Ecaterina Sava

May 19, Young Women in Probability, Bonn, 2011

G an infinite graph

- G an infinite graph
- Decorate each vertex x in G with a lamp which can be switched "on" (labelled by 1) or "off" (labelled by 0).

- G an infinite graph
- Decorate each vertex x in G with a lamp which can be switched "on" (labelled by 1) or "off" (labelled by 0).
- A "lamplighter" person walks on G and switches randomly some lamps.

- G an infinite graph
- Decorate each vertex x in G with a lamp which can be switched "on" (labelled by 1) or "off" (labelled by 0).
- A "lamplighter" person walks on G and switches randomly some lamps.
- If his current position in G is x then:

2/20

- G an infinite graph
- Decorate each vertex x in G with a lamp which can be switched "on" (labelled by 1) or "off" (labelled by 0).
- A "lamplighter" person walks on G and switches randomly some lamps.
- If his current position in G is x then:
 - randomizes the lamp at x

- G an infinite graph
- Decorate each vertex x in G with a lamp which can be switched "on" (labelled by 1) or "off" (labelled by 0).
- A "lamplighter" person walks on G and switches randomly some lamps.
- If his current position in G is x then:
 - randomizes the lamp at x
 - picks uniformly some neighbour x' of x

- G an infinite graph
- Decorate each vertex x in G with a lamp which can be switched "on" (labelled by 1) or "off" (labelled by 0).
- A "lamplighter" person walks on G and switches randomly some lamps.
- If his current position in G is x then:
 - randomizes the lamp at x
 - picks uniformly some neighbour x' of x
 - moves to x'

- G an infinite graph
- Decorate each vertex x in G with a lamp which can be switched "on" (labelled by 1) or "off" (labelled by 0).
- A "lamplighter" person walks on G and switches randomly some lamps.
- If his current position in G is x then:
 - randomizes the lamp at x
 - picks uniformly some neighbour x' of x
 - moves to x'
- Labelling configuration of lamps together with the position of the walker have a structure of graph known as lamplighter graph or wreath product, denoted by

$$\mathbf{G}^{\diamond} = \{\mathbf{0}, \mathbf{1}\} \wr \mathbf{G}.$$

9/20

• configuration of lamps = functions $\eta : \mathbf{G} \to \{0, \mathbf{1}\}.$

- configuration of lamps = functions $\eta : \mathbf{G} \to \{0, \mathbf{1}\}.$
- for $x \in G$, $\eta(x)$ = the status of the lamp sitting at x

- configuration of lamps = functions $\eta : \mathbf{G} \to \{0, \mathbf{1}\}.$
- for $x \in G$, $\eta(x)$ = the status of the lamp sitting at x
- **lamplighter graph** $G^{\diamond} = \{0, 1\}^G \times G$ has vertices of the form (η, x) .

- configuration of lamps = functions $\eta : \mathbf{G} \to \{0, \mathbf{1}\}.$
- for $x \in G$, $\eta(x)$ = the status of the lamp sitting at x
- lamplighter graph $G^{\diamond} = \{0, 1\}^G \times G$ has vertices of the form (η, x) .
- neighbourhood relation in G^\diamond : $(\eta, x) \sim (\eta', x')$ if either

$$x \sim x'$$
 and $\eta = \eta'$,

which corresponds to the lamplighter moving between x and x' without changing the lamp, or

$$\eta(y) = \eta'(y)$$
, for all $y \neq x$, and $x = x'$

which corresponds to the lamplighter not moving, but he might have changed the lamp at x.

Example

 $\mathbb{Z}_2^\diamond = \{0, 1\} \wr \mathbb{Z}_2$ has 8 vertices and it looks like below. If $\mathbb{Z}_2 = \{a, b\}$, the set of all lamp configurations on two vertices is $\{00, 01, 10, 11\}$.

Example

$\mathbb{Z}_3^\diamond = \{0, 1\} \wr \mathbb{Z}_3$ has 24 vertices and it looks like this:

Random Walks

Start with a random walk on G, construct one on G^{\diamond} . Basic models:

- 1. Walk or Switch: at each step the lamplighter tosses a coin
 - if head comes up then he walks, leaving the lamps unchanged.
 - if tail comes up, then he modifies the lamp at the current position, without moving.
- 2. Switch-Walk-Switch: if the lamplighter stands at *x*, then
 - he first randomizes the lamp at x
 - then he chooses uniformly some vertex x' of x and he walks to x'
 - finally, he randomizes the lamp at x'

Random Walks

Start with a random walk on G, construct one on G^{\diamond} . Basic models:

- 1. Walk or Switch: at each step the lamplighter tosses a coin
 - if head comes up then he walks, leaving the lamps unchanged.
 - if tail comes up, then he modifies the lamp at the current position, without moving.
- 2. Switch-Walk-Switch: if the lamplighter stands at *x*, then
 - he first randomizes the lamp at x
 - then he chooses uniformly some vertex x' of x and he walks to x'
 - finally, he randomizes the lamp at x'

We shall focus on Switch-Walk-Switch model. For this, let

- μ a Simple Random Walk on G: $\mu(x, y) = \frac{1}{d(x)}$
- ν a measure causing the lamplighter to randomize the lamp

$$v(0,0) = v(0,1) = \frac{1}{2}$$
 and $v(1,1) = v(1,0) = \frac{1}{2}$.

• Random walk on $G^{\diamond} = \{0, 1\}^G \times G$ with tr. prob. $\mu^{\diamond} = \nu * \mu * \nu$.

- Random walk on $G^{\diamond} = \{0, 1\}^G \times G$ with tr. prob. $\mu^{\diamond} = \nu * \mu * \nu$.
- $(G^{\diamond}, \mu^{\diamond})$ is called Lamplighter Random Walk, shortly LRW.

- Random walk on $G^{\diamond} = \{0, 1\}^G \times G$ with tr. prob. $\mu^{\diamond} = \nu * \mu * \nu$.
- $(G^{\diamond}, \mu^{\diamond})$ is called Lamplighter Random Walk, shortly LRW.
- ► LRW can be also represented as a sequence of G^{\diamond}-valued r.v's $Z_n = (\eta_n, X_n)$, with

- Random walk on $G^{\diamond} = \{0, 1\}^G \times G$ with tr. prob. $\mu^{\diamond} = \nu * \mu * \nu$.
- $(G^{\diamond}, \mu^{\diamond})$ is called Lamplighter Random Walk, shortly LRW.
- ► LRW can be also represented as a sequence of G^{\diamond}-valued r.v's $Z_n = (\eta_n, X_n)$, with
 - η_n = random configuration of lamps at time *n*.

- Random walk on $G^{\diamond} = \{0, 1\}^G \times G$ with tr. prob. $\mu^{\diamond} = \nu * \mu * \nu$.
- $(G^{\diamond}, \mu^{\diamond})$ is called Lamplighter Random Walk, shortly LRW.
- ► LRW can be also represented as a sequence of G^{\diamond}-valued r.v's $Z_n = (\eta_n, X_n)$, with
 - η_n = random configuration of lamps at time *n*.
 - X_n = random position of the lamplighter in G at time *n*, with transition probabilities μ .

- Random walk on $G^{\diamond} = \{0, 1\}^G \times G$ with tr. prob. $\mu^{\diamond} = \nu * \mu * \nu$.
- $(G^{\diamond}, \mu^{\diamond})$ is called Lamplighter Random Walk, shortly LRW.
- ► LRW can be also represented as a sequence of G^{\diamond}-valued r.v's $Z_n = (\eta_n, X_n)$, with
 - η_n = random configuration of lamps at time *n*.
 - X_n = random position of the lamplighter in G at time *n*, with transition probabilities μ .
- $\mu^{\diamond}((\eta, x), (\eta', x')) = \mathbb{P}[Z_{n+1} = (\eta', x')|Z_n = (\eta, x)].$

- Random walk on $G^{\diamond} = \{0, 1\}^G \times G$ with tr. prob. $\mu^{\diamond} = \nu * \mu * \nu$.
- $(G^{\diamond}, \mu^{\diamond})$ is called Lamplighter Random Walk, shortly LRW.
- ► LRW can be also represented as a sequence of G^{\diamond}-valued r.v's $Z_n = (\eta_n, X_n)$, with
 - η_n = random configuration of lamps at time *n*.
 - X_n = random position of the lamplighter in G at time *n*, with transition probabilities μ .
- $\mu^{\diamond}((\eta, x), (\eta', x')) = \mathbb{P}[Z_{n+1} = (\eta', x')|Z_n = (\eta, x)].$

- Random walk on $G^{\diamond} = \{0, 1\}^G \times G$ with tr. prob. $\mu^{\diamond} = \nu * \mu * \nu$.
- $(G^{\diamond}, \mu^{\diamond})$ is called Lamplighter Random Walk, shortly LRW.
- ► LRW can be also represented as a sequence of G^{\diamond}-valued r.v's $Z_n = (\eta_n, X_n)$, with
 - η_n = random configuration of lamps at time *n*.
 - X_n = random position of the lamplighter in G at time *n*, with transition probabilities μ .
- $\mu^{\diamond}((\eta, x), (\eta', x')) = \mathbb{P}[Z_{n+1} = (\eta', x')|Z_n = (\eta, x)].$

Interesting questions:

- speed or rate of escape of LRW: $\lim \frac{d(Z_n, Z_0)}{n}$ and $\lim \frac{d(X_n, X_0)}{n}$.
- long-term behaviour of the return probabilities $\mu^{\diamond^{(n)}}((\eta, x), (\eta, x))$.
- convergence to the boundary, Poisson and Martin boundary.
- representation of bounded harmonic functions for LRW.

- Random walk on $G^{\diamond} = \{0, 1\}^G \times G$ with tr. prob. $\mu^{\diamond} = \nu * \mu * \nu$.
- $(G^{\diamond}, \mu^{\diamond})$ is called Lamplighter Random Walk, shortly LRW.
- ► LRW can be also represented as a sequence of G^{\diamond}-valued r.v's $Z_n = (\eta_n, X_n)$, with
 - η_n = random configuration of lamps at time *n*.
 - X_n = random position of the lamplighter in G at time *n*, with transition probabilities μ .
- $\mu^{\diamond}((\eta, x), (\eta', x')) = \mathbb{P}[Z_{n+1} = (\eta', x')|Z_n = (\eta, x)].$

Interesting questions:

- speed or rate of escape of LRW: $\lim \frac{d(Z_n, Z_0)}{n}$ and $\lim \frac{d(X_n, X_0)}{n}$.
- long-term behaviour of the return probabilities $\mu^{\diamond^{(n)}}((\eta, x), (\eta, x))$.
- convergence to the boundary, Poisson and Martin boundary.
- representation of bounded harmonic functions for LRW.

Important: the behaviour of LRW depends strongly on the structure of the base graph G and the random walk X_n on it.

Return Probabilities

For \mathbb{Z}^d , there are good estimates:

► Revelle ['03], studied LRW on Z and obtained very good asymptotics:

$$\mu^{\Diamond^{(n)}} \approx c_1 n^{1/6} \exp{-c_2 n^{1/3}}.$$

• For $d \ge 2$: $\mu^{\diamondsuit^{(n)}} \approx \exp{-n^{d/(d+2)}}$.

Return Probabilities

For \mathbb{Z}^d , there are good estimates:

► Revelle ['03], studied LRW on Z and obtained very good asymptotics:

$$\mu^{\diamondsuit^{(n)}} \approx c_1 n^{1/6} \exp{-c_2 n^{1/3}}.$$

• For $d \ge 2$: $\mu^{\diamondsuit^{(n)}} \approx \exp{-n^{d/(d+2)}}$.

For general graphs G and LRW on them:

$$\mu^{\Diamond^{(n)}}((\eta, x), (\eta, x)) = \mathbb{E}[2^{-R_n} \mathbf{1}_{\{X_n = x\}}],$$

where R_n represents the range of the walk X_n = the number of distinct visited points up to time n. On \mathbb{Z}^d studied by Donsker and Varadhan ['79], by LDP.

Return Probabilities

For \mathbb{Z}^d , there are good estimates:

► Revelle ['03], studied LRW on Z and obtained very good asymptotics:

$$\mu^{\diamondsuit^{(n)}} \approx c_1 n^{1/6} \exp{-c_2 n^{1/3}}.$$

• For $d \ge 2$: $\mu^{\diamondsuit^{(n)}} \approx \exp{-n^{d/(d+2)}}$.

For general graphs G and LRW on them:

$$\mu^{\Diamond^{(n)}}((\eta, x), (\eta, x)) = \mathbb{E}[2^{-R_n} \mathbf{1}_{\{X_n = x\}}],$$

where R_n represents the range of the walk X_n = the number of distinct visited points up to time *n*. On \mathbb{Z}^d studied by Donsker and Varadhan ['79], by LDP.

Question: How does R_n behave for random walks on graphs (or groups) with exponential growth, for instance on trees? Good estimates for R_n are needed in order to get asymptotics for $\mu^{\diamond^{(n)}}$, on other base graphs, different from \mathbb{Z}^d .

For $G = \mathbb{Z}^d$, convergence and the Poisson boundary of LRW on $\{0, 1\} \wr \mathbb{Z}^d$ was studied by:

- For $G = \mathbb{Z}^d$, convergence and the Poisson boundary of LRW on $\{0, 1\} \wr \mathbb{Z}^d$ was studied by:
 - Kaimanovich and Vershik ['83], who introduced such structures

- For $G = \mathbb{Z}^d$, convergence and the Poisson boundary of LRW on $\{0, 1\} \wr \mathbb{Z}^d$ was studied by:
 - Kaimanovich and Vershik ['83], who introduced such structures
 - Kaimanovich ['00], for r.w. on \mathbb{Z}^d without drift

- For $G = \mathbb{Z}^d$, convergence and the Poisson boundary of LRW on $\{0, 1\} \wr \mathbb{Z}^d$ was studied by:
 - Kaimanovich and Vershik ['83], who introduced such structures
 - Kaimanovich ['00], for r.w. on \mathbb{Z}^d without drift
 - Erschler ['10], for r.w. on \mathbb{Z}^d with drift

- For $G = \mathbb{Z}^d$, convergence and the Poisson boundary of LRW on $\{0, 1\} \wr \mathbb{Z}^d$ was studied by:
 - Kaimanovich and Vershik ['83], who introduced such structures
 - Kaimanovich ['00], for r.w. on \mathbb{Z}^d without drift
 - Erschler ['10], for r.w. on \mathbb{Z}^d with drift
- On other base graphs G

- For $G = \mathbb{Z}^d$, convergence and the Poisson boundary of LRW on $\{0, 1\} \wr \mathbb{Z}^d$ was studied by:
 - Kaimanovich and Vershik ['83], who introduced such structures
 - Kaimanovich ['00], for r.w. on \mathbb{Z}^d without drift
 - Erschler ['10], for r.w. on \mathbb{Z}^d with drift
- On other base graphs G
 - Karlsson and Woess ['07], G = homogeneous infinite tree

- For $G = \mathbb{Z}^d$, convergence and the Poisson boundary of LRW on $\{0, 1\} \wr \mathbb{Z}^d$ was studied by:
 - Kaimanovich and Vershik ['83], who introduced such structures
 - Kaimanovich ['00], for r.w. on \mathbb{Z}^d without drift
 - Erschler ['10], for r.w. on \mathbb{Z}^d with drift
- On other base graphs G
 - Karlsson and Woess ['07], G = homogeneous infinite tree
 - S. ['09], for graphs with infinitely many ends and hyperbolic graphs

- For $G = \mathbb{Z}^d$, convergence and the Poisson boundary of LRW on $\{0, 1\} \wr \mathbb{Z}^d$ was studied by:
 - Kaimanovich and Vershik ['83], who introduced such structures
 - Kaimanovich ['00], for r.w. on \mathbb{Z}^d without drift
 - Erschler ['10], for r.w. on \mathbb{Z}^d with drift
- On other base graphs G
 - Karlsson and Woess ['07], G = homogeneous infinite tree
 - S. ['09], for graphs with infinitely many ends and hyperbolic graphs

- For $G = \mathbb{Z}^d$, convergence and the Poisson boundary of LRW on $\{0, 1\} \wr \mathbb{Z}^d$ was studied by:
 - Kaimanovich and Vershik ['83], who introduced such structures
 - Kaimanovich ['00], for r.w. on \mathbb{Z}^d without drift
 - Erschler ['10], for r.w. on \mathbb{Z}^d with drift
- On other base graphs G
 - Karlsson and Woess ['07], G = homogeneous infinite tree
 - S. ['09], for graphs with infinitely many ends and hyperbolic graphs

In all cases, it is proven the a.s. convergence of LRW paths to boundaries associated with G^{\diamond} , and the Poisson boundary is the space of limit configurations of lamps with are switched on.

 the existence of the rate of escape is given by Kingman subadditive ergodic theorem.

- the existence of the rate of escape is given by Kingman subadditive ergodic theorem.
- Lyons, Pemantle and Peres ['96] studied the speed of LRW on Z[◊] = {0,1} ≀ Z and showed that the simple random walk on Z[◊] move toward infinity slower than inward-biased random walks on Z[◊].

- the existence of the rate of escape is given by Kingman subadditive ergodic theorem.
- Lyons, Pemantle and Peres ['96] studied the speed of LRW on Z[◊] = {0,1} ≀ Z and showed that the simple random walk on Z[◊] move toward infinity slower than inward-biased random walks on Z[◊].
- ► Erschler ['01]: the rate of escape of G[◊] is zero iff the random walk on G is recurrent.

- the existence of the rate of escape is given by Kingman subadditive ergodic theorem.
- Lyons, Pemantle and Peres ['96] studied the speed of LRW on Z[◊] = {0,1} ≀ Z and showed that the simple random walk on Z[◊] move toward infinity slower than inward-biased random walks on Z[◊].
- ► Erschler ['01]: the rate of escape of G[◊] is zero iff the random walk on G is recurrent.
- ► Gilch ['08]: the LRW on G[◊] escapes faster to infinity than the original random walk on G.

References

Kaimanovich, V. A. The Poisson formula for groups with hyperbolic properties, *Annals of Math.*, 152, (2000), 659-692.

Lyons, R. Pemantle, R. and Peres, Y. Random walks on the lamplighter group, *Ann. Prob.*, 24, (1996), 1993-2006.

Ecaterina Sava

Lamplighter Random Walks and Entropy-Sensitivity of Languages, *Ph.D thesis* (2010).

Ecaterina Sava

A note on the Poisson boundary of lamplighter random walks. *Monatshefte für Mathematik*, 159 (2010), 379-396.

Thank your for your interest!

