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Internal DLA

Given a random walk on a state space G .

Start with n particles at the origin o ∈ G .

Each particle walks until it finds an unoccupied site, stays
there.

A(n): the resulting random set of n points in G .
Growth rule: Let A(0) = {o} and define

A(n + 1) = A(n) ∪ {X n(τn)},

where X 1,X 2, . . . are independent random walks, and

τn = min{t : X n(t) /∈ A(n)}.

Main question: limiting shape of A(n) as n→∞?
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Simple random walk on Zd

Theorem (Lawler-Bramson-Griffeath ’92)
The limiting shape is a ball: ∀ε > 0, with probability 1:

Bn(1−ε) ⊂ A(πn2) ⊂ Bn(1+ε), for all sufficiently large n.

Theorem (Lawler ’95)
Improvement of the previous result: for f (n) = n1/3 log4 n

Bn−f (n) ⊂ A(πn2) ⊂ Bn+f (n), for n big enough.

Theorem (Asselah-Gaudilliere ’10)
New result on the order of fluctuations f (n) = n1/(d+1) log n.
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The cluster A(n), n=100000



What about other walks on Z2?
Modify the transition probabilities on the axes:

Steps toward the origin along the x- and y -axes are
reflected away from the origin. So

P
(
(x , 0), (x + 1, 0)

)
=

1

2

P
(
(x , 0), (x , 1)

)
=

1

4
.

Off the axes, same as simple random walk.

Theorem (Kager-Levine ’09)
The limiting shape is a diamond, that is, with probability 1

Dn−4
√

n log n ⊂ A(dn) ⊂ Dn+20
√

n log n,

and dn = #Dn = 2n(n + 1) + 1.
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Diamond aggregation: the limiting shape Dn

Diamond of radius n is

Dn = {z ∈ Z2 : ||z || ≤ n},

with z = (x , y) ∈ Z2 its norm is ||(x , y)|| = |x |+ |y |.



Internal DLA on the comb lattice

Consider the 2-dimensional comb C2.

Perform internal DLA with n simple
random walks starting at the origin
o = (0, 0) ∈ C2.

What is the limiting shape A(n)?

o

Recall: divisible sandpile cluster Sn on C2 is given by

Bn−c ⊂ Sn ⊂ Bn+c ,

Bn =

{
(x , y) ∈ C2 :

|x |
k

+

( |y |
l

)1/2

≤ n1/3

}
,

with k =
(

3
2

)2/3
and l = 1

2

(
3
2

)1/3
.
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The internal DLA cluster A(n)

Is A(n) the same like in the divisible
sandpile?

IT SHOULD BE!!!!

The limiting shape A(n) for internal
DLA for 500 and 1000 particles.

Inner bound [Huss-Sava ’10]:

Bn(1−ε) ⊂ A(n), for all ε > 0.

Outer bound [Someone in the audience
May ’10 ?]: A(n) ⊂ Bn(1+ε), for all ε > 0.
EXERCISE!
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The inner bound
Theorem (Huss-Sava ’10)
Let A(n) be the IDLA cluster after n particles start at the
origin of C2. Then, for all ε > 0, we have with probability 1
that

Bn(1−ε) ⊂ A(n), for all sufficiently large n.

Proof sketch.

Inspired by the Lawler-Bramson-Griffeath argument.

By Borel-Cantelli Lemma, a sufficient condition for
proving the inner bound is∑

n≥n0

∑
z∈Bn(1−ε)

P[z /∈ An] <∞.
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Proof sketch: the inner bound

Fix z ∈ Bn. We want an upper bound for P
[
z /∈ A(n)

]
.

Among the first n particles, let

M = # of particles that visit z before leaving Bn,

L = # of particles that visit z after leaving A(i),

while still in Bn, for all 1 ≤ i ≤ n.

If L < M then z ∈ A(n) and

{z /∈ A(n)} ⊂ {M = L}.

Both L and M are sums of indicator
RV’s.

Main difficulty: the summands of L
are dependent.

o

z

Bn

A(i)
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Let us find some independence!

Bound L by a sum of i.i.d RV’s. How?

Start one new walk from every point in Bn, and let

L̃ = # of new walks that hit z before leaving Bn.

Since at most one particle can attach to the cluster at a
given site, L ≤ L̃.

Therefore

P[z /∈ A(n)] ≤ P[M = L] ≤ P[M ≤ L̃].

Show that E[M] > E[L̃] and use Large deviation estimate
for sum of i.i.d indicators to bound P[M ≤ L̃].



Let us find some independence!

Bound L by a sum of i.i.d RV’s. How?

Start one new walk from every point in Bn, and let

L̃ = # of new walks that hit z before leaving Bn.

Since at most one particle can attach to the cluster at a
given site, L ≤ L̃.

Therefore

P[z /∈ A(n)] ≤ P[M = L] ≤ P[M ≤ L̃].

Show that E[M] > E[L̃] and use Large deviation estimate
for sum of i.i.d indicators to bound P[M ≤ L̃].



Let us find some independence!

Bound L by a sum of i.i.d RV’s. How?

Start one new walk from every point in Bn, and let

L̃ = # of new walks that hit z before leaving Bn.

Since at most one particle can attach to the cluster at a
given site, L ≤ L̃.

Therefore

P[z /∈ A(n)] ≤ P[M = L] ≤ P[M ≤ L̃].

Show that E[M] > E[L̃] and use Large deviation estimate
for sum of i.i.d indicators to bound P[M ≤ L̃].



Let us find some independence!

Bound L by a sum of i.i.d RV’s. How?

Start one new walk from every point in Bn, and let

L̃ = # of new walks that hit z before leaving Bn.

Since at most one particle can attach to the cluster at a
given site, L ≤ L̃.

Therefore

P[z /∈ A(n)] ≤ P[M = L] ≤ P[M ≤ L̃].

Show that E[M] > E[L̃] and use Large deviation estimate
for sum of i.i.d indicators to bound P[M ≤ L̃].



Dirichlet problem ⇒ E[M ] > E[L̃]
Let

fn(z) =
Gn(z , z)

d(z)
E[M − L̃]

where Gn is the Green fc. for SRW stopped on exiting Bn.

Compute the Laplace 4fn. We get{
4fn(z) = 1

d(z)

(
1− n · δo(z)

)
, for z ∈ Bn

fn = 0, on ∂Bn

The divisible sandpile odometer un satisfies{
4un(z) = 1

d(z)

(
1− n · δo(z)

)
, for z ∈ Bn

un = 0, on ∂Bn

Uniqueness of the solution ⇒ un = fn on Bn.
But we have un explicitely, and un > 0 on Bn.
Therefore E[M] > E[L̃].
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Large deviation estimate
Lemma
If N is a sum of finitely many independent indicator RV’s,

P
[|N − EN | > λEN

]
< 2e−cλEN ,

∀λ > 0, where cλ is a constant depending only on λ.

Apply it for L̃ and M , and bound P[M ≤ L̃]. Then

P[L̃ > (1 + λ)EL̃] < 2e−cλEL̃

P[M < (1− λ)EM] < 2e−cλEM

Problem: choose λ > 0 s.t (1 + λ)EL̃ ≤ (1− λ)EM :

0 < λ ≤ E[M − L̃]

E[M + L̃]
.
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How to choose λ
Set now

gn(z) =
Gn(z , z)

d(z)
E[M + L̃].

Then choose 0 < λ ≤ fn
gn

.

To identifiy the maximal subset of Bn on which fn/gn > 0.

We know explicitely fn, we want to find gn explicitely.

Like before, we solve a Dirichlet problem for gn.{
4gn(z) = 1

d(z)

(− 1− n · δo(z)
)
, for z ∈ Bn

gn = 0, on ∂Bn

Is this Dirichlet problem explicitely solvable?

With a lot of luck is solvable, and we have gn.

gn is not a nice function, but it doesn’t matter.
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Last step of the proof

Then fn
gn

is decreasing and, and for all ε > 0, ∀n ≥ nε:

min

{
fn(z)

gn(z)
: z ∈ Bn(1−ε)

}
=

ε

4− ε,

that is, 0 < ε
4−ε ≤ fn

gn
on Bn(1−ε). Choose λ = ε/4.

P[M ≤ L̃] ≤ P
[
M <

(
1− λ)E[M̃]

]
+ P

[
L̃ >

(
1 + λ

)
E[L̃]

]
< 2 exp

{−cλE[M]
}

+ 2 exp
{−cλE[L̃]

}
< 4 exp

{−cλE[L̃]
} ≤ 4 exp

{
−cλ

gn(z)− fn(z)

Gn(z , z)

}
.

The function gn − fn > O(n4/3), but we need Gn(z , z), for
all z ∈ Bn(1−ε).
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Estimate Gn(z , z) with the stopped Green function for
SRW on Z, upon exiting a finite interval. We get∑
n≥nε

∑
z∈Bn(1−ε)

P[z /∈ An] ≤
∑
n≥nε

∑
z∈Bn(1−ε)

exp{−cλn1/3} <∞,

and this implies the inner bound

P
[Bn(1−ε) ⊂ An, for all sufficiently large n

]
= 1.



Thank you for your attention!
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