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Abstract. We present summation identities for generalized harmonic numbers, which generalize
reciprocity laws discovered when studying the algorithm quickselect. Furthermore, we demonstrate
how the computer algebra system Sigmacan be used in order to find/prove such identities. We also
discuss alternating harmonic sums, as well as limiting relations.

1. Introduction

In the study of Hoare’s Find Algorithm (quickselect) [3], the sums

j∑
k=1

Hn−k

k

occurred, where Hn =
∑

1≤k≤n
1
k denotes a harmonic number ; later we will also need harmonic

numbers of higher order: H
(a)
n =

∑
1≤k≤n

1
ka .

The best thing would of course be to find a closed form evaluation, which—for a variety of
reasons—is not possible for general j and n. However, since there is an intrinsic symmetry in the
algorithm between j and n + 1 − j, it was a priori clear that some relations must hold. Indeed,
the following two reciprocity laws were obtained in [3]:

• Reciprocity for Type 1 sums:

j∑
k=1

Hn−k

k
+

n+1−j∑
k=1

Hn−k

k
= HjHn+1−j + H2

n −H(2)
n − 1

j(n + 1− j)
. (1)

• Reciprocity for Type 2 sums:

j∑
k=1

Hn+k−j

k
+

n+1−j∑
k=1

Hj+k−1

k
=

1
2

(
H2

j + H
(2)
j

)
+

1
2

(
H2

n+1−j + H
(2)
n+1−j

)
+ HjHn+1−j +

1
j(n + 1− j)

+
n + 1

j(n + 1− j)

(
Hn −Hj −Hn+1−j

)
.
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In the present paper, we want to generalize these to Type 1 sums

j∑
k=1

H
(a)
n−k

kb

and Type 2 sums
j∑

k=1

H
(a)
n+k−j

kb
.

Notice that the two reciprocity laws contain two Type 1 resp. Type 2 sums (for j and n + 1− j)
and otherwise only known quantities.

Now, in the general case of natural numbers a and b, we are still able to get such a result in the
Type 1 instance. In the Type 2 instance the situation is more complicated than in the a = b = 1
case. We can either express the sum of two Type 2 sums by known quantities and some Type 1
sums, or we can express the sum of more than two Type 2 sums by known quantities. This is an
intrinsic phenomenon, and simplification only occurs for a = b = 1.

We also discuss alternating harmonic numbers/sums, as well as limiting relations, when n =
2m + 1 and j = m + 1 (in this case the sums are invariant under the change j ↔ n + 1− j).

One section is devoted to the software package Sigma, created by one of us, which is particulary
well suited to handle sums of harmonic numbers. We describe how it can be used to guess and
prove the identities in question.

2. Reciprocity for Type 1 sums

The following theorem treats the reciprocity of Type 1 sums.

Theorem 1.

j∑
k=1

H
(a)
n−k

kb
+

n+1−j∑
k=1

H
(b)
n−k

ka
= − 1

jb(n + 1− j)a
+ H

(b)
j H

(a)
n+1−j +

n∑
k=1

H
(b)
n−k

ka

= − 1
jb(n + 1− j)a

+ H
(b)
j H

(a)
n+1−j + R(a,b)

n ,

with

R(a,b)
n =

a∑
i=1

(
i + b− 2

b− 1

)
ζn(i + b− 1, a + 1− i) +

b∑
i=1

(
i + a− 2

a− 1

)
ζn(i + a− 1, b + 1− i), (2)

where the multiple zeta function and its finite counterpart are defined as follows:

ζ(a1, . . . , al) :=
∑

n1>n2>···>nl≥1

1
na1

1 na2
2 . . . nal

l

,

ζN (a1, . . . , al) :=
∑

N≥n1>n2>···>nl≥1

1
na1

1 na2
2 . . . nal

l

.
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Proof.

j∑
k=1

H
(a)
n−k

kb
= H

(a)
n−jH

(b)
j +

j∑
k=1

1
kb

n−k∑
l=n+1−j

1
la

= H
(a)
n−jH

(b)
j +

n−1∑
l=n+1−j

1
la

n−l∑
k=1

1
kb

= H
(a)
n−jH

(b)
j +

n∑
l=n+1−j

H
(b)
n−l

la
= H

(a)
n+1−jH

(b)
j − 1

jb(n + 1− j)a
+

n∑
l=n+2−j

H
(b)
n−l

la
,

which proves the first part. For R
(a,b)
n we use the partial fraction decomposition (which appears

already in [4].

1
ka(n− k)b

=
a∑

i=1

(
i+b−2
b−1

)
ni+b−1ka+1−i

+
b∑

i=1

(
i+a−2
a−1

)
ni+a−1(n− k)b+1−i

,

which leads to

R(a,b)
n −R

(a,b)
n−1 =

n−1∑
k=1

1
ka(n− k)b

=
a∑

i=1

(
i+b−2
b−1

)
ni+b−1

n−1∑
k=1

1
ka+1−i

+
b∑

i=1

(
i+a−2
a−1

)
ni+a−1

n−1∑
k=1

1
(n− k)b+1−i

=
a∑

i=1

(
i+b−2
b−1

)
ni+b−1

H
(a+1−i)
n−1 +

b∑
i=1

(
i+a−2
a−1

)
ni+a−1

H
(b+1−i)
n−1 .

By iterating we get

R(a,b)
n =

a∑
i=1

(
i + b− 2

b− 1

) n∑
k=1

H
(a+1−i)
k−1

ki+b−1
+

b∑
i=1

(
i + a− 2

a− 1

) n∑
k=1

H
(b+1−i)
k−1

ki+a−1

=
a∑

i=1

(
i + b− 2

b− 1

)
ζn(i + b− 1, a + 1− i) +

b∑
i=1

(
i + a− 2

a− 1

)
ζn(i + a− 1, b + 1− i).

�

Setting a = b = 1 in Theorem 1 we get the corresponding result of [3], since

R(1,1)
n = H2

n −H(2)
n . (3)

Note that R
(a,b)
n equals R

(b,a)
n , which can easily be seen to be true using the polylogarithms Lia(z) :=∑

n≥1 zn/na.

R(a,b)
n =

n∑
k=1

H
(a)
n−k

kb
=

n−1∑
k=1

[zk] Lib(z)[zn−k]
Lia(z)
1− z

= [zn]
Lia(z) Lib(z)

1− z
=

n∑
k=1

H
(b)
n−k

ka
= R(b,a)

n .

In any case, we treat R
(a,b)
n as known quantities and notice that they can be expressed by (finite)

multiple zeta values.

We can state some corollories of this reciprocity theorem for Type 1 sums.
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Corollary 1.
j−1∑
k=1

H
(b)
k

(n− k)a
+

n−j∑
k=1

H
(a)
k

(n− k)b
=

H
(a)
n−j

jb
+

H
(b)
j−1

(n + 1− j)a

+
1

jb(n + 1− j)a
−H

(b)
j H

(a)
n+1−j +

n∑
k=1

H
(a)
n−k

kb
.

Proof. Observing that
j∑

k=1

H
(b)
k

(n− k)a
=

n−1∑
k=n−j

H
(b)
n−k

ka
=

H
(b)
j

(n− j)a
+

H
(b)
j−1

(n + 1− j)a
+

n−1∑
k=n+2−j

H
(b)
n−k

ka
,

n+1−j∑
k=1

H
(a)
k

(n− k)b
=

n−1∑
k=j−1

H
(a)
n−k

kb
=

H
(a)
n+1−j

(j − 1)b
+

H
(a)
n−j

jb
+

n−1∑
k=j+1

H
(a)
n−k

kb
,

and adding these sums to the left hand side of the Type 1 reciprocity identity gives the desired
result. �

Corollary 2.
j∑

k=1

H
(a)
n−k

kb
−

j∑
k=1

H
(b)
k

(n− k)a
= H

(a)
n−1−jH

(b)
j .

Proof.
j∑

k=1

H
(a)
n−k

kb
= H

(a)
n−1−jH

(b)
j +

j∑
k=1

1
kb

n−k∑
l=n−j

1
la

= H
(a)
n−1−jH

(b)
j +

j∑
k=1

1
kb

j∑
l=k

1
(n− l)a

= H
(a)
n−1−jH

(b)
j +

j∑
l=1

1
(n− l)a

l∑
k=1

1
kb

.

�

3. Reciprocity for Type 2 sums

For the evaluation of Type 2 sums we observe the following:
j∑

k=1

H
(b)
n+k−j

ka
= H

(a)
j H(b)

n −
j−1∑
k=1

1
ka

n∑
l=n+1−j+k

1
lb

= H
(a)
j H(b)

n − S.

Further we get

S :=
j−1∑
k=1

1
ka

n∑
l=n+1−j+k

1
lb

=
j−1∑
k=1

1
ka

j−1∑
l=k

1
(n + 1− j + l)b

=
j−1∑
k=1

1
ka

j−k∑
l=1

1
(n + k − j + l)b

,

and by using the partial fraction decomposition

1
ka(k − r)b

=
a∑

i=1

(−1)i+1

(
i+b−2
b−1

)
(−r)i+b−1ka+1−i

+
b∑

i=1

(−1)a
(
i+a−2
a−1

)
(−r)i+a−1(k − r)b+1−i

(4)
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with −r = n + l − j

S =
j−1∑
k=1

j−k∑
l=1

( a∑
i=1

(−1)i+1

(
i+b−2
b−1

)
(n + l − j)i+b−1ka+1−i

+
b∑

i=1

(−1)a
(
i+a−2
a−1

)
(n + l − j)i+a−1(k + n + l − j)b+1−i

)
.

We set S = S1 + S2. The first sum can easily be simplified into Type 1 sums:

S1 =
a∑

i=1

(−1)i+1

(
i + b− 2

b− 1

) j−1∑
k=1

j−k∑
l=1

1
(n + l − j)i+b−1ka+1−i

=
a∑

i=1

(−1)i+1

(
i + b− 2

b− 1

) j−1∑
k=1

H
(i+b−1)
n−k −H

(i+b−1)
n−j

ka+1−i

=
a∑

i=1

(−1)i+1

(
i + b− 2

b− 1

) j∑
k=1

H
(i+b−1)
n−k

ka+1−i
−

a∑
i=1

(−1)i+1

(
i + b− 2

b− 1

)
H

(i+b−1)
n−j H

(a+1−i)
j .

(5)

Now we use Theorem 1 to translate the sums
j∑

k=1

H
(i+b−1)
n−k

ka+1−i
into

n+1−j∑
k=1

H
(a+1−i)
n−k

ki+b−1
:

S1 =
a∑

i=1

(−1)i+1

(
i + b− 2

b− 1

)(
− 1

ja+1−i(n + 1− j)i+b−1
+ H

(a+1−i)
j H

(i+b−1)
n+1−j +

n∑
k=1

H
(a+1−i)
n−k

ki+b−1

)

−
a∑

i=1

(−1)i+1

(
i + b− 2

b− 1

) n+1−j∑
k=1

H
(a+1−i)
n−k

ki+b−1
−

a∑
i=1

(−1)i+1

(
i + b− 2

b− 1

)
H

(i+b−1)
n−j H

(a+1−i)
j

= −
a∑

i=1

(−1)i+1

(
i + b− 2

b− 1

) n+1−j∑
k=1

H
(a+1−i)
n−k

ki+b−1
+

a∑
i=1

(−1)i+1

(
i + b− 2

b− 1

) n∑
k=1

H
(a+1−i)
n−k

ki+b−1

+
a∑

i=1

(−1)i+1

(
i + b− 2

b− 1

)(
H

(a+1−i)
j

(n + 1− j)i+b−1
− 1

ja+1−i(n + 1− j)i+b−1

)
= S11 + S12,

(6)
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where S11 contains all the Type 1 sums. For S2 we get

S2 = (−1)a
b∑

i=1

(
i + a− 2

a− 1

) j−1∑
k=1

j−k∑
l=1

1
(n + l − j)i+a−1(k + n + l − j)b+1−i

= (−1)a
b∑

i=1

(
i + a− 2

a− 1

) j−1∑
l=1

j−l∑
k=1

1
(n + l − j)i+a−1(k + n + l − j)b+1−i

= (−1)a
b∑

i=1

(
i + a− 2

a− 1

) j∑
l=1

H
(b+1−i)
n −H

(b+1−i)
n−j+l

(n + l − j)i+a−1

= (−1)a
b∑

i=1

(
i + a− 2

a− 1

)
H(b+1−i)

n (H(a+i−1)
n −H

(a+i−1)
n−j )− (−1)a

b∑
i=1

(
i + a− 2

a− 1

) n∑
l=1

H
(b+1−i)
k

ka+i−1

+ (−1)a
b∑

i=1

(
i + a− 2

a− 1

) n−j∑
l=1

H
(b+1−i)
k

ka+i−1
.

(7)

Now we turn to the next sum
∑n+1−j

k=1

H
(a)
j+k−1

kb . We use the following lemma.

Lemma 1.
n+1−j∑

k=1

H
(a)
j+k−1

kb
+

n∑
k=j+1

H
(b)
k−j

ka
= H(a)

n H
(b)
n+1−j .

Proof.

n+1−j∑
k=1

H
(a)
j+k−1

kb
= H(a)

n H
(b)
n+1−j −

n−j∑
k=1

n∑
l=j+k

1
lakb

= H(a)
n H

(b)
n+1−j −

n∑
l=j+1

l−j∑
k=1

1
lakb

= H(a)
n H

(b)
n+1−j −

n∑
k=j+1

H
(b)
k−j

ka
.

�

Thus we have reduced the problem to the computation of T :=
∑n

k=j+1

H
(b)
k−j

ka :

T =
n∑

k=j+1

H
(b)
k−j

ka
=

n∑
k=j+1

k−j∑
l=1

1
kalb

=
n∑

k=j+1

k−j∑
l=1

1
ka(k + 1− j − l)b

=
n∑

k=j+1

k−j∑
l=1

1
ka(k − (l + j − 1))b

=
n∑

k=j+1

k−j∑
l=1

( a∑
i=1

(−1)b
(
i+b−2
b−1

)
(l + j − 1)i+b−1ka+1−i

+
b∑

i=1

(−1)i+1
(
i+a−2
a−1

)
(l + j − 1)i+a−1(k − l − j + 1)b+1−i

)
.
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By splitting T = T1 + T2 we further get

T1 =
n∑

k=j+1

k−j∑
l=1

a∑
i=1

(−1)b
(
i+b−2
b−1

)
(l + j − 1)i+b−1ka+1−i

= (−1)b
a∑

i=1

(
i + b− 2

b− 1

) n∑
k=j+1

H
(i+b−1)
k−1 −H

(i+b−1)
j−1

ka+1−i

= (−1)b
a∑

i=1

(
i + b− 2

b− 1

) n∑
k=j+1

H
(i+b−1)
k

ka+1−i
− (H(a+b)

n −H
(a+b)
j )(−1)b

a∑
i=1

(
i + b− 2

b− 1

)

− (−1)b
a∑

i=1

(
i + b− 2

b− 1

)
H

(i+b−1)
j−1 (H(a+1−i)

n −H
(a+1−i)
j )

= (−1)b
a∑

i=1

(
i + b− 2

b− 1

) n∑
k=1

H
(i+b−1)
k

ka+1−i
− (−1)b

a∑
i=1

(
i + b− 2

b− 1

) j∑
k=1

H
(i+b−1)
k

ka+1−i

− (−1)b

(
a + b− 1

b

)
(H(a+b)

n −H
(a+b)
j )− (−1)b

a∑
i=1

(
i + b− 2

b− 1

)
H

(i+b−1)
j−1 (H(a+1−i)

n −H
(a+1−i)
j ).

(8)

T2 =
b∑

i=1

(−1)i+1

(
i + a− 2

a− 1

) n∑
k=j+1

k−j∑
l=1

1
(l + j − 1)i+a−1(k − l − j + 1)b+1−i

=
b∑

i=1

(−1)i+1

(
i + a− 2

a− 1

) n−j∑
l=1

n∑
k=l+j

1
(l + j − 1)i+a−1(k − l − j + 1)b+1−i

=
b∑

i=1

(−1)i+1

(
i + a− 2

a− 1

) n−j∑
l=1

H
(b+1−i)
n−(l+j−1)

(l + j − 1)i+a−1
=

b∑
i=1

(−1)i+1

(
i + a− 2

a− 1

) n−1∑
l=j

H
(b+1−i)
n−l

li+a−1

=
b∑

i=1

(−1)i+1

(
i + a− 2

a− 1

)(
H

(b+1−i)
n−j

ji+a−1
+

n−1∑
l=1

H
(b+1−i)
n−l

li+a−1

)
−

b∑
i=1

(−1)i+1

(
i + a− 2

a− 1

) j∑
l=1

H
(b+1−i)
n−l

li+a−1

= T21 + T22,
(9)

where T22 contains all the Type 1 sums. Combination of all the results and using the basic identity
for harmonic numbers

n∑
k=1

H
(a)
k

kb
+

n∑
k=1

H
(b)
k

ka
= H(a)

n H(b)
n + H(a+b)

n (10)

leads to the following theorem, which relates Type 2 sums to Type 1 sums.
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Theorem 2.
j∑

k=1

H
(b)
n+k−j

ka
+

n+1−j∑
k=1

H
(a)
j+k−1

kb
=

=
b∑

i=1

(−1)i+1

(
i + a− 2

a− 1

) j−1∑
k=1

H
(b+1−i)
n−k

ki+a−1
+

a∑
i=1

(−1)i+1

(
i + b− 2

b− 1

) n−j∑
k=1

H
(a+1−i)
n−k

ki+b−1

−
a∑

i=1

(−1)i+1

(
i + b− 2

b− 1

)
R(a+1−i,i+b−1)

n −
b∑

i=1

(−1)i+1

(
i + a− 2

a− 1

)
R(b+1−i,i+a−1)

n

+ H(b)
n H

(a)
j + H(a)

n H
(b)
n+1−j − (−1)b

(
a + b− 1

b

)
H

(a+b)
j−1 − (−1)a

(
a + b− 1

a

)
H

(a+b)
n−j

− (−1)a
b∑

i=1

(
i + a− 2

a− 1

)
ζn−j(a + i− 1, b + 1− i)− (−1)b

a∑
i=1

(
i + b− 2

b− 1

)
ζj−1(b + i− 1, a + 1− i)

− (−1)a
b∑

i=1

(
i + a− 2

a− 1

)
ζn(b + 1− i, a + i− 1)− (−1)b

a∑
i=1

(
i + b− 2

b− 1

)
ζn(a + 1− i, b + i− 1)

+ (−1)b
a∑

i=1

(
i + b− 2

b− 1

)
H

(i+b−1)
j−1 H(a+1−i)

n + (−1)a
b∑

i=1

(
i + a− 2

a− 1

)
H

(i+a−1)
n−j H(b+1−i)

n ,

where R
(a,b)
n is given in (2).

Since this formula is quite involved, it is worthwhile to state the instance a = b explicitly, which
is more attractive.

Corollary 3.
j∑

k=1

H
(a)
n+k−j

ka
+

n+1−j∑
k=1

H
(a)
j+k−1

ka
=

=
a∑

i=1

(−1)i+1

(
i + a− 2

a− 1

)[ j−1∑
k=1

H
(a+1−i)
n−k

ki+a−1
+

n−j∑
k=1

H
(a+1−i)
n−k

ki+a−1

]

− 2
a∑

i=1

(−1)i+1

(
i + a− 2

a− 1

)
R(a+1−i,i+a−1)

n − (−1)a2
a∑

i=1

(
i + a− 2

a− 1

)
ζn(a + 1− i, a + i− 1)

+ H(a)
n H

(a)
j + H(a)

n H
(a)
n+1−j − (−1)a

(
2a− 1

a

)(
H

(2a)
j−1 + H

(2a)
n−j

)
− (−1)a

a∑
i=1

(
i + a− 2

a− 1

)[
ζj−1(a + i− 1, a + 1− i) + ζn−j(a + i− 1, a + 1− i)

]
+ (−1)a

a∑
i=1

(
i + a− 2

a− 1

)[
H

(i+a−1)
j−1 H(a+1−i)

n + H
(i+a−1)
n−j H(a+1−i)

n

]
.

We note that the instance a = 1 is somewhat special, as then the Type 1 sums (the first line
of the righthand side) can be explicitly summed using the reciprocity law for Type 1 sums. Then
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using the special case

ζn(a, a) =
1
2
(
H(a)

n

2 −H(2a)
n

)
(11)

of (10) we get the second reciprocity law from page 1. For a ≥ 2, this pleasant feature unfortunately
fails to hold. Nevertheless, we can use the identity of Theorem 1 in the form

n−j∑
k=1

H
(b)
n−k

ka
= −

j∑
k=1

H
(a)
n−k

kb
−

H
(b)
j−1

(n + 1− j)a
− 1

jb(n + 1− j)a
+ H

(b)
j H

(a)
n+1−j + R(a,b)

n

in order to eliminate the sums of type
∑n−j

k=1

H
(b)
n−k

ka in terms of the sums of type
∑j

k=1

H
(a)
n−k

kb . Using
in addition (11) we obtain for instance for a = 2 the identity

j∑
k=1

H
(2)
n+k−j

k2
+

n+1−j∑
k=1

H
(2)
j+k−1

k2

= (H(2)
n (H(2)

j + H
(2)
j−1 + H

(2)
n−j + H

(2)
n+1−j −H(2)

n ) + 2Hn(H(3)
j−1 + H

(3)
n−j) +

2
j4
−

5H
(4)
j

2

+ H
(2)
j

( 1
j2
− 1

2
H

(2)
j

)
+ H

(2)
n−j(H

(2)
j−1 −

1
2
H

(2)
n−j)− 2HjH

(3)
n−j + H(4)

n − 5
2
H

(4)
n−j

− 2
j−1∑
k=1

Hn−k

k3
+ 2

j∑
k=1

H
(3)
n−k

k
− 2ζj−1(3, 1)− 2ζn(1, 3)− 2ζn−j(3, 1). (12)

Although such an expression is “shorter,” it doesn’t display the symmetry between j and n + 1− j
anymore.

As mentioned in the Introduction, we henceforth try to find a linear combination of Type 2 sums,
which can be explicitly evaluated. To do so, we start with Type 1 sums

U
(a,b)
n,j =

j∑
k=1

H
(b)
n−k

ka
.

Then by similar arguments as in previous computations, we get

U
(a,b)
n,j − U

(a,b)
n−1,j =

j∑
k=1

1
ka(n− k)b

=
a∑

i=1

(
i+b−2
b−1

)
ni+b−1

H
(a+1−i)
j +

b∑
i=1

(
i+a−2
a−1

)
ni+a−1

(H(b+1−i)
n−1 −H

(b+1−i)
n−1−j ).

(13)

Hence by iterating,

U
(a,b)
n,j =U

(a,b)
j,j +

a∑
i=1

(
i + b− 2

b− 1

) n∑
k=j+1

H
(a+1−j)
j

ki+b−1

+
b∑

i=1

(
i + a− 2

a− 1

) n∑
k=j+1

H
(b+1−i)
k−1

ki+a−1
−

b∑
i=1

(
i + a− 2

a− 1

) n∑
k=j+1

H
(b+1−i)
k−1−j

ki+a−1

= R
(a,b)
j +

a∑
i=1

(
i + b− 2

b− 1

)
H

(a+1−i)
j (H(i+b−1)

n −H
(i+b−1)
j ) +

b∑
i=1

(
i + a− 2

a− 1

) n∑
k=1

H
(b+1−i)
k−1

ki+a−1
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−
b∑

i=1

(
i + a− 2

a− 1

) j∑
k=1

H
(b+1−i)
k−1

ki+a−1
−

b∑
i=1

(
i + a− 2

a− 1

) n∑
k=j+1

H
(b+1−i)
k−j

ki+a−1

+
b∑

i=1

(
i + a− 2

a− 1

) n∑
k=j+1

1
(k − j)b+1−iki+a−1

,

where R
(a,b)
j is accessible by (2). By using Lemma 1 we get further

−
b∑

i=1

(
i + a− 2

a− 1

) n∑
k=j+1

H
(b+1−i)
k−j

ki+a−1
=

b∑
i=1

(
i + a− 2

a− 1

)(
−H(i+a−1)

n H
(b+1−i)
n+1−j +

n+1−j∑
k=1

H
(i+a−1)
j+k−1

kb+1−i

)
,

and thus

U
(a,b)
n,j = R

(a,b)
j +

a∑
i=1

(
i + b− 2

b− 1

)
H

(a+1−i)
j (H(i+b−1)

n −H
(i+b−1)
j ) +

b∑
i=1

(
i + a− 2

a− 1

) n∑
k=1

H
(b+1−i)
k−1

ki+a−1

−
b∑

i=1

(
i + a− 2

a− 1

) j∑
k=1

H
(b+1−i)
k−1

ki+a−1
+

b∑
i=1

(
i + a− 2

a− 1

) n∑
k=j+1

1
(k − j)b+1−iki+a−1

−
b∑

i=1

(
i + a− 2

a− 1

)
H(i+a−1)

n H
(b+1−i)
n+1−j +

b∑
i=1

(
i + a− 2

a− 1

) n+1−j∑
k=1

H
(i+a−1)
j+k−1

kb+1−i
.

By changing the roles of a, b and j, n + 1− j we immediately get

U
(b,a)
n,n+1−j = R

(b,a)
n+1−j +

b∑
i=1

(
i + a− 2

a− 1

)
H

(b+1−i)
n+1−j (H(i+a−1)

n −H
(i+a−1)
n+1−j )

+
a∑

i=1

(
i + b− 2

b− 1

) n∑
k=1

H
(a+1−i)
k−1

ki+b−1
−

a∑
i=1

(
i + b− 2

b− 1

) n+1−j∑
k=1

H
(a+1−i)
k−1

ki+b−1

+
a∑

i=1

(
i + b− 2

b− 1

) n∑
k=n+2−j

1
(k − (n + 1− j))a+1−iki+b−1

−
a∑

i=1

(
i + b− 2

b− 1

)
H(i+b−1)

n H
(a+1−i)
j +

a∑
i=1

(
i + b− 2

b− 1

) j∑
k=1

H
(i+b−1)
n+k−j

ka+1−i
.

For the convience of the reader we introduce the notation V
(a,b)
n,j =

∑n
k=j+1

1
ka(k−j)b , where V

(a,b)
n,j

can be decomposed into harmonic numbers in the following way:

V
(a,b)
n,j =

n∑
k=j+1

1
ka(k − j)b

=
n∑

k=j+1

[ a∑
i=1

(−1)i+1

(
i+b−2
b−1

)
(−j)i+b−1ka+1−i

+
b∑

i=1

(−1)a
(
i+a−2
a−1

)
(−j)i+a−1(k − j)b+1−i

]

=
a∑

i=1

(−1)b

(
i + b− 2

b− 1

)
H

(a+1−i)
n −H

(a+1−i)
j

ji+b−1
+

b∑
i=1

(
i + a− 2

a− 1

)
(−1)i+1

H
(b+1−i)
n−j

ji+a−1
.

(14)

Of course, V
(a,b)
n,j is considered to be a known and explicit quantity.
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This finally leads to the following theorem, in which an explicit evaluation of a linear combination
of Type 2 sums is stated.

Theorem 3.
a∑

i=1

(
i + b− 2

b− 1

) j∑
k=1

H
(i+b−1)
n+k−j

ka+1−i
+

b∑
i=1

(
i + a− 2

a− 1

) n+1−j∑
k=1

H
(i+a−1)
j+k−1

kb+1−i

= − 1
jb(n + 1− j)a

+ H
(b)
j H

(a)
n+1−j

+
a∑

i=1

(
i + b− 2

b− 1

)
H

(a+1−i)
j H

(i+b−1)
j +

b∑
i=1

(
i + a− 2

a− 1

)
H

(b+1−i)
n+1−j H

(i+a−1)
n+1−j

−
b∑

i=1

(
i + a− 2

a− 1

)
V

(i+a−1,b+1−i)
n,j −

a∑
i=1

(
i + b− 2

b− 1

)
V

(i+b−1,a+1−i)
n,n+1−j

−
a∑

i=1

(
i + b− 2

b− 1

)
ζj(i + b− 1, a + 1− i)−

b∑
i=1

(
i + a− 2

a− 1

)
ζn+1−j(i + a− 1, b + 1− i),

where V
(a,b)
n,j is given by (14).

Again, we offer the more attractive instance a = b explicitly.

Corollary 4.

a∑
i=1

(
i + a− 2

a− 1

)[ j∑
k=1

H
(i+a−1)
n+k−j

ka+1−i
+

n+1−j∑
k=1

H
(i+a−1)
j+k−1

ka+1−i

]
= − 1

ja(n + 1− j)a
+ H

(a)
j H

(a)
n+1−j

+
a∑

i=1

(
i + a− 2

a− 1

)[
H

(a+1−i)
j H

(i+a−1)
j + H

(a+1−i)
n+1−j H

(i+a−1)
n+1−j

]
−

a∑
i=1

(
i + a− 2

a− 1

)[
V

(i+a−1,a+1−i)
n,j + V

(i+a−1,a+1−i)
n,n+1−j

]
−

a∑
i=1

(
i + a− 2

a− 1

)[
ζj(i + a− 1, a + 1− i) + ζn+1−j(i + a− 1, a + 1− i)

]
.

The instance a = 1 produces the old reciprocity for Type 2 sums by using the simplification (11).
Similarly, the case a = 2 can be written in the form[ j∑

k=1

H
(2)
n+k−j

k2
+

n+1−j∑
k=1

H
(2)
j+k−1

k2

]
+ 2

[ j∑
k=1

H
(3)
n+k−j

k
+

n+1−j∑
k=1

H
(3)
j+k−1

k

]
=

−
H

(2)
j

j2
+

1
2
H

(2)
j

2
+

( 1
j2

+
1

(n + 1− j)2
)
H(2)

n +
1
2
(
H

(2)
n−j

)2 + 2Hj−1H
(3)
j + 2

(1
j

+
1

n + 1− j

)
H(3)

n

+
H

(4)
j

2
+

1
2
H

(4)
n−j + H

(2)
n−jH

(2)
j−1 + 2Hn−jH

(3)
n+1−j − 2ζj(3, 1)− 2ζn+1−j(3, 1). (15)
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4. Alternating harmonic numbers and reciprocity laws.

Let H
(a)
n =

∑n
k=1

(−1)k−1

ka denote the alternating counterpart of the general harmonic numbers.
Since we can set up three different linear Euler sums including alterning harmonic numbers

n∑
k=1

(−1)k−1 H
(a)
k

kb
,

n∑
k=1

H
(a)
k

kb
,

n∑
k=1

(−1)k−1 H
(a)
k

kb
,

we get two corollaries as an immediate consequence of the general reciprocity.

Corollary 5.
j∑

k=1

(−1)k−1 H
(a)
n−k

kb
+

n+1−j∑
k=1

(−1)k−1 H
(b)
n−k

ka
=

(−1)n

jb(n + 1− j)a
+ H

(b)
j H

(a)
n+1−j +

n∑
k=1

(−1)k−1 H
(b)
n−k

ka
.

Corollary 6.
j∑

k=1

(−1)k−1
H

(a)
n−k

kb
+

n+1−j∑
k=1

H
(b)
n−k

ka
=

(−1)j

jb(n + 1− j)a
+ H

(b)
j H

(a)
n+1−j +

n∑
k=1

H
(b)
n−k

ka
.

There is no third corollary, since we can change the roles of a, b and j, n + 1− j in Corollary 6.
There exist analogous results to Theorem 2 and Theorem 3 for alternating harmonic numbers,

which can be derived in a similar fashion as the respective theorems themselves. However, since
the resulting formulæ are quite involved, we refrain from stating them explicitly.

5. Limit results from reciprocity laws

We obtain for n = 2m + 1, j = m + 1 from Theorem 1
m+1∑
k=1

H
(a)
2m+1−k

kb
+

m+1∑
k=1

H
(b)
2m+1−k

ka
= − 1

(m + 1)a+b
+ H

(a)
m+1H

(b)
m+1 +

2m+1∑
k=1

H
(a)
2m+1−k

kb

= − 1
(m + 1)a+b

+ H
(a)
m+1H

(b)
m+1 + R

(a,b)
2m+1,

and by taking the limit m →∞
Theorem 4.

lim
m→∞

( m+1∑
k=1

H
(a)
2m+1−k

kb
+

m+1∑
k=1

H
(b)
2m+1−k

ka

)
= ζ(a)ζ(b) +

a∑
i=1

(
i + b− 2

b− 1

)
ζ(i + b− 1, a + 1− i)

+
b∑

i=1

(
i + a− 2

a− 1

)
ζ(i + a− 1, b + 1− i).

For a = b, this looks even more attractive:

lim
m→∞

m+1∑
k=1

H
(a)
2m+1−k

ka
=

1
2
ζ2(a) +

a∑
i=1

(
i + a− 2

a− 1

)
ζ(i + a− 1, a + 1− i).

For the alternating harmonic number we introduce the following notation.

ζ(a1) :=
∑
n≥1

(−1)n−1

na1
= (1− 21−a1)ζ(a1), ζ(a1, a2) :=

∑
n1>n2≥1

(−1)n1−1

na1
1 na2

2

, (16)
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ζ̂(a1, a2) :=
∑

n1>n2≥1

(−1)n1−1(−1)n2−1

na1
1 na2

2

, (17)

where ζ(1) = log 2. Thus we obtain for n = 2m + 1, j = m + 1 from Corollary 5

m+1∑
k=1

(−1)k−1

(
H

(a)
2m+1−k

kb
+

H
(b)
2m+1−k

ka

)
=

(−1)2m+1

(m + 1)a+b
+ H

(a)
m+1H

(b)
m+1 +

2m+1∑
k=1

(−1)k−1 H
(b)
2m+1−k

ka
,

(18)

and by taking the limit m →∞

Theorem 5.

lim
m→∞

m+1∑
k=1

(−1)k−1

(
H

(a)
2m+1−k

kb
+

H
(b)
2m+1−k

ka

)
= ζ(a)ζ(b)

−
a∑

i=1

(
i + b− 2

b− 1

)
ζ(i + b− 1, a + 1− i) −

b∑
i=1

(
i + a− 2

a− 1

)
ζ(i + a− 1, b + 1− i).

For a = b, this reads

lim
m→∞

m+1∑
k=1

(−1)k−1 H
(a)
2m+1−k

ka
=

1
2
ζ
2(a)−

a∑
i=1

(
i + a− 2

a− 1

)
ζ(i + a− 1, a + 1− i).

For Corollary 6 we proceed as before, getting

n∑
k=1

H
(b)
n−k

ka
= −

a∑
i=1

(
i + b− 2

b− 1

) n∑
k=1

(−1)k−1 H
(a+1−i)
k−1

ki+b−1
+

b∑
i=1

(
i + a− 2

a− 1

) n∑
k=1

H
(b+1−i)
k−1

ki+a−1
.

Now we make use of the basic relation
n∑

k=1

(−1)k−1 H
(a)
k

kb
+

n∑
k=1

H
(b)
k

ka
= H(a)

n H
(b)
n + H

(a+b)
n :

This leads to
n∑

k=1

H
(b)
n−k

ka
= −

a∑
i=1

(
i + b− 2

b− 1

) n∑
k=1

(−1)k−1 H
(a+1−i)
k−1

ki+b−1
−

b∑
i=1

(
i + a− 2

a− 1

) n∑
k=1

(−1)k−1
H

(i+a−1)
k−1

kb+1−i

+
b∑

i=1

(
i + a− 2

a− 1

)
H(i+a−1)

n H
(b+1−i)
n −

(
a + b− 1

a

)
H

(a+b)
n .

For j = m + 1 and n = 2m + 1 (6) turns into

m+1∑
k=1

(−1)k−1
H

(a)
2m+1−k

kb
+

m+1∑
k=1

H
(b)
2m+1−k

ka
=

(−1)m+1

(m + 1)a+b
+ H

(a)
m+1H

(b)
m+1 +

2m+1∑
k=1

H
(b)
2m+1−k

ka
,

and by taking the limit m →∞ we get
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Theorem 6.

lim
m→∞

( m+1∑
k=1

(−1)k−1
H

(a)
2m+1−k

kb
+

m+1∑
k=1

H
(b)
2m+1−k

ka

)
= ζ(a)ζ(b)−

(
a + b− 1

a

)
ζ(a + b)

+
b∑

i=1

(
i + a− 2

a− 1

)
ζ(i + a− 1)ζ(b + 1− i)−

a∑
i=1

(
i + b− 2

b− 1

)
ζ̂(i + b− 1, a + 1− i)

−
b∑

i=1

(
j + a− 2

a− 1

)
ζ(b + 1− i, i + a− 1).

There are no worthwhile limiting relations coming out of the reciprocity for Type 2 sums.
In the remainder of this section, we state three theorems about the decomposition of ζ(a, b),

ζ(a, b) and ζ̂(a, b) into single valued zeta functions, which could be used for simplifications in the
theorems.

Theorem 7 (D. Borwein, J. M. Borwein and Girgensohn, 1995). For odd weight w = a+ b it holds
the following.

ζ(a, b) = ζ(w)
(1

2
− (−1)b

2

(
w − 1

a

)
− (−1)b

2

(
w − 1

b

))
+

1− (−1)b

2
ζ(a)ζ(b)− ζ(w)

+ (−1)b

bb/2c∑
k=1

(
w − 2k − 1

a− 1

)
ζ(2k)ζ(m− 2k) + (−1)b

ba/2c∑
k=1

(
w − 2k − 1

b− 1

)
ζ(2k)ζ(m− 2k), (19)

where ζ(1) should be interpreted as zero whenever appearing.

Theorem 8 (Flajolet and Salvy, 1998). For odd weight w = a + b it holds the following.

ζ(a, b) =
(1− (−1)b)ζ(a)ζ(b) + ζ(w)

2
− ζ(w)

+
∑

l+2k=a

(
a + l − 1

l − 1

)
(−1)l+1ζ(a + l)ζ(2k) + (−1)b

∑
i+2k=a

(
b + i− 1

i− 1

)
ζ(b + i)ζ(2k),

where ζ(0) should be interpreted as 1 and ζ(1) as zero whenever appearing.

Theorem 9 (Flajolet and Salvy, 1998). For odd weight w = a + b it holds the following.(
(−1)b − (−1)a

)
ζ̂(a, b) =

(
(−1)b+1 + (−1)a

)
ζ(w) + (−1)b+1ζ(w) + (1− (−1)b)ζ(a)ζ(b)

+ 2
∑

l+2k=b

(
a + l − 1

a− 1

)
ζ(a + l)ζ(2k)− 2(−1)b

∑
i+2k=a

(
b + i− 1

b− 1

)
(−1)iζ(b + i)ζ(2k),

where ζ(0) should be interpreted as 1 and ζ(1) as zero whenever appearing.

6. Generalizations

Some of the identities can also be formulated for general sequences. Let (xi), (yi) be arbitrary
well defined sequences. We use the following notation for the partial sums

Xn :=
n∑

k=1

xk, Yn :=
n∑

k=1

yk.

Then the general reciprocity can be reformulated as follows.
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Theorem 10.
j∑

k=1

xkYn−k +
n+1−j∑

k=1

ykXn−k = −xjyn+1−j + XjYn+1−j +
n−1∑
k=1

ykXn−k.

For xk = 1/kb and yk = 1/ka this is just Theorem 1. Note that using the generating functions
X(z) =

∑
k≥1 xkz

k, Y (z) =
∑

k≥1 ykz
k it holds

n∑
k=1

ykXn−k =
n−1∑
k=1

[zk]Y (z)[zn−k]
X(z)
1− z

= [zn]
Y (z)X(z)

1− z
=

n∑
k=1

xkYn−k.

We get the corollaries

Corollary 7.
j∑

k=1

Xkyn−k +
n−j∑
k=1

Ykxn−k = Xj−1yn+1−j + Yn−jxj +j yn+1−j −XjYn+1−j +
n−1∑
k=1

ykXn−k.

Corollary 8.
j∑

k=1

Yn−kxk −
j∑

k=1

Xkyn−k = Yn−1−jXj .

Corollary 9.
n+1−j∑

k=1

Yj+k−1xk +
n∑

k=j+1

Xk−jyk = YnXn+1−j .

Here is the generalization of the basic identity (10).

Lemma 2.
n∑

k=1

xkYk +
n∑

k=1

ykXk = YnXn +
n∑

i=1

xiyi.

The formulæ for Type 2 sums are of a more subtle nature and depend on the explicit form of the
summands; partial fraction decomposition plays a vital rôle here, and thus there is no generality.

7. Finding and proving identities with SIGMA

Subsequently, we illustrate how the symbolic summation package Sigma [10], implemented in
the computer algebra system Mathematica, can assist us to find identities like the above. First,
we show how one can use Sigma for deriving identities like those in Theorem 1 for specific values
a, b ∈ N. Then given this collection of identities we are able to conjecture the general form with
arbitrary a, b ∈ N. Moreover, we can extract information from our computations that helps us to
prove those identities.

Identities with concrete values a,b. We work out how one can discover identity (1) with the
summation principles presented in [7]. In a first attempt one might try to simplify the left hand
side by indefinite summation: given the summand f(k) = Hn−k/k, find g(k) ∈ Q(n)(k)(Hn−k)
such that the telescoping equation

g(k + 1)− g(k) = f(k) (20)
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holds. Then summing this equation over k from 1 to j (resp. from 1 to n + 1 − j) would give a
closed form for

∑j
k=1

Hn−k

k (resp. for
∑n+1−j

k=1
Hn−k

k ).
Since this approach fails, we rewrite the identity to

j∑
k=1

Hn−k

k
+

n+1−j∑
k=1

Hn−k

k
=

j∑
k=1

(Hn−k

k
− Hk−2

n− k + 2

)
+

n∑
k=1

Hn−k

k
.

Now, given f(k) = Hn−k

k − Hk−2

(n−k+2) , we can compute

g(k) = − 1
(k − 1)(n− k + 2)

+ Hk−1Hn−k+2

such that (20) holds for all 2 ≤ k ≤ j. This gives the closed form evaluation
j∑

k=1

f(k) =
j∑

k=2

f(k) + f(1) = g(j + 1)− g(2) + f(1) =
1

j(n + 1− j)
+ HjHn+1−j .

To this end, we simplify the sum R
(1,1)
n =

∑n
k=1

Hn−k

k . Since telescoping fails, we apply the following
definite summation strategy:
(1) Given f(n, k) := Hn−k

k , find for some d ∈ N constants c0(n), . . . , cd(n) ∈ Q(n), free of k, and
g(n, k) ∈ Q(n)(k)(Hn−k) such that the creative telescoping equation

c0(n)f(n, k) + c1(n)f(n + 1, k) + · · ·+ cd(n)f(n + d, k) = g(n, k + 1)− g(n, k) (21)

holds for 1 ≤ k ≤ n. We find for d = 2 the solution c0(n) = n+1, c1(n) = −(2n+3), c2(n) = n+2,
and g(n, k) = − 1

n+2−k . Hence summing this equation over k from 1 to n produces the recurrence
relation

(n + 1)2R(1,1)
n − (n + 1)(2n + 3)R(1,1)

n+1 + (n + 1)(n + 2)R(1,1)
n+2 = 2, n ≥ 1.

(2) Next, we solve the recurrence by computing the solutions 1 and Hn for the homogeneous
version and by finding the particular solution H2

n − H
(2)
n of the inhomogeneous recurrence itself;

note that the correctness of these solutions can be checked easily. Hence we make the ansatz
R

(1,1)
n = H2

n −H
(2)
n + k1 · 1 + k2Hn with k1, k2 ∈ Q. By checking the first initial values it turns out

that c1 = c2 = 0, i.e., we obtain (3). Summarizing, we have discovered and proven identity (1).
Remark. With the same techniques of indefinite summation (telescoping) and definite summa-

tion (computing a recurrence and solving the recurrence) we can attack, in principle, most of the
identities in Sections 2, 3, 4 for concrete values a, b. We should mention that already for small a, b,
like in (12), (15), the computations get quite involved.

Identities with parameters a,b. In general, finding and proving identities with arbitrary
parameters a in H

(a)
k , like in Theorem 1, is out of scope of our algorithmic machinery. Nevertheless,

we can discover the identity in Theorem 1 with a = b if we have a closer look at the presented
computer-proof of identity (1). First observe that

j∑
k=1

H
(a)
n−k

kb
+

n+1−j∑
k=1

H
(b)
n−k

ka
=

j∑
k=1

(H
(a)
n−k

kb
−

H
(b)
k−2

(n− k + 2)a

)
+

n∑
k=1

H
(b)
n−k

ka

for arbitrary a, b ≥ 1. Now we try to solve the telescoping problem (20) with f(k) =
H

(a)
n−k

kb − H
(b)
k−2

(n−k+2)a

for various concrete values a, b ∈ N. As it turns out, we always succeed. Even more, we find the
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general pattern

g(n, k) = − 1
(k − 1)b(n− k + 2)a

+ H
(b)
k−1H

(a)
n−k+2;

note that the conjectured solution can be easily verified for all 2 ≤ k ≤ n and for all a, b ≥ 1.
Hence, we have discovered and proven

j∑
k=1

(H
(a)
n−k

kb
−

H
(b)
k−2

(n− k + 2)a

)
= g(j + 1)− g(2) + f(1) = H

(b)
j H

(a)
n+1−j −

1
jb(n + 1− j)a

which gives the first line in Theorem 1.
Remark. Similarly, we can find and prove the identities in Lemma 1 and in the Corollar-

ies 1, 2, 5, 6.

Next, we turn to the second sum R
(a,b)
n =

∑n
k=1

H
(b)
n−k

ka . E.g., for R
(2,2)
n =

∑n
k=1 f(n, k) we can

compute for d = 3 the solution c0(n) = −(n + 1)3, c1(n) = 17 + 27n + 15n2 + 3n3, c2(n) =
−43 − 51n − 21n2 − 3n3, c3(n) = (3 + n)3 and g(n, k) = 9−4k+9n−2kn+2n2

(−3+k−n)2(−2+k−n)2
for (21); this results

in the recurrence relation

− (n + 1)4(n + 2)2R(2,2)
n + (n + 1)(n + 2)2(17 + 27n + 15n2 + 3n3)R(2,2)

n+1

− (n + 1)(n + 2)2(43 + 51n + 21n2 + 3n3)R(2,2)
n+2 + (n + 1)(n + 2)2(3 + n)3R(2,2)

n+3

= −2(5 + 2n).

Afterwards, we compute the solutions 1, H
(3)
n , H

(2)
n − H

(3)
n of the homogeneous version plus a

particular solution −1−H
(4)
n −6H

(3)
n +6H

(2)
n +H

(2)
n +4ζn(3, 1) of the recurrence itself. Combining

these solutions accordingly gives Rn(2, 2) =
(
H

(2)
n

)2 −H
(4)
n + 4ζn(3, 1). Similarly, we find by this

method the closed forms

Rn(3, 3) =
(
H(3)

n

)2 −H(6)
n + 6ζn(4, 2) + 12ζn(5, 1),

Rn(4, 4) =
(
H(4)

n

)2 −H(8)
n + 8ζn(5, 3) + 20ζn(6, 2) + 40ζn(7, 1),

Rn(5, 5) =
(
H(5)

n

)2 −H(10)
n + 10ζn(6, 4) + 30ζn(7, 3) + 70ζn(8, 2) + 140ζn(9, 1).

Together with (11) this leads to the conjecture

Rn(a, a) =
4∑

i=1

si(a)ζn(a− 1 + i, a + 1− i)

for some si(a) ∈ N0. Then using, for example, Sloane’s On-Line Encyclopedia of Integer Se-
quences [9] we can guess that si(a) = 2

(
i+a−2
a−1

)
. Summarizing, we can guess identities like in

Theorem 1 (a = b).
But can we also prove them? Unfortunately, we failed to extract any information from these

computations that could assist us in proving Theorem 1 for general a, b. E.g., analyzing several
instances f(n, k) = H

(b)
n−k/ka with a, b ∈ N we did not find any pattern in the resulting creative

telescoping solution ci(n) ∈ Q(n) and g(n, k) ∈ Q(n)(k)(H(b)
n−k).

Note that we are more successful if we extend the domain in which we search g(n, k). For
instance, if we take a = b = 1, we can compute the creative telescoping solution

f(n + 1, k)− f(n, k) = g(n, k + 1)− g(n, k)
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with g(n, k) =
∑k

i=1
1

i(n+1−i) . It is important to mention that the sum
∑k

i=1
1

i(n+1−i) has been
computed completely automatically; for further information we refer to [6]. Trying further cases
with a, b ∈ N we arrive at the general solution g(n, k) =

∑k
i=1

1
ib(n+1−i)a ; the correctness can be

verified immediately. Consequently, we obtain

R
(a,b)
n+1 −R(a,b)

n =
n∑

i=1

1
ib(n + 1− i)a

which is one the crucial observations to prove Theorem 1.

Remark. Similarly, we can compute the recurrence U
(a,b)
n,j − U

(a,b)
n−1,j =

∑j
k=1

1
ka(n−k)b in (13).

8. Conclusion

We have demonstrated how a class of nontrivial identities involving sums over harmonic numbers
can be discovered and proved, both, by humans and computers.

Since harmonic numbers are defined as a sum, the objects of this paper are double sums.
It will be the subject of further research to look out for “similar” identities in the world of triple

(and multiple) sums.
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