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m Given a random walk on a state space G.
m Start with n particles at the origin o € G.

m Each particle walks until it finds an unoccupied site, stays
there.

m A(n): the resulting random set of n points in G.
Growth rule: Let A(0) = {0} and define

A(n+1) = A(n) U{X"(4)},
where X1, X2, ... are independent random walks, and

T, = min{t : X"(t) ¢ A(n)}.

m Main question: limiting shape of A(n) as n — oo?
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Theorem (Asselah-Gaudilliere '10)

New result on the order of fluctuations f(n) = n*/(¢*1) |og n.
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What about other walks on Z2?

Modify the transition probabilities on the axes:

m Steps toward the origin along the x- and y-axes are
reflected away from the origin. So

P((x,0),(x +1,0))

P((x,0), (x,1))

DI RLN| -

m Off the axes, same as simple random walk.
Theorem (Kager-Levine '09)
The limiting shape is a diamond, that is, with probability 1

D,,_4mtogn C Aldn) C Dpiooymiogn
and d, = #D, =2n(n+1) + 1.



Diamond aggregation: the limiting shape D,

Diamond of radius n is
D,={z€7Z:||z|| < n},

with z = (x,y) € Z? its norm is ||(x, ¥)|| = |x] + |y|.
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m Consider the 2-dimensional comb Cs.

m Perform internal DLA with n simple
random walks starting at the origin 0

0 = (0, 0) S Cg.
m What is the limiting shape A(n)?
m Recall: divisible sandpile cluster S, on C, is given by

Bn—c - Sn C Bn+c;

B N
Bn— (x,y)ECz. 74— T Sn ,

with k = (3)* and 1 = 1 (3)"°,
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The internal DLA cluster A(n)

m Is A(n) the same like in the divisible
sandpile?

m |T SHOULD BE!!!

m The limiting shape A(n) for internal
DLA for 500 and 1000 particles.

Inner bound [Huss-Sava '10]:
Bna-s) C A(n), forall e > 0.

Outer bound [Someone in the audience
May '10 ?]: A(n) C Bya+e), forall e > 0.
EXERCISE!
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Let A(n) be the IDLA cluster after n particles start at the

origin of C5. Then, for all ¢ > 0, we have with probability 1
that

Bna-cy C A(n), for all sufficiently large n.

Proof sketch.

m Inspired by the Lawler-Bramson-Griffeath argument.

m By Borel-Cantelli Lemma, a sufficient condition for
proving the inner bound is

Z Z Plz ¢ A,] < 0.

n>ng ZeBn(lfs)
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Fix z € B,. We want an upper bound for P[z ¢ A(n)].
m Among the first n particles, let

M = # of particles that visit z before leaving 5,
L = # of particles that visit z after leaving A(/),
while still in B, forall 1 < i <n.

m If L < M then z € A(n) and

{z¢ A(n)} C {M = L}.
m Both L and M are sums of indicator
RV's.
m Main difficulty: the summands of L
are dependent.
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Let us find some independence!
m Bound L by a sum of i.i.d RV's. How?
m Start one new walk from every point in B,, and let
[ = # of new walks that hit z before leaving B,.

Since at most one particle can attach to the cluster at a
given site, L < L.

m Therefore
Plz ¢ A(n)] <P[M = L] <P[M <1].

m Show that E[M] > E[L] and use Large deviation estimate
for sum of i.i.d indicators to bound P[M < L].
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f, =0, on 0B,
The divisible sandpile odometer u,, satisfies
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Uniqueness of the solution = u, = f, on B,.
But we have u, explic~ite|y, and u, > 0on B,.
Therefore E[M] > E[L].
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Large deviation estimate

Lemma
If N is a sum of finitely many independent indicator RV's,

P[IN — EN| > AEN] < 2e” 9"V,
VA > 0, where c, is a constant depending only on \.
m Apply it for L and M, and bound P[M < []. Then
P[L > (1 + AEL] < 2¢ %EL
P[M < (1 — A)EM] < 2e~EM
m Problem: choose A > 0s.t (1+ \EL < (1 — \EM:

_E[M- I]

0< A< .
E[M + L]
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How to choose )\

m Set now 6.(2.2)
(2, z ~
" = ——FE[M + L].
8n(2) i) [M + L]
fn
m Then choose 0 < \ < E
To identifiy the maximal subset of 13, on which f,/g, > 0.

We know explicitely f,, we want to find g, explicitely.

Like before, we solve a Dirichlet problem for g,.

Ng.(z) = ﬁ( —1—n-6o(2)), for z € B,
gn =0, on 0B,

Is this Dirichlet problem explicitely solvable?

With a lot of luck is solvable, and we have g,,.

g» is not a nice function, but it doesn’'t matter.
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Last step of the proof

m Then % is decreasing and, and for all ¢ > 0, ¥n > n,:

&n
. fn(z) ) _ ¢
min {gn(z) 1z € Bn(l_e)} =1 ¢

thatis, 0 < ;%= < é% on Bp1-c). Choose A = ¢/4.

PIM < [] < P[M < (1= \E[M]] +P[L > (1+ \)E[L]]
< 2exp{—c,E[M]} + 2exp{—c,\E[Z]}

6(2) —h(z)}

< 4eXp{—C)\E[Z]} < 4exp{—c,\ G(z.2)

m The function g, — f, > O(n*/?), but we need G,(z, z), for
all z e Bn(l—s)-



m Estimate G,(z, z) with the stopped Green function for
SRW on Z, upon exiting a finite interval. We get

Z Z Plz ¢ Ay < Z Z exp{—cyn'/?} < oo,

n>ne z€Bp1_e) nZne z€By1_¢)
and this implies the inner bound

P[Bn(l_e) C A,, for all sufficiently large n] =1



Thank you for your attention!
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