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Abstract: The reciprocal Pascal matrix has entries
(
i+j
j

)−1
. Explicit formulæ for its LU-decomposition, the LU-

decomposition of its inverse, and some related matrices are obtained. For all results, q -analogues are also presented.
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1. Introduction

Recently, there has been some interest in the reciprocal Pascal matrix M , defined by

Mi,j =

(
i+ j

j

)−1

;

the indices start here for convenience with 0, 0, and the matrix is either infinite or has N rows and columns,

depending on the context.

Richardson [7] has provided the decomposition S = GMG , where the diagonal matrix G has entries

Gi,i =
(
2i
i

)
, and S is the super Catalan matrix [2, 4] with entries

Si,j =
(2i)!(2j)!

i!j!(i+ j)!
.

We want to give an alternative decomposition of M , provided by the LU-decomposition. We will give

explicit expressions for L and U , defined by LU = M , as well as for L−1 and U−1 .

Since there is also interest in M−1 , in particular in the integrality of its coefficients, we also provide the

LU-decomposition AB = M−1 , and give expressions for A , B , A−1 , and B−1 .

In the following section, we provide q -analogues of these results.

The paper closes with a list of similar results with two additional parameters, but for the matrix with

entries
(
i+r+j+s

j+s

)−1
and

(
i+r+j+s

j+s

)
.

We would like to mention that results of the type as presented here are useful to find and prove new

expansion formulæ for “Fibonomial sums”; see, for instance, [5].
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2. Identities

The LU-decomposition M = LU is given by

Li,j =
i!i!(2j)!

(i+ j)!(i− j)!j!j!

and

Ui,j =
(−1)ij!j!i!(i− 1)!

(j + i)!(j − i)!(2i− 1)!
for i ≥ 1.

For i = 0, the formula is U0,j = 1.

The formula that needs to be proved is

∑
0≤k≤min{i,j}

Li,kUk,j =

(
i+ j

j

)−1

,

which is equivalent to

1 +
2i!i!j!j!

(2i)!(2j)!

∑
1≤k≤min{i,j}

(−1)k
(

2i

i+ k

)(
2j

j + k

)
=

(
i+ j

j

)−1

.

The von Szily identity [2, 3, 8] is

(2i)!(2j)!

i!j!(i+ j)!
=
∑
k∈Z

(−1)k
(

2i

i+ k

)(
2j

j + k

)
,

and an equivalent form is, by symmetry,

(2i)!(2j)!

i!j!(i+ j)!
=

(
2i

i

)(
2j

j

)
+ 2

∑
k≥1

(−1)k
(

2i

i+ k

)(
2j

j + k

)
.

Thus, the identity to be proven is now(
i+ j

j

)
+

i!j!(i+ j)!

(2i)!(2j)!

[
(2i)!(2j)!

i!j!(i+ j)!
−
(
2i

i

)(
2j

j

)]
= 1,

which is obviously correct.

The formula for L−1 is for i ≥ j ≥ 0:

L−1
i,j =

(−1)i−ji!i!(i+ j − 1)!

(2i− 1)!(i− j)!j!j!
.

If necessary (i = j = 0), this must be interpreted as a limit.

To check this, we consider∑
k

i!i!(2k)!

(i+ k)!(i− k)!k!k!

(−1)k−jk!k!(k + j − 1)!

(2k − 1)!(k − j)!j!j!

=
2i!i!(−1)j

j!j!

∑
j≤k≤i

k

(i+ k)!(i− k)!

(−1)k(k + j − 1)!

(k − j)!
.
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The sum can be evaluated by computer algebra (or otherwise), and the result is indeed [[i = j]] , as desired.

The formula for U−1 is for j ≥ i ≥ 1

U−1
i,j =

(−1)i(j + i− 1)!(2j)!

(j − i)!j!(j − 1)!i!i!

and for i = 0

U−1
0,j =

(2j)!

j!j!
.

The fact that
∑

k Ui,kU
−1
k,j = [[i = j]] can also be done by computer algebra. Since there are a few cases

to be distinguished, it is omitted here.

The LU-decomposition AB = M−1 depends on the dimension N and is given by

Ai,j =
(−1)i−j(N − j − 1)!j!(N + i− 1)!

i!(N − i− 1)!(N + j − 1)!(i− j)!
,

Bi,j =
(−1)j+N−1(N + j − 1)!

j!(j − i)!(N − j − 1)!i!
.

Since M−1 does not have “nice” entries, we rather provide formulæ for A−1 and B−1 and prove the

identity B−1A−1 = M instead. The results are:

A−1
i,j =

(N − j − 1)!j!(N + i− 1)!

i!(N − i− 1)!(N + j − 1)!(i− j)!
,

B−1
i,j =

(−1)j+N−1(N − 1− i)!j!i!

(j − i)!(N + i− 1)!
.

First we prove that these are indeed the inverses. We consider

∑
k

(−1)i−k(N − k − 1)!k!(N + i− 1)!

i!(N − i− 1)!(N + k − 1)!(i− k)!

(N − j − 1)!j!(N + k − 1)!

k!(N − k − 1)!(N + j − 1)!(k − j)!

= (−1)i
(N + i− 1)!(N − j − 1)!j!

(N − i− 1)!(N + j − 1)!i!

∑
j≤k≤i

(−1)k

(i− k)!(k − j)!

=
(N + i− 1)!(N − j − 1)!j!

(N − i− 1)!(N + j − 1)!i!(i− j)!

∑
j≤k≤i

(−1)i−k

(
i− j

i− k

)

=
(N + i− 1)!(N − j − 1)!j!

(N − i− 1)!(N + j − 1)!i!(i− j)!
[[i = j]] = [[i = j]],
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which proves AA−1 = I . Similarly∑
k

(−1)k+N−1(N − 1− i)!k!i!

(k − i)!(N + i− 1)!

(−1)j+N−1(N + j − 1)!

j!(j − k)!(N − j − 1)!k!

= (−1)j
(N − 1− i)!i!(N + j − 1)!

(N + i− 1)!j!(N − j − 1)!

∑
k

(−1)k

(k − i)!(j − k)!

=
(N − 1− i)!i!(N + j − 1)!

(N + i− 1)!j!(N − j − 1)!(j − i)!

∑
k

(−1)j−k

(
j − i

j − k

)

=
(N − 1− i)!i!(N + j − 1)!

(N + i− 1)!j!(N − j − 1)!(j − i)!
[[i = j]] = [[i = j]],

which proves B−1B = I .

Now we compute an entry in B−1A−1 :∑
k

(−1)k+N−1(N − 1− i)!k!i!

(k − i)!(N + i− 1)!

(N − j − 1)!j!(N + k − 1)!

k!(N − k − 1)!(N + j − 1)!(k − j)!

= (−1)N−1 (N − 1− i)!i!(N − j − 1)!j!

(N + i− 1)!(N + j − 1)!

∑
k

(−1)k(N + k − 1)!

(k − i)!(N − k − 1)!(k − j)!

= (−1)N−1 i!j!(N − j − 1)!

(N + i− 1)!

∑
k

(−1)k
(
N − 1− i

N − 1− k

)(
N + k − 1

N − 1 + j

)

=
i!j!(N − j − 1)!

(N + i− 1)!

∑
k

(
i− 1− k

N − 1− k

)(
N + k − 1

N − 1 + j

)

=
i!j!(N − j − 1)!

(N + i− 1)!

∑
k

(
i− 1− k

i−N

)(
N + k − 1

N − 1 + j

)

=
i!j!(N − j − 1)!

(N + i− 1)!

(
i− 1 +N

i+ j

)
=

i!j!

(i+ j)!
= Mi,j ,

as claimed.

Now we use the form M−1 = AB and write the (i, j) entry:∑
k

(N − k − 1)!k!(N + i− 1)!

i!(N − i− 1)!(N + k − 1)!(i− k)!

(−1)j+N−1(N + j − 1)!

j!(j − k)!(N − j − 1)!k!

=
(N + i− 1)!(N + j − 1)!

i!(N − i− 1)!j!(N − j − 1)!

∑
k

(N − k − 1)!

(N + k − 1)!(i− k)!

(−1)j+N−1

(j − k)!

=

(
N − 1

i

)(
N + j − 1

j

) ∑
0≤k≤min{i,j}

(−1)j+N−1

(
N + i− 1

i− k

)(
N − k − 1

j − k

)
.

From this representation, it is clear that this is an integer. This was a question that was addressed in the

affirmative in [7].
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3. q -analogues

In this section we present q -analogues. Define (q)n := (1− q)(1− q2) . . . (1− qn), and

[
n

k

]
:=

(q)n
(q)k(q)n−k

;

these definitions are standard, see [1]. Then we have the following results for the matrix M with entries
[
i+j
j

]−1
.

Li,j =
(q)i(q)i(q)2j

(q)i+j(q)i−j(q)j(q)j
,

Ui,j =
(−1)iqi(3i−1)/2(1 + qi)(q)j(q)j(q)i(q)i

(q)i+j(q)j−i(q)2i
for i ≥ 1, U0,j = 1,

L−1
i,j =

qi(i−1)/2+j(j+1)/2−ij(−1)i−j(q)i(q)i(q)i+j−1

(q)2i−1(q)i−j
for j < i, L−1

i,i = 1,

U−1
i,j =

(−1)iq−j2−ji+i(i+1)/2(q)j+i−1(q)2j(q)i(q)i
(q)j−i(q)j(q)j−1

for j > i,

U−1
i,i =

(−1)iqi(3i+1)/2(q)2i(q)2i
(q)i(q)i(q)i(q)i(1 + qi)

for i ≥ 1, U−1
0,0 = 1,

Ai,j =
(−1)i−jq(i+j+3)(i−j)/2+N(j−i)(q)N−j−1(q)j(q)N+i−1

(q)N−i−1(q)i(q)N+j−1(q)i−j
,

Bi,j =
(−1)j+N−1qi

2+j(j+3)/2−Nj−N(N−1)/2(q)N+j−1

(q)j(q)j−i(q)N−j−1(q)i
,

A−1
i,j =

q(i−j)(i−N+1)(q)N−j−1(q)N+i−1(q)j
(q)N−i−1(q)N+j−1(q)i(q)i−j

,

B−1
i,j =

(−1)j+1+Nq−j(j+1)/2−ij+N(N−1)/2+(N−1)i(q)N−1−i(q)j(q)i
(q)j−i(q)N+i−1

.

Note that for q → 1, we get the previous formulæ. We do not display all the proofs here, since Zeilberger’s

algorithm (aka WZ-theory) [6] proves all these results (which were obtained by guessing), using a computer

algebra system (such as, e.g., Maple). However, as suggested by a referee, in the next section, we provide how

a typical proof is obtained with a computer.

Remark. Richardson’s decomposition S = GMG still holds when all binomial coefficients are replaced

by the corresponding Gaussian q -binomial coefficients.
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4. A sample proof

We deal here with

∑
j≤k≤i

Ai,kA
−1
k,j =

∑
j≤k≤i

(−1)i−kq(i+k+3)(i−k)/2+N(k−i)(q)N−k−1(q)k(q)N+i−1

(q)N−i−1(q)i(q)N+k−1(q)i−k

× q(k−j)(k−N+1)(q)N−j−1(q)N+k−1(q)j
(q)N−k−1(q)N+j−1(q)k(q)k−j

=
qi(i+3)/2−j+N(j−i)(q)N+i−1(q)N−j−1(q)j

(q)N−i−1(q)i(q)N+j−1(q)i−j

∑
j≤k≤i

(−1)i−kqk(k−1)/2−kj(q)i−j

(q)i−k(q)k−j
.

Now Zeilberger’s algorithm provides the formula

(−1)i−kqk(k−1)/2−kj(q)i−j

(q)i−k(q)k−j
=

(−1)i−kqk(k+1)/2−j−kj(q)i−j−1

(q)i−1−k
− (−1)i−(k−1)qk(k−1)/2−j−(k−1)j(q)i−j−1

(q)i−k
,

so the sum over k is telescoping, with the result

∑
j≤k≤ℓ

(−1)i−kqk(k−1)/2−kj(q)i−j

(q)i−k(q)k−j
=

(−1)i−ℓqℓ(ℓ+1)/2−j−ℓj(q)i−j−1(1− qi−ℓ)

(q)i−ℓ
.

For j < i and ℓ = i , this evaluates to 0. For j = i , we have directly

∑
i≤k≤i

(−1)i−kqk(k−1)/2−ki

(q)i−k(q)k−i
= qi(i−1)/2−i2 = q−i(i+1)/2.

Therefore

∑
i≤k≤i

Ai,kA
−1
k,j =

qi(i+3)/2−i(q)N+i−1(q)N−i−1(q)i
(q)N−i−1(q)i(q)N+i−1

q−i(i+1)/2 = 1,

as desired.

5. A two parameter extension

It is even possible to extend the results by replacing i → i+ r and j → j + s , for r, s ≥ 0. In other words, the

matrix now has entries
(
i+r+j+s

j+s

)−1
.
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We only give the formulæ in a list:

Li,j =
(i+ r)!i!(2j + r + s)!

(i+ j + r + s)!(i− j)!(j + r)!j!
,

Ui,j =
(−1)i(j + s)!j!(i+ r)!(i+ r + s− 1)!

(j + i+ r + s)!(j − i)!(2i+ r + s− 1)!
,

L−1
i,j =

(−1)i−j(i+ r)!i!(i+ j + r + s− 1)!

(2i+ r + s− 1)!(i− j)!(j + r)!j!
,

U−1
i,j =

(−1)i(i+ j + r + s− 1)!(2j + r + s)!

(j − i)!(j + r)!(j + i)!(j + r + s− 1)!(i+ s)!i!
,

Ai,j =
(−1)i−j(N − j − 1)!(j + s)!(N + i+ r + s− 1)!

(i+ s)!(N − i− 1)!(N + j + r + s− 1)!(i− j)!
,

Bi,j =
(−1)j+N−1(N + j + r + s− 1)!

(j + r)!(j − i)!(N − j − 1)!(i+ s)!
,

A−1
i,j =

(N − j − 1)!(j + s)!(N + i+ r + s− 1)!

(i+ s)!(N − i− 1)!(N + j + r + s− 1)!(i− j)!
,

B−1
i,j =

(−1)j+1+N (N − 1− i)!(j + s)!(i+ r)!

(j − i)!(N + i+ r + s− 1)!
.

For
[
i+r+j+s

j+s

]−1
we get q -analogues:

Li,j =
(q)i+r(q)i(q)2j+r+s

(q)i+j+r+s(q)i−j(q)j+r(q)j
,

Ui,j =
(−1)iqi(3i−1)/2(q)j+s(q)j(q)i+r(q)i+r+s−1

(q)j+i+r+s(q)j−i(q)2i+r+s−1
,

L−1
i,j =

(−1)i−jqi(i−1)/2+j(j+1)/2−ij(q)i+r(q)i(q)i+j+r+s−1

(q)2i+r+s−1(q)i−j(q)j+r(q)j
,

U−1
i,j =

(−1)iqi(i+1)/2−j2−ij−(r+s)j(q)i+j+r+s−1(q)2j+r+s

(q)j−i(q)j+r(q)j+i(q)j+r+s−1(q)i+s(q)i
,

Ai,j =
(−1)i−jqi(i+3)/2−j(j+3)/2+N(j−i)(q)N−j−1(q)j+s(q)N+i+r+s−1

(q)i+s(q)N−i−1(q)N+j+r+s−1(q)i−j
,

Bi,j =
(−1)j+N−1q(r+s)(i+1)+i2+j(j+3)/2−(r+s+j)N−N(N−1)/2(q)N+j+r+s−1

(q)j+r(q)j−i(q)N−j−1(q)i+s
,

A−1
i,j =

qi(i+1)−j−ij+N(j−i)(q)N−j−1(q)j+s(q)N+i+r+s−1

(q)i+s(q)N−i−1(q)N+j+r+s−1(q)i−j
,

B−1
i,j =

(−1)j+1+Nq−j(j+1)/2−ij+N(N−1)/2+(N−1)(r+s+i)−(r+s)j(q)N−1−i(q)j+s(q)i+r

(q)j−i(q)N+i+r+s−1
.

The previous results follow from these by plugging in r = s = 0 or taking appropriate limits.
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6. Additional results

For completeness, we also deal with the binomial matrix (no reciprocals)

Mi,j =

((
i+ r + j + s

j + s

))
i,j≥0

.

We get the same type of factorizations and use calligraphic letters to mark the difference. We only cite the

results; justifications are in the same style as in the previous instances.

Li,j =
i!(i+ r + s)!(j + r)!

(i− j)!j!(i+ r)!(j + r + s)!
,

Ui,j =
(j + r + s)!j!

(j − i)!(i+ r)!(j + s)!
,

L −1
i,j =

(−1)i−j(i+ r + s)!i!(j + r)!

(i− j)!(j + r + s)!(i+ r)!j!
,

U −1
i,j =

(−1)i−j(j + r)!(i+ s)!

(j − i)!(i+ r + s)!i!
,

Ai,j =
(−1)i−j(N − j − 1)!(i+ s)!(2j + r + s+ 1)!

(i− j)!(N − i− 1)!(i+ j + r + s+ 1)!(j + s)!
,

Bi,j =
(−1)i−j(N + i+ r + s)!(j + r)!(i+ s)!

(j − i)!(N − j − 1)!(2i+ r + s)!(i+ j + r + s+ 1)!
,

A −1
i,j =

(N − j − 1)!(i+ j + r + s)!(i+ s)!

(i− j)!(N − i− 1)!(2i+ r + s)!(j + s)!
,

B−1
i,j =

(N − i− 1)!(2j + r + s+ 1)!(i+ j + r + s)!

(j − i)!(N + j + r + s)!(i+ r)!(j + s)!
.

There are also q -analogues for the matrix

Mi,j =

([
i+ r + j + s

j + s

])
i,j≥0

.

Li,j =
(q)i(q)i+r+s(q)j+r

(q)i−j(q)j(q)i+r(q)j+r+s
,

Ui,j =
qi

2+(r+s)i(q)j+r+s(q)j
(q)j−i(q)i+r(q)j+s

,

L −1
i,j =

(−1)i−jqi(i−1)/2−ij+j(j+1)/2(q)i+r+s(q)i(q)j+r

(q)i−j(q)j+r+s(q)i+r(q)j
,

U −1
i,j =

(−1)i−jqi(i+1)/2−ij−j(j+1)/2−(r+s)j(q)j+r(q)i+s

(q)j−i(q)i+r+s(q)i
,

993



PRODINGER/Turk J Math

Ai,j =
(−1)i−jqi(i+3)/2−j(j+3)/2+N(j−i)(q)N−j−1(q)i+s(q)2j+r+s+1

(q)i−j(q)N−i−1(q)i+j+r+s+1(q)j+s
,

Bi,j =
(−1)i−jq(j+1)(j+2)/2+3i(i+1)/2+(r+s)(i+1)−N(j+1+i+r+s)(q)N+i+r+s(q)j+r(q)i+s

(q)j−i(q)N−j−1(q)2i+r+s(q)i+j+r+s+1
,

A −1
i,j =

qi
2−(N−1)(i−j)−ij(q)N−j−1(q)i+j+r+s(q)i+s

(q)i−j(q)N−i−1(q)2i+r+s(q)j+s
,

B−1
i,j =

q(i+j+1+r+s)(N−j−1)(q)N−i−1(q)2j+r+s+1(q)i+j+r+s

(q)j−i(q)N+j+r+s(q)i+r(q)j+s
.
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