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Abstract: The reciprocal Pascal matrix has entries (i';'j)fl. Explicit formulee for its LU-decomposition, the LU-

decomposition of its inverse, and some related matrices are obtained. For all results, g-analogues are also presented.
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1. Introduction

Recently, there has been some interest in the reciprocal Pascal matriz M , defined by

-1
1+
Mi,j:( ,j> ;
J

the indices start here for convenience with 0,0, and the matrix is either infinite or has N rows and columns,

depending on the context.
Richardson [7] has provided the decomposition S = GMG, where the diagonal matrix G has entries
Gii= (*), and S is the super Catalan matriz [2, 4] with entries

p
(20)!(25)!
Sij = Aa T oar

gl + j)!

We want to give an alternative decomposition of M, provided by the LU-decomposition. We will give
explicit expressions for L and U, defined by LU = M, as well as for L™! and U~!.

Since there is also interest in M !, in particular in the integrality of its coefficients, we also provide the
LU-decomposition AB = M~!, and give expressions for A, B, A~!, and B~!.

In the following section, we provide g-analogues of these results.

The paper closes with a list of similar results with two additional parameters, but for the matrix with

i+r+j+s)*1 and (i+r+j+s).

entries ( it it

We would like to mention that results of the type as presented here are useful to find and prove new

expansion formula for “Fibonomial sums”; see, for instance, [5].
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2. Identities
The LU-decomposition M = LU is given by

I ili1(25)!
S (a4 ) — )15

and
(—1)ij!j!i!(i -1

Usj = G+l —i)(2i —1)!

for ¢ > 1.

For ¢ =0, the formula is Uy ; = 1.

The formula that needs to be proved is

.|
Z L Uy = (HTJ> ;
0<k<min{i,j} J
which is equivalent to
2311515 k( 2 )( 2j ) (z'+j>‘1
g ZHGUL s e ()
| |
(20)!(2))! 1<k<min{i,j} A A J

The von Szily identity [2, 3, 8] is

and an equivalent form is, by symmetry,

e (1) () 2Zer () ()

Thus, the identity to be proven is now
(i +j> iljl(i + j)! [ (24)!(25)! (21) (2]')]
. + == - 7 — | - : =1,
J (20)1(29)! (!5 + 5)! i)\ j
which is obviously correct.

The formula, for L=! is for i > j > 0:

(=1)i=9ilil(i + j — 1)!
(20 — D)1(i — §)!5!5!

-1 _
Li,j -

If necessary (¢ = j = 0), this must be interpreted as a limit.
To check this, we consider

ilil(2k)! (1)K K+ 5 — 1)!
zk: (i +k)I(i — k)EE! (2k — 1)!(k — )55

24l(—1) Z k (—=1)k(k + 5 —1)!
(1 + k)

gl S (i — k)! (k—j)!
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The sum can be evaluated by computer algebra (or otherwise), and the result is indeed [i = j], as desired.

The formula for U~ is for j >4 >1

(G - 1))
Vis = "G =i — naa

and for 1 =10

-1 29!
0.5 = 5141
WAVE:
The fact that ), Ui Uy ]1 = [i = j] can also be done by computer algebra. Since there are a few cases

to be distinguished, it is omitted here.
The LU-decomposition AB = M~! depends on the dimension N and is given by

()" N —j - DYIN +i—1)!

A = N DI - DG

e (=1)IHN-L(N 4 j —1)!
ij = J1G —D)UN —j —D)lal -

Since M~! does not have “nice” entries, we rather provide formulse for A=' and B~! and prove the
identity B—1A~! = M instead. The results are:

(N —j — DN +i— 1)

A.i.l =
W TN i - DN + 5 - DI — )
Bt NIV — 1 )il
i,j (G—9)(N+i—1)!

First we prove that these are indeed the inverses. We consider

(-1 (N -k =DE(N+i-1)! (N—j—D(N+k—1)
2 NN —i— DN+ k-0 —k)! BN —k—1DYN +j— D)k —35)

Vi DI = - 1y (1)
SOV D e 2 o

_ (N4 DNV - J—l'J' -J
(N —i—DI(N 45— 1)k 'J;;Q ( k)

 (N4i—DYN -1l
(N i 1)!<N+j—1)!@!(2'_]')![[Z =i=0=J
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which proves AA™! = I. Similarly

S N L i Y
(k=N +i—-1!  G1G—kKUN—-7—-1)k!

k

_ (N =1 —)li{(N +j—1)! (—1)F

*(’1)(N+z_1)g _j_1'2 N — k)!

B (N=1-=9)Ul(N+j5-1) '

(N +i— DN -5 —1)! jfllz ( k)
(N—=1—-9)ll(N+5—-1) [[7] — i,

S (N+i— DN —§ =D —)!
which proves B~1B =1.
Now we compute an entry in B~1A~!:

Z(—l)k+N—1(N—1—i)!k!i! (N—j 1IN +k—1)!
(k—)W(N+i—1! k(N —k—DI(N+j—DI(k—j)

k

B (N =1=9)U(N—-75-1)j FIN +k—1)!
=" (N+i—1DI(N+j—1) Zk: E—1i) N k—1)!(k—j)!
B LN — 1) N—1—-i\(N+k-1
=0t (N +i—1)! Z(l)k(N—l—k>(N—1—|—j>

k
_i!j!(N—j—l)!Z i—-1—k\(N+k-1
T N+ AN =1k \N =1+

WS (Y

k
AN - D (i—1+N
- (N+i-1)! i+
ilj!
= _M s
(i + ) W

as claimed.
Now we use the form M~! = AB and write the (i,j) entry:

(N—k—-1DE(N+i-1)! (=1 VYN +5-1)!
zk:i!(N —i— DN +k— DG — k) 515 — k)N —j — 1)k

(N+i—1DI(N+j— 1) (N — k71) (—1)i+N-1
N —i—D)GIN ==l &= (N+ k=D —k)! (- k)!

N-1\(N+j—1 Sy N4i-1\(/N—k—1
i j ik )\ ik )
0<k<min{i,j}

From this representation, it is clear that this is an integer. This was a question that was addressed in the

affirmative in [7].
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3. g-analogues

In this section we present g-analogues. Define (¢), := (1 —¢q)(1 —¢?)...(1 —¢"), and

these definitions are standard, see [1]. Then we have the following results for the matrix M with entries [";7 ] .

(Q)i(Q)i(Q)Zj

L;; = (@)i+i(@)i—i(0);(q);

)

(=1)'q" =121 + ¢')(q);(0);(0)i(q):
(@)i+5(q)j—i(q)2i

Ui,j = for 4 > 1, UO,j = ]_7

g (=026 /2713 (—1)3 () (q)s (q)i4 51

L7 =
- (Q)Qi—l(Q)i—j

for j <i, L =1,

o1 _ (DT I (g); 0 (9)2(0)i(0):
I (@)j-i(a);j(@)j-1

for j > i,

Ul = (—1)'q"CD/2(q)2i(q)2:
" (@i(@i(@)i(@)i(1+ ¢Y)

fori>1, Ujgy =1,

(_1)iqu(HjJrS)(Fj)/%N(j*i) (Q)ijfl ((J)j (@) Nti-1
(Q)N—i—l (Q)i(CI)N+j—1 (Q)i—j

Aij =

)

(_1)j+N—1qi2+j(j+3)/2—Nj—N(N—l)/2(q)

(@) (@)j—i(a)n—j-1(q)i

N+j—1
)

Bi,j =

1 _ NIy (@) v+io1(a);
! (@N-i-1(D)N+j-1(9)i(@)i—j

)

1 (_1)j+1+Nq—j(j+l)/2—ij+N(N—1)/2+(N—1)i(q)N_l_i(q)j(q)i

B =
I (@)j—i(@)Nti1

Note that for ¢ — 1, we get the previous formulae. We do not display all the proofs here, since Zeilberger’s
algorithm (aka WZ-theory) [6] proves all these results (which were obtained by guessing), using a computer
algebra system (such as, e.g., Maple). However, as suggested by a referee, in the next section, we provide how

a typical proof is obtained with a computer.

REMARK. Richardson’s decomposition S = GMG still holds when all binomial coefficients are replaced

by the corresponding Gaussian ¢-binomial coefficients.
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4. A sample proof

We deal here with

(_l)i—kq(i+k+3)(i—k)/2+N(k

S AAt= Y “NQ)N k1 (Dr(@)Nria

i<h<i iShgi (ON-i—1(@)i(@)N+r-1(0)i—k
q(k_j)(k_NH)(Q)N—j—1(Q)N+k—1(Q)j
(D)N—k-1()N+j-1(D)r(D—j

_ RN D @i @0y g (DT )
(@ON=i—1(@)i(@)N+j—1(@)i—;j oo} (@)i—k(@)r—j

Now Zeilberger’s algorithm provides the formula

(—1)i_qu(k_1)/2_kj(Q)i_]‘ (—1)i_qu(k+1)/2_j_kj(q)i—j—l (—1)i_(k_1)qk(k_1)/2_j_(k_1)j(q)i—j—l

)

(@)i—1(q)r—; B (@)i—1—k (q)i—k

so the sum over k is telescoping, with the result

(=1)Fghth=1/2=ki(g), (—1) =g D2t (g), ;1 (1= ¢ )

>

J<k<t (Q)ifk(Q)kfj (q)i-e

For j < ¢ and ¢ = i, this evaluates to 0. For j =i, we have directly

(_1)i7qu(k71)/2fki

i(i—1)/2—14? —i(i+1)/2

2.

i<k<i (@)i—k(@)k—i

=q =4q

Therefore

Z A Al qi(i+3)/27i(q)N+i—1(Q)N—i—l(Q)iqii(i+1)/2 -1
i<h<i i (@)N-i—1(0)i(@) N+i—1

as desired.

5. A two parameter extension

It is even possible to extend the results by replacing ¢ -+ ¢+ and 7 — j + s, for ;s > 0. In other words, the

i+r+j+s) -t

matrix now has entries ( e
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We only give the formulee in a list:

I (i +r)il(2) +r+ s)!
it A4 )= )G+ )

(D' G+ )+ n)itr+s—1)

Ui': 9
T Gidr )G -2+ r+s—1)!

o (D)) i+ s — 1)
W (2i4r s — DI — )G + )l

0 (D4 s = D247+ 9)!
WG EMG G+ s — DI+ sk
AH:(_1)i_j(N—J—1)(J+S)(N+z+r—|—s—1)
(i )N =i = DN 4+ +s— DI — )
B (DN A4t s 1)
GG DN = =D+ s)Y
-1 (N=j—DIG+s)(N+i+r+s—1)!
i’j7(i+8).(N—Z—1)(N—‘r]-f—?“-l-s—l)(l—j)
S (DTN =1 —a)l(5 + )i+ 1)
b3 G—O)N+i+r+s—1)! '

s —1
For [”;iffs] we get g-analogues:

(q)H‘T(q)l(q)?]-‘rr-i-s
(Ditjrrt+s(@)i—j(@)j+r(a); ’

(71)iqi(3i71)/2( )]+S(q)](q)l+T(Q)Z+r+s—1
(@)j+itr+s(@)j—i(@)2itrts—1

(VR

Uij=

b

z( )z+g+r+s 1

L=
Q)j+r(q);

]

)

(—1)~ Igii=D)/2+5(G+1)/2— 9(q)izr(q

(q)21+r+s—1( ) (

Ul = (_1)iqi(i+1)/27j2ﬂ.ji(wrs)j(Q)i+j+7"+3—1(Q)2j+r+s
i (@);—i(@)j+r(0)j+i(@)jrrrs—1(@)irs(q)i

(_1)i7jqi(i+3)/2fj(j+3)/2+N(j7i) (Q)ijq(Q)j+s(Q)N+i+r+sf1

)

Aig = (Dits(@N-i-1(D) N+jtr+5-1(Q)i—; ’
B (—1)F N1 g(rs) (i D)+ 4§ (43) /2= (r st N=N(N=1)/2 () o0
" @)+ (@) (@)n—5-1(2)is ’
A1 = g VI NG=D () i 1(q) s (@) Npiprts—1
i (@irs(@ON—i—1(@)Ntjrrts-1(0)ij ’
gt (DTN gD 2NN D2 N D) (q) () (@)
i .

(@)j—i(@Q)N+itrrs—1
The previous results follow from these by plugging in » = s = 0 or taking appropriate limits.
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6. Additional results

For completeness, we also deal with the binomial matrix (no reciprocals)

%7j:<<i+f+j+s>> |
jts .
4,520

We get the same type of factorizations and use calligraphic letters to mark the difference. We only cite the

results; justifications are in the same style as in the previous instances.

s i+ r+ )G +r)
Zis (= DG +r)G +7+s)
(J+7r+s)y!
(G =G+ +s)
1 (D)4 + )l 4 r)!
B (= NG A+ )6+ )5
(=19 + 7)1+ s)!
(G=)(i+r+s)!
)TN = DG+ N2 s+ 1)
Y= UN =i =D+ i+ s+ DG +s)!

U,j =

—1 _
%5 =

(=) (N +i+r+s)(5+7r)(+s)!

Bij= . : — ,
TGN =G =D+ r+s)(i+i+r+s+1)!
. (N= =D+ G474 s)(i 4 s)!

b (= DN =i — D27+ 8)!(5 + )
%_1:(N—z'—1)!(2j+r+s+1)!(z'—|—j+r+s)!

B3 (G—DN+7+7+8)E+r)G+s)!

There are also g-analogues for the matrix

t+r+j+s
///i,j:<[ X ]) .
J+s -
i,7>0

A— (Q)i(q)i+r+s(q)j+r
= (0)i-3(0);(Qi+r(D)j4r+s
o ¢ (g) s r15(q);

(@)j—i(@i+r(@)j+s

(—1)i=9 g =D/2=0+5GHD/2(q); 1 (9)i(q) jr

"gi_'l - )
7 (0)i—5(@)j4r+s(@)itr(a);

2t (_1)i—jqi(i+1)/2—z‘j—j(y‘+1)/2—(r+s)j(q>j+T(q)Z.+s

” (@)j—-i(@)itrrs(a)i ’
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(1)1 =gt 327G/ 2ANG=0 () v 1(q)ivs(q)2j4r 4541
(@i (@O N—i—1(@)irjrrrsr1(Q)jts
(1)1~ U1 G+2)/24+31(+1) /24 (r+3) (i) =N G+ i+ r+3) ()

Ay j =

)

N-+itr+s (Q)j-H“ (Q)H—s

)

Bij =

(@)j—i(@N—j-1(D)2i1r+5(Qitjrristt

2 _ i) —id
quql N=D=D=(q) N j—1(Q)itjtrts(Q)its

& (@)i—i(@ON=i—1(@) 2i4r+5(@) j+s ’
{@il _ q(i+j+1+r+s)(N7j71) (Q)N—i—l (Q)2j+r+s+1 (Q)i+j+r+s
i (@) j—i (@O Ntj4r+5(@itr (@) jrs

References

[1] Gasper G, Rahman M. Basic Hypergeometric Series. Cambridge, UK: Cambridge University Press, 2004.
[2] Gessel IM. Super ballot numbers. J Symb Comput 1992; 14: 179-194.

[3] Gessel IM, Larcombe PJ, French DR. On the identity of von Szily: original derivation and a new proof. Util Math
2003; 64: 167-181.

[4] Heubach S, Li NY, Mansour T. A garden of k-Catalan structures. Preprint,
http://web.calstatela.edu/faculty /sheubac/papers/k-Catalan.

[5] Kilig E, Prodinger H. Variants of the Filbert matrix. Fibonacci Quart 2013; 51: 153-162.
[6] Petkovsek M, Wilf H, Zeilberger D. A = B. Wellesley, MA: AK Peters, 1996.
[7] Richardson TM. The reciprocal Pascal matrix. math.CO:arXiv:1405.6315, 2014.

[8] von Szily K. Uber die Quadratsummen der Binomialcoefficienten. Ungar Ber 1894; 12: 84-91 (in German).

994



	Introduction
	Identities
	q-analogues
	A sample proof
	A two parameter extension
	Additional results

