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Graz University of Technology
Lamplighter Walks

I G an infinite graph

I Decorate each vertex x in G with a lamp which can be switched
“on” (labelled by 1) or “off” (labelled by 0).

I A “lamplighter“ person walks on G and switches randomly some
lamps.

I If his current position in G is x then:

I randomizes the lamp at x
I picks uniformly some neighbour x′ of x
I moves to x′

I Labelling configuration of lamps together with the position of the
walker have a structure of graph known as lamplighter graph or
wreath product, denoted by

G^ = {0,1} oG.
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Graz University of Technology
Lamplighter Graphs

I configuration of lamps = functions η : G→ {0,1}.

I for x ∈ G , η(x) = the status of the lamp sitting at x
I lamplighter graph G^ = {0,1}G ×G has vertices of the form (η, x).
I neighbourhood relation in G^: (η, x) ∼ (η′, x′) if either

x ∼ x′ and η = η′,

which corresponds to the lamplighter moving between x and x′

without changing the lamp, or

η(y) = η′(y), for all y , x , and x = x′

which corresponds to the lamplighter not moving, but he might
have changed the lamp at x.
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Graz University of Technology
Example

Z^2 = {0,1} oZ2 has 8 vertices and it looks like below. If Z2 = {a,b},
the set of all lamp configurations on two vertices is {00,01,10,11}.

(00,a)

(00,b)
(01,b)

(01,a)

(11,a)

(11,b)
(10,b)

(10,a)
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Graz University of Technology
Example

Z^3 = {0,1} oZ3 has 24 vertices and it looks like this:
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Graz University of Technology
Random Walks

Start with a random walk on G, construct one on G^. Basic models:
1. Walk or Switch: at each step the lamplighter tosses a coin

I if head comes up then he walks, leaving the lamps unchanged.
I if tail comes up, then he modifies the lamp at the current position,

without moving.
2. Switch-Walk-Switch: if the lamplighter stands at x, then

I he first randomizes the lamp at x
I then he chooses uniformly some vertex x′ of x and he walks to x′

I finally, he randomizes the lamp at x′

We shall focus on Switch-Walk-Switch model. For this, let
I µ a Simple Random Walk on G: µ(x , y) = 1

d(x)
I ν a measure causing the lamplighter to randomize the lamp

ν(0,0) = ν(0,1) =
1
2

and ν(1,1) = ν(1,0) =
1
2
.
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Graz University of Technology
Lamplighter Random Walks

I Random walk on G^ = {0,1}G ×G with tr. prob. µ^ = ν ∗ µ ∗ ν.

I (G^, µ^) is called Lamplighter Random Walk, shortly LRW.
I LRW can be also represented as a sequence of G^-valued r.v’s

Zn = (ηn,Xn), with

I ηn = random configuration of lamps at time n.
I Xn = random position of the lamplighter in G at time n, with

transition probabilities µ.

I µ^
(
(η, x), (η′, x′)

)
= P[Zn+1 = (η′, x′)|Zn = (η, x)].

Interesting questions:
I speed or rate of escape of LRW: lim d(Zn ,Z0)

n and lim d(Xn ,X0)
n .

I long-term behaviour of the return probabilities µ^
(n)
(
(η, x), (η, x)

)
.

I convergence to the boundary, Poisson and Martin boundary.
I representation of bounded harmonic functions for LRW.
Important: the behaviour of LRW depends strongly on the structure of
the base graph G and the random walk Xn on it.
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Return Probabilities

For Zd , there are good estimates:
I Revelle [’03], studied LRW on Z and obtained very good

asymptotics:
µ^

(n)
≈ c1n1/6 exp−c2n1/3.

I For d ≥ 2: µ^
(n)
≈ exp−nd/(d+2).

For general graphs G and LRW on them:

µ^
(n)(

(η, x), (η, x)
)
= E[2−Rn1{Xn=x}],

where Rn represents the range of the walk Xn = the number of
distinct visited points up to time n. On Zd studied by Donsker and
Varadhan [’79], by LDP.
Question: How does Rn behave for random walks on graphs (or
groups) with exponential growth, for instance on trees? Good
estimates for Rn are needed in order to get asymptotics for µ^

(n)
, on

other base graphs, different from Zd .
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Poisson Boundary

I For G = Zd , convergence and the Poisson boundary of LRW on
{0,1} oZd was studied by:

I Kaimanovich and Vershik [’83], who introduced such structures
I Kaimanovich [’00], for r.w. on Zd without drift
I Erschler [’10], for r.w. on Zd with drift

I On other base graphs G

I Karlsson and Woess [’07], G = homogeneous infinite tree
I S. [’09], for graphs with infinitely many ends and hyperbolic graphs

In all cases, it is proven the a.s. convergence of LRW paths to
boundaries associated with G^, and the Poisson boundary is the
space of limit configurations of lamps with are switched on.
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boundaries associated with G^, and the Poisson boundary is the
space of limit configurations of lamps with are switched on.
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Rate of Escape

I the existence of the rate of escape is given by Kingman
subadditive ergodic theorem.

I Lyons, Pemantle and Peres [’96] studied the speed of LRW on
Z^ = {0,1} oZ and showed that the simple random walk on Z^

move toward infinity slower than inward-biased random walks on
Z^.

I Erschler [’01]: the rate of escape of G^ is zero iff the random
walk on G is recurrent.

I Gilch [’08]: the LRW on G^ escapes faster to infinity than the
original random walk on G.
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