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DLA

Introduced in physics by Sander and Witten [’81], as a model of
fractal growth. The growth rule is extremly simple:

start with only the origin of some coordinate system, which is
occupied.

repeatedly send random walks “in from ∞“.

each walk stops when it neighbors the previously occupied
cluster; the set of occupied sites is called the DLA cluster.

Question: how does the aggregation cluster DLA obtained in
this way, look like?

DLA has a shape that is widely belived to have fractal
characteristics.

DLA tends to build irregularities.
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DLA 33000 particles, center initially occupied

Different colors = different arrival times of the random walkers.
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Random walkers sticking to a straight line
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Internal DLA
Random growth model, internal version of DLA, which contrary
to DLA, tends to eliminate irregularities.

Let G be some infinite graph, and o some fixed vertex.
one by one, particles perform discrete-time random walks.
each particle starts from o and moves until it reaches a site
unoccupied previously, where it stops.
get a random subset of n occupied sites in G : internal DLA
cluster A(n) → the resulting random cluster of occupied sites
after the nth particle stops.

Growth rule: Let A(0) = {o} and define

A(n + 1) = A(n) ∪ {X n(τn)},
where X 1,X 2, . . . are independent random walks starting at o,
and

τn = min{t : X n(t) /∈ A(n − 1)}.

Main question: limiting shape of A(n) as n→∞?
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DLA and internal DLA : comparison

DLA: tendrils result from the fact that the particles tend to hit
first the neighbourhood of extreme sites in the occupied cluster ⇒
fractal structure.
internal DLA: particles diffusing through the interior of the
occupied cluster are most likely to stop at unoccupied sites that
are closest to 0 ⇒ A(n) tends to eliminate irregularities ⇒
expected to grow like an expanding ball on a regular graph.

Theorem (Lawler-Bramson-Griffeath ’92)

For simple random walks on Zd , d ≥ 2, the limiting shape of
internal DLA is a ball: ∀ε > 0, with probability 1:

Br(1−ε) ⊂ A(πr2) ⊂ Br(1+ε), eventually,

Question: what about fluctuations for internal DLA, i.e. how
smooth the surface formed by internal DLA can be?



Graz University of Technology

Warm-up: DLA Internal DLA References

DLA and internal DLA : comparison

DLA: tendrils result from the fact that the particles tend to hit
first the neighbourhood of extreme sites in the occupied cluster ⇒
fractal structure.
internal DLA: particles diffusing through the interior of the
occupied cluster are most likely to stop at unoccupied sites that
are closest to 0 ⇒ A(n) tends to eliminate irregularities ⇒
expected to grow like an expanding ball on a regular graph.

Theorem (Lawler-Bramson-Griffeath ’92)

For simple random walks on Zd , d ≥ 2, the limiting shape of
internal DLA is a ball: ∀ε > 0, with probability 1:

Br(1−ε) ⊂ A(πr2) ⊂ Br(1+ε), eventually,

Question: what about fluctuations for internal DLA, i.e. how
smooth the surface formed by internal DLA can be?



Graz University of Technology

Warm-up: DLA Internal DLA References

DLA and internal DLA : comparison

DLA: tendrils result from the fact that the particles tend to hit
first the neighbourhood of extreme sites in the occupied cluster ⇒
fractal structure.
internal DLA: particles diffusing through the interior of the
occupied cluster are most likely to stop at unoccupied sites that
are closest to 0 ⇒ A(n) tends to eliminate irregularities ⇒
expected to grow like an expanding ball on a regular graph.

Theorem (Lawler-Bramson-Griffeath ’92)

For simple random walks on Zd , d ≥ 2, the limiting shape of
internal DLA is a ball: ∀ε > 0, with probability 1:

Br(1−ε) ⊂ A(πr2) ⊂ Br(1+ε), eventually,

Question: what about fluctuations for internal DLA, i.e. how
smooth the surface formed by internal DLA can be?



Graz University of Technology

Warm-up: DLA Internal DLA References

The cluster A(n), n=100000
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Fluctuations on Zd : history

Lawler [’95]: with probability 1

Br−r1/3 log2 r ⊂ A(πr2) ⊂ Br+r1/3 log4 r

Can the errors be of order o(nα), for α < 1/3? Indeed there
are only logarithmic fluctuations.

Jerison-Levine-Sheffield [’10]: with probability 1

Br−C log r ⊂ A(πr2) ⊂ Br+C log r , eventually.

Asselah-Gaudillière [’10]: independently obtained

Br−C log r ⊂ A(πr2) ⊂ Br+C log2 r , eventually.

For d ≥ 3: Jerison-Levine-Sheffield [’10] and
Asselah-Gaudillière [’10]

Br−C
√
log r ⊂ A(ωd rd) ⊂ B

r+C
√

log2 r
, eventually,

for a constant C depending only on d . ωd is the volume of
the d-dimensional Euclidean ball of radius 1.
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IDLA on different state spaces

Green function: G (x , y) = Ex

[
#{t ≥ 0 : X (t) = y}

]
.

Levelsets of the Green function: {x ∈ G : G (o, x) ≥ N}.

Theorem
The levelsets of the Green function are the limiting shape for IDLA
with probability 1, for:

(Lawler-Bramson-Griffeath ’92) simple random walk on Zd .

(Blachère, ’02) symmetric random walks on Zd .

(Blachère-Brofferio ’06) symmetric random walks on Cayley
graphs of finitely generated groups with exponential growth.

(Huss ’07) strongly reversible, uniformly irreducible random
walks on non-amenable graphs.
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IDLA on different state spaces

Does this theorem hold for IDLA in general?

NO

Counter examples:

Random walk with drift in Z2

Simple random walk on the comb
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Internal DLA on the comb

Comb C2 is the graph obtained from
Z2 by deleting all horizontal edges,
except for x-axis.

consider simple random walk on C2.

p(x , y) =
1

d(x)
, for all x ∈ C2,

where d(x) is the degree of x .

o

Perform internal DLA with n simple random walks starting at the
origin o = (0, 0) ∈ C2. We obtain the internal DLA cluster A(n),
random subset of C2 with n elements.

What is the limiting shape A(n)?
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Internal DLA on the comb

A(n) for n = 500 and n = 1000.

the set in the figure grows like n2/3 in
the vertical direction and like n1/3 in
the horizontal direction.

want to prove that this is the limiting
shape of internal DLA on the comb C2.

unfortunatelly, up to now we can prove
only an inner bound: with probability 1

Bn(1−ε) ⊂ A(n),

Bn =

{
(x , y) ∈ C2 :

|x |
k

+

( |y |
l

)1/2

≤ n1/3

}
Outer bound: someone in the audience
[May ’11]: A(n) ⊂ Bn(1+ε) ?
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Internal DLA on the comb

Theorem (Huss - S. ’10)

Let A(n) be the internal DLA cluster after n random walks start at
the origin of C2. Then, for all ε > 0, we have with probability 1

Bn(1−ε) ⊂ A(n), for all sufficiently large n.

Proof sketch.

Inspired by the Lawler-Bramson-Griffeath argument.

By Borel-Cantelli Lemma, a sufficient condition for proving
the inner bound is∑

n≥n0

∑
z∈Bn(1−ε)

P[z /∈ An] <∞.
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Fix z ∈ Bn. We want an upper bound for P
[
z /∈ A(n)

]
.

n random walks start at o ⇒ A(n).

M = # of walks that visit z before
leaving Bn,

L = # of walks that visit z after
leaving A(i), while still in Bn,
1 ≤ i ≤ n.

If L < M then z ∈ A(n) and

{z /∈ A(n)} ⊂ {M = L}.

L and M are sums of indicator rv’s.

the summands of L are dependent.

bound L by a sum of i.i.d rv’s

only the walks that leave A(i) in
Bn contribute to L: start one new
walk from every point in Bn where
the cluster is left.

o

z

Bn

A(i)

;
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Proof sketch

enlarge the index set to all of Bn

L̃ = # of new walks that hit z before leaving Bn. Then

L ≤ L̃,

and
P[z /∈ A(n)] ≤ P[M = L] ≤ P[M ≤ L̃].

we show that∑
n≥nε

∑
z∈Bn(1−ε)

P[M ≤ L̃] ≤ 4
∑
n≥nε

n exp{−Cεn
2/3} <∞,

which proves the inner bound

P
[
Bn(1−ε) ⊂ An, for all n ≥ nε

]
= 1.
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Outlook

For internal DLA on the comb lattice C, an outer bound

A(n) ⊂ Bn(1+ε)

is still needed.

In all previous proofs, internal DLA clusters A(n) grow uniformly,
and this makes easy the study of random walks. In our case, this is
violated, since the sets Bn grow with rate n1/3 in the x-direction
and with rate n2/3 in the y -direction.
The study of the harmonic measure and the Green function
stopped on sets Bn may help.
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Sierpinski carpet
Graphical Sierpinski carpet in dimension 2: infinite graph derived
from the Sierpinski carpet - a fractal created from the unit square
in R2 by dividing it into 9 equal squares of which the one in the
center is deleted. The same procedure is then repeated recursively
to the remaining 8 squares.
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Figure: IDLA clusters on the Sierpinski carpet for 10000 particles.
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Figure: IDLA clusters on the Sierpinski carpet for 20000 particles.
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Figure: IDLA clusters on the Sierpinski carpet for 30000 particles.
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Figure: IDLA clusters on the Sierpinski carpet for 40000 particles.
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Figure: IDLA clusters on the Sierpinski carpet for 50000 particles.
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Figure: IDLA clusters on the Sierpinski carpet for 60000 particles.
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Figure: IDLA clusters on the Sierpinski carpet for 70000 particles.
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Figure: IDLA clusters on the Sierpinski carpet for 80000 particles.
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Figure: IDLA clusters on the Sierpinski carpet for 90000 particles.
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Figure: IDLA clusters on the Sierpinski carpet for 100000 particles.
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Figure: IDLA clusters on the Sierpinski carpet for 110000 particles.
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Figure: IDLA clusters on the Sierpinski carpet for 120000 particles.
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Figure: IDLA clusters on the Sierpinski carpet for 130000 particles.
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Figure: IDLA clusters on the Sierpinski carpet for 140000 particles.
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Figure: IDLA clusters on the Sierpinski carpet for 150000 particles.
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Internal DLA on Sierpinski carpet

Problems:

the internal DLA cluster does not seem to have an unique
scaling limit.

simulations sugest that may be a whole family of scaling
limits.

this scaling limits seem to have a fractal boundary.
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n = 275 n = 2175 n = 17500 n = 140000

n = 200 n = 1500 n = 12500 n = 98000
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151–219.

W. Huss, and E. Sava,
Internal Aggregation Models on the Comb Lattice, preprint,
2011.



Graz University of Technology

Warm-up: DLA Internal DLA References

Thank your for your interest!


	Warm-up: DLA
	Internal DLA
	References

