Internal aggregation on the comb lattice
Joint work with Wilfried Huss (2010)

Ecaterina Sava
Graz University of Technology, Austria

May 11, 2010
Internal DLA

- Given a random walk on a state space G.
- Start with n particles at the origin $o \in G$.
- Each particle walks until it finds an unoccupied site, stays there.
Internal DLA

- Given a random walk on a state space G.
- Start with n particles at the origin $o \in G$.
- Each particle walks until it finds an unoccupied site, stays there.
- $A(n)$: the resulting random set of n points in G.

Growth rule:

Let $A(0) = \{o\}$ and define $A(n+1) = A(n) \cup \{X_{n}(\tau_{n})\}$, where X_{1}, X_{2}, \ldots are independent random walks, and $\tau_{n} = \min \{t: X_{n}(t) \notin A(n)\}$.

Main question: limiting shape of $A(n)$ as $n \to \infty$?
Internal DLA

- Given a random walk on a state space G.
- Start with n particles at the origin $o \in G$.
- Each particle walks until it finds an unoccupied site, stays there.

- $A(n)$: the resulting random set of n points in G.

Growth rule: Let $A(0) = \{o\}$ and define

$$A(n + 1) = A(n) \cup \{X^n(\tau_n)\},$$

where X^1, X^2, \ldots are independent random walks, and

$$\tau_n = \min\{t : X^n(t) \notin A(n)\}.$$
Internal DLA

- Given a random walk on a state space G.
- Start with n particles at the origin $o \in G$.
- Each particle walks until it finds an unoccupied site, stays there.
- $A(n)$: the resulting random set of n points in G.

Growth rule: Let $A(0) = \{o\}$ and define

$$A(n + 1) = A(n) \cup \{X^n(\tau_n)\},$$

where X^1, X^2, \ldots are independent random walks, and

$$\tau_n = \min\{t : X^n(t) \notin A(n)\}.$$

- Main question: limiting shape of $A(n)$ as $n \to \infty$?
Simple random walk on \mathbb{Z}^d

Theorem (Lawler-Bramson-Griffeath ’92)

The \textit{limiting shape is a ball}: $\forall \epsilon > 0$, with probability 1:

$$B_n(1-\epsilon) \subset A(\pi n^2) \subset B_n(1+\epsilon), \text{ for all sufficiently large } n.$$
Simple random walk on \mathbb{Z}^d

Theorem (Lawler-Bramson-Griffeath ’92)

The limiting shape is a ball: $\forall \epsilon > 0$, with probability 1:

$$B_{n(1-\epsilon)} \subset A(\pi n^2) \subset B_{n(1+\epsilon)}, \text{ for all sufficiently large } n.$$

Theorem (Lawler ’95)

Improvement of the previous result: for $f(n) = n^{1/3} \log^4 n$

$$B_{n-f(n)} \subset A(\pi n^2) \subset B_{n+f(n)}, \text{ for } n \text{ big enough.}$$
Simple random walk on \mathbb{Z}^d

Theorem (Lawler-Bramson-Griffeath ’92)

The limiting shape is a ball: $\forall \epsilon > 0$, with probability 1:

$B_{n(1-\epsilon)} \subset A(\pi n^2) \subset B_{n(1+\epsilon)}$, for all sufficiently large n.

Theorem (Lawler ’95)

Improvement of the previous result: for $f(n) = n^{1/3} \log^4 n$

$B_{n-f(n)} \subset A(\pi n^2) \subset B_{n+f(n)}$, for n big enough.

Theorem (Asselah-Gaudilliere ’10)

New result on the order of fluctuations $f(n) = n^{1/(d+1)} \log n$.

The cluster $A(n)$, $n=100000$
What about other walks on \mathbb{Z}^2?

Modify the transition probabilities on the axes:

- Steps **toward the origin** along the x- and y-axes are **reflected** away from the origin. So

\[
P((x, 0), (x + 1, 0)) = \frac{1}{2}
\]

\[
P((x, 0), (x, 1)) = \frac{1}{4}.
\]
What about other walks on \mathbb{Z}^2?

Modify the transition probabilities on the axes:

- Steps toward the origin along the x- and y-axes are reflected away from the origin. So

 \[P((x, 0), (x + 1, 0)) = \frac{1}{2} \]
 \[P((x, 0), (x, 1)) = \frac{1}{4}. \]

- Off the axes, same as simple random walk.
What about other walks on \mathbb{Z}^2?

Modify the transition probabilities on the axes:

- Steps **toward the origin** along the x- and y-axes are **reflected** away from the origin. So

 \[
 \mathbb{P}((x, 0), (x + 1, 0)) = \frac{1}{2},
 \]
 \[
 \mathbb{P}((x, 0), (x, 1)) = \frac{1}{4}.
 \]

- Off the axes, same as simple random walk.

Theorem (Kager-Levine ’09)

The **limiting shape is a diamond**, that is, with probability 1

$$
\mathcal{D}_{n-4\sqrt{n \log n}} \subset \mathcal{A}(d_n) \subset \mathcal{D}_{n+20\sqrt{n \log n}},
$$

and $d_n = \#\mathcal{D}_n = 2n(n + 1) + 1$.
Diamond aggregation: the limiting shape D_n

Diamond of radius n is

$$D_n = \{ z \in \mathbb{Z}^2 : ||z|| \leq n \},$$

with $z = (x, y) \in \mathbb{Z}^2$ its norm is $||(x, y)|| = |x| + |y|$.
Consider the 2-dimensional comb C_2.

Recall: divisible sandpile cluster S_n on C_2 is given by $B_n - c \subset S_n \subset B_n + c$, $B_n = \{ (x, y) \in C_2 : |x| k + |y| l \geq n^{1/3} \}$, with $k = \left(\frac{3}{2} \right)^{2/3}$ and $l = \frac{1}{2} \left(\frac{3}{2} \right)^{1/3}$.
Internal DLA on the comb lattice

- Consider the 2-dimensional comb C_2.
- Perform internal DLA with n simple random walks starting at the origin $o = (0, 0) \in C_2$.

Recall: divisible sandpile cluster S_n on C_2 is given by

$B_n - c \subset S_n \subset B_n + c$,

$B_n = \{(x, y) \in C_2 : |x|^{1/2} \leq n^{1/3} \}$,

with $k = (3/2)^{2/3}$ and $l = 1/2 (3/2)^{1/3}$.
Internal DLA on the comb lattice

- Consider the 2-dimensional comb \mathcal{C}_2.
- Perform internal DLA with n simple random walks starting at the origin $o = (0, 0) \in \mathcal{C}_2$.
- What is the limiting shape $A(n)$?
Internal DLA on the comb lattice

- Consider the 2-dimensional comb C_2.
- Perform internal DLA with n simple random walks starting at the origin $o = (0, 0) \in C_2$.
- What is the limiting shape $A(n)$?
Internal DLA on the comb lattice

- Consider the 2-dimensional comb C_2.
- Perform internal DLA with n simple random walks starting at the origin $o = (0, 0) \in C_2$.
- What is the limiting shape $A(n)$?
- Recall: divisible sandpile cluster S_n on C_2 is given by

$$B_{n-c} \subset S_n \subset B_{n+c},$$

$$B_n = \left\{ (x, y) \in C_2 : \frac{|x|}{k} + \left(\frac{|y|}{l} \right)^{1/2} \leq n^{1/3} \right\},$$

with $k = \left(\frac{3}{2} \right)^{2/3}$ and $l = \frac{1}{2} \left(\frac{3}{2} \right)^{1/3}$.
The internal DLA cluster $A(n)$

- Is $A(n)$ the same like in the divisible sandpile?
The internal DLA cluster $A(n)$

- Is $A(n)$ the same like in the divisible sandpile?
- IT SHOULD BE!!!!
The internal DLA cluster $A(n)$

- Is $A(n)$ the same like in the divisible sandpile?
- IT SHOULD BE!!!!
- The limiting shape $A(n)$ for internal DLA for 500 and 1000 particles.
The internal DLA cluster \(A(n) \)

- Is \(A(n) \) the same like in the divisible sandpile?
- IT SHOULD BE!!!!
- The limiting shape \(A(n) \) for internal DLA for 500 and 1000 particles.
The internal DLA cluster $A(n)$

- Is $A(n)$ the same like in the divisible sandpile?
- IT SHOULD BE!!!!
- The limiting shape $A(n)$ for internal DLA for 500 and 1000 particles.

Inner bound [Huss-Sava ’10]:

$$B_{n(1-\varepsilon)} \subset A(n), \text{ for all } \varepsilon > 0.$$
The internal DLA cluster $A(n)$

- Is $A(n)$ the same like in the divisible sandpile?
- IT SHOULD BE!!!!
- The limiting shape $A(n)$ for internal DLA for 500 and 1000 particles.

Inner bound [Huss-Sava ’10]:

$$\mathcal{B}_{n(1-\varepsilon)} \subset A(n), \text{ for all } \varepsilon > 0.$$

Outer bound [Someone in the audience May ’10 ?]: $A(n) \subset \mathcal{B}_{n(1+\varepsilon)}, \text{ for all } \varepsilon > 0$. **EXERCISE!**
The inner bound

Theorem (Huss-Sava ’10)

Let $A(n)$ be the IDLA cluster after n particles start at the origin of C_2. Then, for all $\varepsilon > 0$, we have with probability 1 that

$$B_{n(1-\varepsilon)} \subset A(n), \text{ for all sufficiently large } n.$$
The inner bound

Theorem (Huss-Sava ’10)

Let $A(n)$ be the IDLA cluster after n particles start at the origin of C_2. Then, for all $\varepsilon > 0$, we have with probability 1 that

$$B_{n(1-\varepsilon)} \subset A(n), \text{ for all sufficiently large } n.$$

Proof sketch.

- Inspired by the Lawler-Bramson-Griffeath argument.
The inner bound

Theorem (Huss-Sava ’10)

Let $A(n)$ be the IDLA cluster after n particles start at the origin of \mathcal{C}_2. Then, for all $\varepsilon > 0$, we have with probability 1 that

$$\mathcal{B}_{n(1-\varepsilon)} \subset A(n), \text{ for all sufficiently large } n.$$

Proof sketch.

- Inspired by the Lawler-Bramson-Griffeath argument.
- By Borel-Cantelli Lemma, a sufficient condition for proving the inner bound is

$$\sum_{n \geq n_0} \sum_{z \in \mathcal{B}_{n(1-\varepsilon)}} \mathbb{P}[z \notin A_n] < \infty.$$
Proof sketch: the inner bound

Fix $z \in B_n$. We want an upper bound for $\mathbb{P}[z \notin A(n)]$.

Among the first n particles, let

$$M = \# \text{ of particles that visit } z \text{ before leaving } B_n,$$

$$L = \# \text{ of particles that visit } z \text{ after leaving } A(i),$$

while still in B_n, for all $1 \leq i \leq n.$
Proof sketch: the inner bound

Fix $z \in B_n$. We want an upper bound for $\mathbb{P}[z \notin A(n)]$.

Among the first n particles, let

$$M = \# \text{ of particles that visit } z \text{ before leaving } B_n,$$
$$L = \# \text{ of particles that visit } z \text{ after leaving } A(i),$$
while still in B_n, for all $1 \leq i \leq n$.

- If $L < M$ then $z \in A(n)$ and

$$\{z \notin A(n)\} \subset \{M = L\}.$$
Proof sketch: the inner bound

Fix $z \in \mathcal{B}_n$. We want an upper bound for $\mathbb{P}[z \notin A(n)]$.

- Among the first n particles, let

 $$M = \# \text{ of particles that visit } z \text{ before leaving } \mathcal{B}_n,$$

 $$L = \# \text{ of particles that visit } z \text{ after leaving } A(i),$$

 while still in \mathcal{B}_n, for all $1 \leq i \leq n$.

- If $L < M$ then $z \in A(n)$ and

 $$\{z \notin A(n)\} \subset \{M = L\}.$$

- Both L and M are sums of indicator RV’s.
Proof sketch: the inner bound

Fix \(z \in \mathcal{B}_n \). We want an upper bound for \(\mathbb{P}[z \notin A(n)] \).

- Among the first \(n \) particles, let

 \[M = \text{\# of particles that visit } z \text{ before leaving } \mathcal{B}_n, \]
 \[L = \text{\# of particles that visit } z \text{ after leaving } A(i), \]
 \[\text{while still in } \mathcal{B}_n, \text{ for all } 1 \leq i \leq n. \]

- If \(L < M \) then \(z \in A(n) \) and
 \[\{ z \notin A(n) \} \subset \{ M = L \}. \]

- Both \(L \) and \(M \) are sums of indicator RV’s.

- **Main difficulty**: the summands of \(L \) are dependent.
Let us find some independence!

- Bound L by a sum of i.i.d RV’s. How?
Let us find some independence!

- Bound L by a sum of i.i.d RV’s. How?
- Start one new walk from every point in B_n, and let

\[\tilde{L} = \# \text{ of new walks that hit } z \text{ before leaving } B_n. \]

Since at most one particle can attach to the cluster at a given site, $L \leq \tilde{L}$.

\[\mathbb{P}[z/ \in A(n)] \leq \mathbb{P}[M = L] \leq \mathbb{P}[M \leq \tilde{L}]. \]

Show that $E[M] > E[\tilde{L}]$ and use Large deviation estimate for sum of i.i.d indicators to bound $P[M \leq \tilde{L}]$.
Let us find some independence!

- Bound L by a sum of i.i.d RV’s. How?
- Start one new walk from every point in B_n, and let
 \[\tilde{L} = \# \text{ of new walks that hit } z \text{ before leaving } B_n. \]

Since at most one particle can attach to the cluster at a given site, $L \leq \tilde{L}$.

- Therefore
 \[\mathbb{P}[z \notin A(n)] \leq \mathbb{P}[M = L] \leq \mathbb{P}[M \leq \tilde{L}]. \]
Let us find some independence!

- Bound L by a sum of i.i.d RV’s. How?
- Start one new walk from every point in B_n, and let

$$\tilde{L} = \# \text{ of new walks that hit } z \text{ before leaving } B_n.$$

Since at most one particle can attach to the cluster at a given site, $L \leq \tilde{L}$.

- Therefore

$$\mathbb{P}[z \notin A(n)] \leq \mathbb{P}[M = L] \leq \mathbb{P}[M \leq \tilde{L}].$$

- Show that $\mathbb{E}[M] > \mathbb{E}[\tilde{L}]$ and use Large deviation estimate for sum of i.i.d indicators to bound $\mathbb{P}[M \leq \tilde{L}]$.
Dirichlet problem $\Rightarrow \mathbb{E}[\mathcal{M}] > \mathbb{E}[\tilde{\mathcal{L}}]$

Let

$$f_n(z) = \frac{G_n(z, z)}{d(z)} \mathbb{E}[\mathcal{M} - \tilde{\mathcal{L}}]$$

where G_n is the Green function for SRW stopped on exiting B_n.

But we have u_n explicitly, and $u_n > 0$ on B_n.

Therefore $\mathbb{E}[\mathcal{M}] > \mathbb{E}[\tilde{\mathcal{L}}]$.
Dirichlet problem $\Rightarrow \mathbb{E}[M] > \mathbb{E}[\tilde{L}]$

- Let

$$f_n(z) = \frac{G_n(z, z)}{d(z)} \mathbb{E}[M - \tilde{L}]$$

where G_n is the Green fc. for SRW stopped on exiting B_n.

- Compute the Laplace $\triangle f_n$. We get

$$\begin{cases}
\triangle f_n(z) = \frac{1}{d(z)}(1 - n \cdot \delta_o(z)), & \text{for } z \in B_n \\
 f_n = 0, & \text{on } \partial B_n
\end{cases}$$
Dirichlet problem $\Rightarrow \mathbb{E}[M] > \mathbb{E}[\tilde{L}]$

- Let

 $$f_n(z) = \frac{G_n(z, z)}{d(z)} \mathbb{E}[M - \tilde{L}]$$

 where G_n is the Green fc. for SRW stopped on exiting B_n.

- Compute the Laplace $\triangle f_n$. We get

 $$\begin{cases}
 \triangle f_n(z) = \frac{1}{d(z)} (1 - n \cdot \delta_o(z)), & \text{for } z \in B_n \\
 f_n = 0, & \text{on } \partial B_n
 \end{cases}$$

- The divisible sandpile odometer u_n satisfies

 $$\begin{cases}
 \triangle u_n(z) = \frac{1}{d(z)} (1 - n \cdot \delta_o(z)), & \text{for } z \in B_n \\
 u_n = 0, & \text{on } \partial B_n
 \end{cases}$$
Dirichlet problem $\Rightarrow \mathbb{E}[M] > \mathbb{E}[\tilde{L}]$

- Let

 $$f_n(z) = \frac{G_n(z, z)}{d(z)} \mathbb{E}[M - \tilde{L}]$$

 where G_n is the Green fc. for SRW stopped on exiting B_n.

- Compute the Laplace $\triangle f_n$. We get

 $$\begin{cases}
 \triangle f_n(z) &= \frac{1}{d(z)} \left(1 - n \cdot \delta_o(z)\right), \text{ for } z \in B_n \\
 f_n &= 0, \text{ on } \partial B_n
 \end{cases}$$

- The divisible sandpile odometer u_n satisfies

 $$\begin{cases}
 \triangle u_n(z) &= \frac{1}{d(z)} \left(1 - n \cdot \delta_o(z)\right), \text{ for } z \in B_n \\
 u_n &= 0, \text{ on } \partial B_n
 \end{cases}$$

- Uniqueness of the solution $\Rightarrow u_n = f_n$ on B_n.

But we have u_n explicitly, and $u_n > 0$ on B_n. Therefore $\mathbb{E}[M] > \mathbb{E}[\tilde{L}]$.
Dirichlet problem $\Rightarrow \mathbb{E}[M] > \mathbb{E}[\tilde{L}]$

- Let
 \[f_n(z) = \frac{G_n(z, z)}{d(z)} \mathbb{E}[M - \tilde{L}] \]
 where G_n is the Green fc. for SRW stopped on exiting B_n.

- Compute the Laplace $\triangle f_n$. We get
 \[
 \begin{cases}
 \triangle f_n(z) = \frac{1}{d(z)}(1 - n \cdot \delta_o(z)), & \text{for } z \in B_n \\
 f_n = 0, & \text{on } \partial B_n
 \end{cases}
 \]

- The divisible sandpile odometer u_n satisfies
 \[
 \begin{cases}
 \triangle u_n(z) = \frac{1}{d(z)}(1 - n \cdot \delta_o(z)), & \text{for } z \in B_n \\
 u_n = 0, & \text{on } \partial B_n
 \end{cases}
 \]

- Uniqueness of the solution $\Rightarrow u_n = f_n$ on B_n.
- But we have u_n explicitly, and $u_n > 0$ on B_n.
Dirichlet problem $\Rightarrow \mathbb{E}[M] > \mathbb{E}[\tilde{L}]$

- Let $f_n(z) = \frac{G_n(z, z)}{d(z)} \mathbb{E}[M - \tilde{L}]$

 where G_n is the Green function for SRW stopped on exiting B_n.

- Compute the Laplace $\triangle f_n$. We get

 $\begin{cases}
 \triangle f_n(z) = \frac{1}{d(z)} (1 - n \cdot \delta_o(z)), & \text{for } z \in B_n \\
 f_n = 0, & \text{on } \partial B_n
 \end{cases}$

- The divisible sandpile odometer u_n satisfies

 $\begin{cases}
 \triangle u_n(z) = \frac{1}{d(z)} (1 - n \cdot \delta_o(z)), & \text{for } z \in B_n \\
 u_n = 0, & \text{on } \partial B_n
 \end{cases}$

- Uniqueness of the solution $\Rightarrow u_n = f_n$ on B_n.

- But we have u_n explicitly, and $u_n > 0$ on B_n.

- Therefore $\mathbb{E}[M] > \mathbb{E}[\tilde{L}]$.
Large deviation estimate

Lemma
If N is a sum of finitely many independent indicator RV’s,

$$
\mathbb{P}\left[|N - \mathbb{E}N| > \lambda \mathbb{E}N\right] < 2e^{-c_{\lambda} \mathbb{E}N},
$$

$\forall \lambda > 0$, where c_{λ} is a constant depending only on λ.

Apply it for \tilde{L} and M, and bound $\mathbb{P}\left[M \leq \tilde{L}\right]$. Then

$$
\mathbb{P}\left[\tilde{L} > (1 + \lambda) \mathbb{E}\tilde{L}\right] < 2e^{-c_{\lambda} \mathbb{E}\tilde{L}}
$$

$$
\mathbb{P}\left[M < (1 - \lambda) \mathbb{E}M\right] < 2e^{-c_{\lambda} \mathbb{E}M},
$$

Problem: choose $\lambda > 0$ s.t

$$
(1 + \lambda) \mathbb{E}\tilde{L} \leq (1 - \lambda) \mathbb{E}M.
$$
Large deviation estimate

Lemma

If N *is a sum of finitely many independent indicator RV’s,*

$$
\Pr \left[|N - \mathbb{E}N| > \lambda \mathbb{E}N \right] < 2e^{-c_\lambda \mathbb{E}N},
$$

\forall \lambda > 0, \text{ where } c_\lambda \text{ is a constant depending only on } \lambda.

- **Apply it for** \tilde{L} *and* $M,$ *and bound* $\Pr [M \leq \tilde{L}].$ *Then*

 $$
 \Pr [\tilde{L} > (1 + \lambda) \mathbb{E}\tilde{L}] < 2e^{-c_\lambda \mathbb{E}\tilde{L}}
 \quad \Pr [M < (1 - \lambda) \mathbb{E}M] < 2e^{-c_\lambda \mathbb{E}M}
 $$

- **Problem:** *choose* $\lambda > 0 \text{ s.t } (1 + \lambda) \mathbb{E}\tilde{L} \leq (1 - \lambda) \mathbb{E}M:*

 $$
 0 < \lambda \leq \frac{\mathbb{E}[M - \tilde{L}]}{\mathbb{E}[M + \tilde{L}]}
 $$
How to choose λ

- Set now

$$g_n(z) = \frac{G_n(z, z)}{d(z)} \mathbb{E}[M + \tilde{L}].$$
How to choose λ

- Set now
 \[g_n(z) = \frac{G_n(z, z)}{d(z)} \mathbb{E}[M + \tilde{L}] \cdot \]

- Then choose $0 < \lambda \leq \frac{f_n}{g_n}$.
How to choose λ

- Set now

$$g_n(z) = \frac{G_n(z, z)}{d(z)} \mathbb{E}[M + \tilde{L}].$$

- Then choose $0 < \lambda \leq \frac{f_n}{g_n}$.

- To identify the maximal subset of B_n on which $f_n/g_n > 0$.
How to choose λ

- Set now
 \[g_n(z) = \frac{G_n(z, z)}{d(z)} \mathbb{E}[M + \tilde{L}] \cdot \]

- Then choose $0 < \lambda \leq \frac{f_n}{g_n}$.

- To identify the maximal subset of \mathcal{B}_n on which $f_n/g_n > 0$.
- We know explicitly f_n, we want to find g_n explicitly.
How to choose λ

- Set now
 $$g_n(z) = \frac{G_n(z, z)}{d(z)} \mathbb{E}[M + \tilde{L}].$$

- Then choose $0 < \lambda \leq \frac{f_n}{g_n}$.

- To identify the maximal subset of \mathcal{B}_n on which $f_n/g_n > 0$.

- We know explicitly f_n, we want to find g_n explicitly.

- Like before, we solve a Dirichlet problem for g_n.

\[
\begin{align*}
\Delta g_n(z) &= \frac{1}{d(z)}(- 1 - n \cdot \delta_o(z)), \quad \text{for } z \in \mathcal{B}_n \\
g_n &= 0, \quad \text{on } \partial \mathcal{B}_n
\end{align*}
\]
How to choose λ

- Set now
 $$g_n(z) = \frac{G_n(z, z)}{d(z)} \mathbb{E}[M + \tilde{L}].$$

- Then choose $0 < \lambda \leq \frac{f_n}{g_n}$.

- To identify the maximal subset of \mathcal{B}_n on which $f_n/g_n > 0$.

- We know explicitly f_n, we want to find g_n explicitly.

- Like before, we solve a Dirichlet problem for g_n.

$$\begin{cases}
\triangle g_n(z) &= \frac{1}{d(z)}(-1 - n \cdot \delta_{o}(z)), \text{ for } z \in \mathcal{B}_n \\
g_n &= 0, \text{ on } \partial \mathcal{B}_n
\end{cases}$$

- Is this Dirichlet problem explicitly solvable?
How to choose λ

- Set now

 $$g_n(z) = \frac{G_n(z,z)}{d(z)} \mathbb{E}[M + \tilde{L}].$$

- Then choose $0 < \lambda \leq \frac{f_n}{g_n}$.

- To identify the maximal subset of B_n on which $f_n/g_n > 0$.

- We know explicitly f_n, we want to find g_n explicitly.

- Like before, we solve a Dirichlet problem for g_n.

 $$\begin{cases}
 \triangle g_n(z) = \frac{1}{d(z)}(-1 - n \cdot \delta_o(z)), & \text{for } z \in B_n \\
 g_n = 0, & \text{on } \partial B_n
 \end{cases}$$

- Is this Dirichlet problem explicitly solvable?

- With a lot of luck is solvable, and we have g_n.

How to choose λ

- Set now

$$g_n(z) = \frac{G_n(z, z)}{d(z)} \mathbb{E}[M + \tilde{L}].$$

- Then choose $0 < \lambda \leq \frac{f_n}{g_n}$.

- To identify the maximal subset of B_n on which $f_n/g_n > 0$.

- We know explicitly f_n, we want to find g_n explicitly.

- Like before, we solve a Dirichlet problem for g_n.

$$\begin{cases}
\triangle g_n(z) = \frac{1}{d(z)}(-1 - n \cdot \delta_o(z)), & \text{for } z \in B_n \\
g_n = 0, & \text{on } \partial B_n
\end{cases}$$

- Is this Dirichlet problem explicitly solvable?

- With a lot of luck is solvable, and we have g_n.

- g_n is not a nice function, but it doesn’t matter.
Last step of the proof

Then \(\frac{f_n}{g_n} \) is decreasing and, and for all \(\varepsilon > 0 \), \(\forall n \geq n_\varepsilon \):

\[
\min \left\{ \frac{f_n(z)}{g_n(z)} : z \in B_n(1-\varepsilon) \right\} = \frac{\varepsilon}{4 - \varepsilon},
\]

that is, \(0 < \frac{\varepsilon}{4 - \varepsilon} \leq \frac{f_n}{g_n} \) on \(B_n(1-\varepsilon) \). Choose \(\lambda = \varepsilon/4 \).
Last step of the proof

Then $\frac{f_n}{g_n}$ is decreasing and, and for all $\varepsilon > 0$, $\forall n \geq n_\varepsilon$:

$$\min\left\{ \frac{f_n(z)}{g_n(z)} : z \in B_{n(1-\varepsilon)} \right\} = \frac{\varepsilon}{4-\varepsilon},$$

that is, $0 < \frac{\varepsilon}{4-\varepsilon} \leq \frac{f_n}{g_n}$ on $B_{n(1-\varepsilon)}$. Choose $\lambda = \varepsilon/4$.

$$\mathbb{P}[M \leq \tilde{L}] \leq \mathbb{P}[M < (1 - \lambda)\mathbb{E}[\tilde{M}]] + \mathbb{P}[\tilde{L} > (1 + \lambda)\mathbb{E}[\tilde{L}]] < 2 \exp\{-c_\lambda \mathbb{E}[M]\} + 2 \exp\{-c_\lambda \mathbb{E}[\tilde{L}]\} < 4 \exp\{-c_\lambda \mathbb{E}[\tilde{L}]\} \leq 4 \exp\left\{-c_\lambda \frac{g_n(z) - f_n(z)}{G_n(z, z)} \right\}.$$
Last step of the proof

- Then $\frac{f_n}{g_n}$ is decreasing and, and for all $\varepsilon > 0$, $\forall n \geq n_\varepsilon$:

 \[
 \min \left\{ \frac{f_n(z)}{g_n(z)} : z \in B_{n(1-\varepsilon)} \right\} = \frac{\varepsilon}{4 - \varepsilon},
 \]

 that is, $0 < \frac{\varepsilon}{4 - \varepsilon} \leq \frac{f_n}{g_n}$ on $B_{n(1-\varepsilon)}$. Choose $\lambda = \varepsilon/4$.

 \[
 \mathbb{P}[M \leq \tilde{L}] \leq \mathbb{P}[M < (1 - \lambda) \mathbb{E}[\tilde{M}]] + \mathbb{P}[\tilde{L} > (1 + \lambda) \mathbb{E}[\tilde{L}]]
 \leq 2 \exp\{-c_\lambda \mathbb{E}[M]\} + 2 \exp\{-c_\lambda \mathbb{E}[\tilde{L}]\}
 \leq 4 \exp\{-c_\lambda \mathbb{E}[\tilde{L}]\} \leq 4 \exp\{-c_\lambda \frac{g_n(z) - f_n(z)}{G_n(z, z)}\}.
 \]

- The function $g_n - f_n > O(n^{4/3})$, but we need $G_n(z, z)$, for all $z \in B_{n(1-\varepsilon)}$.
Estimate $G_n(z, z)$ with the stopped Green function for SRW on \mathbb{Z}, upon exiting a finite interval. We get

$$\sum_{n \geq n_\varepsilon} \sum_{z \in B_n(1-\varepsilon)} \mathbb{P}[z \notin A_n] \leq \sum_{n \geq n_\varepsilon} \sum_{z \in B_n(1-\varepsilon)} \exp\{-c_\lambda n^{1/3}\} < \infty,$$

and this implies the inner bound

$$\mathbb{P}[B_{n(1-\varepsilon)} \subset A_n, \text{ for all sufficiently large } n] = 1.$$
Thank you for your attention!

L. Levine and Y. Peres, Scaling Limits for Internal Aggregation Models with Multiple Sources, arXiv:0712.3378.