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» G an infinite graph

» Decorate each vertex x in G with a lamp which can be switched
“on” (labelled by 1) or “off” (labelled by 0).

»  A“lamplighter” person walks on G and switches randomly some
lamps.

» If his current position in G is x then:
> randomizes the lamp at x
»  picks uniformly some neighbour x’ of x
»  moves to x’

» Labelling configuration of lamps together with the position of the
walker have a structure of graph known as lamplighter graph or
wreath product, denoted by

G°® ={0,1}1G.
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» configuration of lamps = functions  : G — {0, 1}.

» for x € G, n(x) = the status of the lamp sitting at x

»  lamplighter graph G® = {0, 1}¢ x G has vertices of the form (], x).
» neighbourhood relation in G®: (1, x) ~ (1, x’) if either

x~x"andn=r1,

which corresponds to the lamplighter moving between x and x’
without changing the lamp, or

n(y) =n'(y), forally # x, and x = x’
which corresponds to the lamplighter not moving, but he might

have changed the lamp at x.
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75 ={0,1}1Z; has 8 vertices and it looks like below. If Z, = {a, b},
the set of all lamp configurations on two vertices is {00,01,10, 11}.

(01,b)

(01, a) (00, b)
(11,a) (00, a)
(11,b) (10,a)
(10,b)
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7 = {0,1} 1 Z3 has 24 vertices and it looks like this:

Lamplighter Graphs
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Start with a random walk on G, construct one on G°. Basic models:

1. Walk or Switch: at each step the lamplighter tosses a coin
» if head comes up then he walks, leaving the lamps unchanged.

> if tail comes up, then he modifies the lamp at the current position,
without moving.

2. Switch-Walk-Switch: if the lamplighter stands at x, then
> he first randomizes the lamp at x
»  then he chooses uniformly some vertex x’ of x and he walks to x’
» finally, he randomizes the lamp at x’
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Start with a random walk on G, construct one on G°. Basic models:

1. Walk or Switch: at each step the lamplighter tosses a coin
» if head comes up then he walks, leaving the lamps unchanged.
> if tail comes up, then he modifies the lamp at the current position,
without moving.
2. Switch-Walk-Switch: if the lamplighter stands at x, then
> he first randomizes the lamp at x
»  then he chooses uniformly some vertex x’ of x and he walks to x’
» finally, he randomizes the lamp at x’

We shall focus on Switch-Walk-Switch model. For this, let

» u aSimple Random Walk on G: u(x,y) = ﬁ

» v ameasure causing the lamplighter to randomize the lamp

andv(1,1) =v(1,0) = 1

v(0,0) =v(0,1) = 5

N —
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»  (G®,u®)is called Lamplighter Random Walk, shortly LRW.
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Zn = (nn, Xn), with
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Random walk on G® = {0, 1}¢ x G with tr. prob. u® = v+ pu=*v.

(G®, u®) is called Lamplighter Random Walk, shortly LRW.

LRW can be also represented as a sequence of G®-valued r.v's

Zn = (nn, Xn), with

» 1 = random configuration of lamps at time n.

» X, =random position of the lamplighter in G at time n, with
transition probabilities .

u®((n, %), (7, X)) = PlZns1 = (7, X)1Zn = (0, X)].

Interesting questions:

>

>

>

>

(Zn Zo) d(Xn,Xo)
.

speed or rate of escape of LRW: lim and I|m

long-term behaviour of the return probabllltles [T ((n, x),(n, x)).
convergence to the boundary, Poisson and Martin boundary.
representation of bounded harmonic functions for LRW.
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For Z9, there are good estimates:
» Revelle ['03], studied LRW on Z. and obtained very good
asymptotics:
u®" ~ cin'/B exp —con'/3.

» Ford>2: “O(n) ~ exp —nd/(d+2)
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For Z9, there are good estimates:
» Revelle ['03], studied LRW on Z. and obtained very good
asymptotics:

)
u®"” ~ cyn'®exp—con'/3.

> Ford>2: u®" ~ exp—nd/(d+2),
For general graphs G and LRW on them:
(n) _
(%), (0, %)) = B27 1 ],

where R, represents the range of the walk X, = the number of
distinct visited points up to time n. On Z9 studied by Donsker and
Varadhan ['79], by LDP.
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For Z9, there are good estimates:
» Revelle ['03], studied LRW on Z. and obtained very good
asymptotics:
u®" ~ cin'/B exp —con'/3.

» Ford>2: yo(n) ~ exp —nd/(d+2)
For general graphs G and LRW on them:

yo(m((n’ X), (,],X)) = IE[Z_R”1 Xo=x},

where R, represents the range of the walk X, = the number of
distinct visited points up to time n. On Z¢ studied by Donsker and
Varadhan ['79], by LDP.

Question: How does R;, behave for random walks on graphs (or
groups) with exponential growth, for instance on trees? Good
estimates for R, are needed in order to get asymptotics for po("), on
other base graphs, different from z9.
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» For G = Z9, convergence and the Poisson boundary of LRW on
{0, 1} Z9 was studied by:
> Kaimanovich and Vershik ['83], who introduced such structures
> Kaimanovich ['00], for r.w. on Z9 without drift
»  Erschler ['10], for r.w. on Z¢ with drift
» On other base graphs G
»  Karlsson and Woess ['07], G = homogeneous infinite tree
»  S.[09], for graphs with infinitely many ends and hyperbolic graphs

In all cases, it is proven the a.s. convergence of LRW paths to
boundaries associated with G, and the Poisson boundary is the
space of limit configurations of lamps with are switched on.
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subadditive ergodic theorem.
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Rate of Escape Ty,

» the existence of the rate of escape is given by Kingman
subadditive ergodic theorem.

» Lyons, Pemantle and Peres ['96] studied the speed of LRW on
Z° = {0,1} 1 Z and showed that the simple random walk on Z°
move toward infinity slower than inward-biased random walks on
VAR

»  Erschler ['01]: the rate of escape of G® is zero iff the random
walk on G is recurrent.

»  Gilch ['08]: the LRW on G® escapes faster to infinity than the
original random walk on G.
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