

	

y2)m+11
,
•

2V 1 - 4y
2 R

	

2

am(y2) is a Fibonacci polynomial [6] .

By Cramer's rule

ak(Y)ak(Y)Po(Y) -
a2k+1(Y)

This can be written as

POW =
ak(Y)
bk(Y)

with

bm(Y) _ ( 1+	
4y2)m+1 +

(

1 - 1 -4y2)m+1
2

	

2

bm (y2 ) is a Lucas polynomial :

bm(z) = E	 M Cm
- k )(-z)k .

k,om-k k

Now Ak(y) = E A nkyn will be written for p o(y). By the substitution
n30

Y = v/(1 + v2)
1 + V2 1 - v2k+2

Ak(Y) = i - v2 ' 1 + v2k+2

By the trigonometric change of variable y = 1/2 cos 8

Ak(Y)
_ cos 8 •sin (k + 1)8

sin d •cos (k -f- 1)0'
An alternative representation for A k(y) is obtained by partial fractions

m+1 + Y 2am = 0.

Expanding

,

Jr. Comb., Inf. & Svst . Sci.
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(as in [6])
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	 1	 1

Ak(Y) = ak . (k + 1)

	

- y2 cos
(21 - 1)ir + bk
2(k -- 1)

L

where the sum runs through 1 E I1, . . , , 1 k21J, k + 2,

	

, k + 1 +

k
+

1 J}, with
2

ak = 2, bk =

ak = k + 1, b k =0

k odd

k even .
This gives the explicit formula

A2n,k =

	

2

	

((k+0121-1
2 cos 2(k

(

	

(21 +1)~r\ 2n •

+ 1)ak(k + 1)

	

lao

By the residue theorem
_ 1 ('(o+) dv

	

2 n 1 - v2k+2
27ri

	

vn+1 ( 1 + v ) 1 + v2k+2

or, with v2 = u,

B2n, k = A 2n, 2. - A2n, k = 2zri
(0+)

u'+1
du

	

2uk+I(1 + u 2n 1	+ uk+1

The desired average height is
(2n)-I

E B2n, k
(2n) E E

(-1)1+12(

	

2n
=n

	

k,0

	

n

	

k30 l~ i

	

n- (k + 1)1

_ (2n
)-1E1 [d1(k) - do(k)]2(n 2n k)'

where d 1(k) (do(k)) denotes the number of odd (even) divisors of k. Now
let

hb(n) = E kb[d1(k) - do(k)] exp (-k2/n), fixed b .
kzI

Remark that

(1 - 2'z)~2(z) _
IC -> I

dkk) and 2-z~2z) _ ~
1
do(k)

Hence, as in [2]

hb(n) =
2rri fC±i~ r(z) [n~ - (4)s2b+l]C2(2z - b) dz, c > b21 .

hb(n) can be expressed as a sum of the residues in (5.1) and (5.2) :

11-(b21 )n (b+1 )r2 log 2

	

(5.1)

L.7 J



and

k nk

01C
-221,+b+

11(2k
	 +

b(1	
b+I)29 k= , O, 1, . . .

	

.

Here the error is 0(n-m) for all m > 0 . This gives
ho(n) = ji/Fn log 2 - j + 0(n--)

h2(n) = }ni/~i-n log 2 + O(n--)

h4(n) = 8n2 \/n log 2 + O(n

(nn) 1 ~ 1 [dl(k) - do(k)]2(n 2n k)

_ E1 [d1(k) - do(k)] exp (-n ) 2 .[1 + 2n2 + 6n3 + 0(n-2+`ho(n))

= 2ho(n) + n2 h2(n) - 3n3
h4(n) + O(n-312+f)

= (log 2) • /7,n - + '(log 2) •~n
+ O(n-3 I2+E)

= (log 2) • V~n - + O( n) .

This proves
THEOREM 5.1 . The average height of a path from (0, 0) to (2n, 0 with-

out the restriction s 1 > 0 is

(lo g 2) . .\/,Fn - + O(n

6. A CERTAIN AVERAGE OF A PREFIX OF THE DYCK-LANGUAGE
OVER A Two LETTER ALPHABET

As already mentioned in the introduction, the average value s t of a
path from (0, 0) to (n, •) is desired . Some combinatorial preliminaries
are to be made :

Let (X)k = x(x -1) . . .(x-k+ 1) and

fs(n) = kE (k)s(n 2n k), gs(n) o (k)s( nn±k )
LEMMA 6 .1 .

.fo(n) = 22°-1 + ( 2n n
1)

	

go(n) = 22n

fl(n) =
n(2n n 1

	

g1(n) = (2n + 1)(21
:
n

1)
- 22n-1

f2(n) = n2 2n-2 - n(2n n 1) g2(n) = (n + 2)2 2n-1 - (n + 1)(2n n 1 )

Jr. Comb., Inf. & Syst. Sci.



f3(n) = -3n2 2n-2

	

g3(n) _ -3(3n + 4)22n-2

+ n(n + 2)(2n n
1)

	

+ (n + 6)(2n + 1)(2n n 1)I

Proof. For 0 < s < 2 these identities appear in [13 ; p . 34] ; for s = 3
they can be derived in a very similar way .

LEMMA 6.2 . (a) 7 (2k) 3(n 2n
k)

= 4n2(~n) .

(b)
kE

(2k + 1) 3(2nn +k) = (n + 1)(4n + 1)(2nn 1 ) .

Proof. (a) This can be derived from Lemma 6.1 if one remarks that
(2k) 3 = 8((k)3 + 3(k)2 + (k)1) .

(b) Remark that
(2k + 1) 3 = 8(k) 3 + 36(k) 2 + 26(k) 1 + 1 .

Let H(n, k, t) be the number of paths of length n with s1 = k. Then
(cf. [8, 9])

H(t - 1, k - 1, t - 1) = k ((t + k)12) .

Now let Q 1(n) be the number of paths from (0, t) to (n, •) (with sl > 0).
Let (as in [12; p. 532]) gn,n be the number of paths from (0, t) to (n, m)
and

G1(x, z) _

	

g„,,xmznW

n'as0 m-0
Since

(`)

	

(t)

	

(`)

	

m > 1 n > 0gn+l, m = gn, m-1 + gn, m+l~ /

	

/

(t)

	

(t)

	

(r) = Sgn+ l, o = gn, l ,

	

g0, m

	

tm

Gt(x, z) • (1 -
z
- xz

) =xt_ . gt(z)X

gt(z) _

	

g,OZn
n ;o 0

1 - V 1 - 4Z2)`+1
gt(z) = z (

	

2z

	

)

Gt(x, z) = zgt(z)-xt+1 and G,(1, z) = 1 - zgt(z)
xz+z-x

	

1-2z
The usual substitution z = v/(1 + v2) gives

1 f(0+) dv
Qt(n) = 2rri

	

vn+1 ( 1 + v2)n( 1 + v)(1 + v +

This proves

Vol. 5, No. 4 (1980)
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LEMMA 6 .6
1rt21

	

2n )

	

l(t+1)12 ( 2nQt(2n) = E n-i +

	

n-i ' (

	

i-1

Q(

	

)

	

ur~/2J(2n--1)+<< ](2n~-1),2n+1 =
1 _o

	

n-i

	

1a0 n-l
This lemma gives the following asymptotic equivalent for the number of
paths from (0, 0) to (n, . ) :

(L/2J) (1 + k)(1 + O( n2)) = (L/2J)(1 + k
-}-

O(n3))

	

(6.1)

provided that n -- oo, kiln -+ 0. (This can be derived by means of Stirling's
formula (see [2]) .

Hence

H(n - 1, k - 1, t - 1) = i ((t + k)l2 )(L(nn t)l2J)(k + 0 (k3In)) .

Remark that

H(n, 0, 0)

	

n= Ln/2J
The desired expected value R(n - 1, t - 1) is
R(n - 1, t - 1) = (H(n - 1, 0, 0)) -1 ~1 (k - 1)H(n - , k - 1, t 1)

=-1+(H(n-1,0,0))-1EkH(n-1,k-1,t-1)
k;~: I

n- 1

	

-1

	

k3

	

t

	

n-t=
-1 + (L(n _ 1)/2J) k-> I t ((t + k)l2)(L(n - t)/2J)
-{I + O(k2/n)}

-1n-1

	

n-t

	

1=
-1 + (L(n - 1)/2J) L(n - t)/2 1) t

(t +t k)/'2)(I + O(k
2/n)} .

(
~k3
k%i

Now the sum will be evaluated . First, let t = 2T; clearly k must be even
and the sum becomes

kE
(2k)3(7,2T

k)
= 4T2(T) .

Now let t = 2T + 1 ; then the sum becomes

E (2k + 1)3 ( T +k) = (T + 1)(4T +
1) (2TT 1) .

The lemmata 6 .1 and 6 .2 suggest that

kit kb ((t -1-tk)/2)

	

o(t(b+t)n
.(Lt/2J))

Jr . Comb., Inf. & Syst . Sci .



holds, and this can be settled for b = 5 by a direct computation . Hence

n-1

	

1

	

n-t

	

1
R(n - 1, t

	

+ (L(n -1)/2J) LIT - t)/2J t
{1 + 0(t3/n)} .

Now assume t -+ oo, t 3/n -~ 0 .

d„ (s, m)

Vol. 5, No. 4 (1980)

t2(Lt
t
/2J

R(n - 1, t - 1) = -1 + / Tr n 2 2-(n-1) /
7
rln	2 tj

2"-'t 1 2 2`

++0(n)+0(n
t ) + O(t) + O(n3)}.

- 1 + J2, t(n - t) 2t{1 + O( t) + O(n3)} .

R(n, t) --1 +,J$,Jn
to t jl + 0( t ) + 0( n3 )}

7T

	

-

= -1 +8t 1 + 0(1) + 0(t 3/n)} .

7. COMBINATORIAL IDENTITIES WHICH ARE RELATED TO THE
CONSIDERED PROBLEMS

First, an identity will be proved, which is a generalization (for s = 0)
of an identity in Riordan's book [13 ; p . 89] .

THEOREM 7.1

2m + s 2n + s

	

2m + s 2n + s

	

mn
k~

(2k+s) (m-k
(n-k)=( m )( n )m+n+s

Proof. Let s e No and d„(s, m) be a sequence defined by

do(s, m) = m-1

d„(s, m) -

	

2n + s (n + k + s)(2k + s) (-1)k for n > 1 .k, o n+k+s 2k+s k+s k+m

Kemp [8] has shown that the inverse relation is

	 I (n+s

	

1)k 2n

	

s m .).n+rn n+s - ~ (_
)k n-k k( '

Furthermore he has computed the explicit form

m-1

	

for n = 0
_ {

	

1

	

(m - s - 1)! (in - 1)!l(-1) (2n + s) (m - s - n)! (m -{- n)! for n > 1 .



Substituting this form in the inverse relation yields

1

	

2n + s = 1 2n + s
n±m(n+s)m( n

(2n + ')(2k s (m- s - 1)! (m - 1)!
- ~, n-k

	

+ )(m-s-k)!(m+k)!'

Replacing m by m + s this yields

2n+s	n	
( n )(m+s)(n+m+s)

_

	

2n+s 2m+s

	

1

	

2m +s ' 1- k (2k+s) (n-k)(m-k)m(m+s)( m
This expression is equivalent to the proposition .

This identity is useful to derive an identity, which contains two iden-
tities of Kemp [81 as special cases (s = 0, 1) . Kemp has used them to
derive the results concerning the average value of s, (see section 6) .

THEOREM 7.2

1
(2k +S)3 (2m + s)(2n + s

k

	

)

m-k n-k

- (2m + s)(2n + s) mn(s2(m + n + s + 3) +4(mn+ ms + ns)}
M

	

n

	

(rn+n+s)(m+n+s--1)

Proof. Let f,(m, n) be the expression in theorem 7.1 and g,(m, n) the
expression in theorem 7 .2. Since

2(m-1)+s _ (m-k)(m+k+s) 2m+s
( m-1-k )-(2m-1+s)(2m+s)(m-k)

and
4(m - k)(m + k + s) = (2m + s) 2 - (2k + s)2,

the equation
4(2m - 1 + s)(2m + s)f,(m - 1, n) = (2m + s) 2fs(m, n) - g,(m, n)

is obtained . Hence

g,(rn, n) _ (2m +S)2(2mm s)(2n n s) m+
n + s - 4(2m - 1 + s)

x (2m + s) 2(m - 1) + s)(2n + s) (m-1)n
m-1

	

n

	

-1+n+s
- (2m + s)(2n + s) J(2m + s)2	

mn
m

	

n

	

m+n+s

- 4m(m + s) (m - 1)n
m-1 +n+s

(2m + s)(2n + s)	mn	
m

	

n (m+n+s)(m+n+s-1)
x {(2m + s) 2(m + n + s -1) - 4(m + s)(m - 1)(m + n + s)} .
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Furthermore
{ . . .}=(4m2+4ms+s2)(m+n+s- 1)

- (4m2 + 4ms - 4m - 4s)(m + n + s)

_ -(4m2 + 4ms) + s2(m + n + s - 1) + (4m + 4s)(m -+- n + s)

= s2(m + n + s - 1) + (4m + 4s)(n -+- s)

= s2(m + n + s + 3) + 4(mn + ms + ns).

A crucial point in the derivation of these identities is the umbral
identity

(n - k)! (m -- k - 1)! - k

	

n-k k_	 1(m+n)t

	

-x(1-x),x =xk(m)_ k+m. (7.1)

which is needed in the computations of Kemp concerning the dk(s, m) .

In the rest of this section some identities are listed which can be
easily derived from other identities by this umbral identity .

THEOREM 7 .3 .

n _ 1 k n 2 m _ N _ 1 k m+n m+k- 1
N_

I n(m+n) m

	

( ) (k) k + m == E ( ) ( k )(

	

k

	

~,

	

L2 J .

Proof. From

(n
2	 n!

k) = i-:~: o (k - j)! (n - j - k)! j! j!
it follows

n

	

l
k (n)

2xk -_ N	(-1)in!k ( )
k=O

	

k

	

a j! j! (n - 2j)!

A slight modification of the umbral identity (7 .1) yields

(n -2k)! (m + k - I )!
= Xk(l -- . x)n_2k , xk = xk(m) =	1 	(7.3)(m+n-k)!

	

k+m

and a substitution of (7 .1) in (7.2) and some rearrangements give the
proof.

THEOREM 7 .4 .

( m m n)

	

(-1)k
(k)3 k -!- m

(_I _1)k(mk n)(m-}-k- 1)'n k k) N= L2j*L,

Proof. Starting from

(n)'_	 (n + J)t.
k

	

•

	

(n - k - j)! (k - j)! j! j! j! [13 ; p . 41]
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[13 ; p . 41]

x!(1 - X)n-21.

	

(7.2)



one obtains

E (-1)k(k)3xk

	

jI	>i(f
	 (>>~	

2,j)'
xf(1 - x)n-2j, (7.4)

and the result follows again by the substitution of (7 . 3) in (7.4) .

If one starts not with (k)
2
or (k)

3
but with

(k)
one gets

j (-1)k k xk = (1 - X)n,

and thus

(m m n)k (-l)k(k) k -i- m

but this identity is-well-known [13 ; p . 29] .

THEOREM 7 .5 .

(m + n) n

	

1)k(n + k)(2k) m _
m ~(

	

2k k k+ M k-o

Proof. From [13 ; p. 78]

(n 2k k)(k
)

= 1,

(- 1)k(k)(m

xk =

	

()x n 2 k(1 + X)n-k .
kk=o

Replacing x by -x an application of (7.1) gives the result .

THEOREM 7.6 .

(m + n) n (n)2 m _ n (n + k)(m + k - 1) .
m 10 k k+m - o k

	

k

Proof. From [13 ; p. 81]
n Xk =

	

n + k 2k x
k(1 - x)n-kX

	

.11

o (k

)2

	

klo ( 2k )( k )

An application of (7.1) yields the result .

THEOREM 7.7.
n

n + p 1)k m _ n p+k- 1) . (m +n-k -i
AL k+p)(

	

m+k- ( k

	

m )

Proof. A replacement in (7 .1) of k := 0 and n := n - k yields
(n - k)! (m - 1)! -
(m n - k)!

- (1 - x)n-k, xk = xk(m) = k + m

The identity [13 ; p . 47]

"(n+P)(_ 1kXk- n(p+k-1)
1-x n -k

AL k + P

	

)

	

~

	

k

	

(

	

)

leads to the result .
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It seems to be evident that there are other identities that can be
obtained in this way.

8 . CONCLUDING REMARKS

The method of obtaining the generating functions in sections 2, 4 by
means of a system of linear equations yields to the possibility to make
all computations more generally, namely for paths from (0, t i ) to (n, t2) .
Furthermore it is possible to introduce probabilities, that means that
st+t - si = 1 with probability p and =-1 with probability q = 1 - p
and similar in the case of 3 directions .

In section 6 the assumption t 3/n --. 0 is made . If this assumption is
dropped, the asymptotic equivalent (6 .1) changes and the result will be
another one, depending on other assumptions . But the corresponding
computations seem to be not essentially different from the computations
in this paper.

In section 7 the identity with exponent 3 is obtained from that one
with exponent 1 . The same trick can be used to obtain the identities
with exponents 5, 7, 9, . . . .

The author wants to thank D . E. Knuth for the announcing of
reference [7J and W . Panny for finding out several errors in a previous
version of this paper .
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