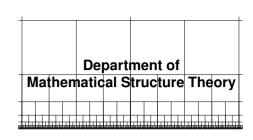


The Poisson boundary of lamplighter random walks on general graphs

ECATERINA SAVA Graz University of Technology, Austria email: sava@tugraz.at



Lamplighter graphs and random walks

- Let X be an infinite, locally finite, connected graph and $o \in X$ (can be viewed as the root).
- Lamp at each vertex: states 0 (switched off) and 1 (switched on). We identify the set $\{0, 1, \}$ with the finite group $\mathbb{Z}/2\mathbb{Z}$, such that 0 corresponds to the group identity and write $\mathbb{Z}_2 := \mathbb{Z}/2\mathbb{Z}$.
- A lamplighter person starts in *o* and performs a random walk on *X*: makes random moves and / or changes the state of the lamp at current position (or nearby).
- Configuration on X: a function $\eta: X \to \mathbb{Z}_2$. Write $\hat{\mathcal{C}} = \{\eta: X \to \mathbb{Z}_2\}$ for the set of all configurations and define $\mathcal{C} \subset \hat{\mathcal{C}}$ as the set of all finitely supported configurations, where a configuration is said to have finite support if the set $supp(\eta) = \{x \in X : \eta(x) \neq 0\}$ is finite.
- Denote by **0** the configuration which corresponds to "all lamps switched off", i.e. $\mathbf{0}(x) = 0$ for all $x \in X$. Also, \mathcal{C} becomes a group with point-wise addition modulo 2.
- The process described above evolves on the state space $G = \mathbb{Z}_2 \wr X = \mathcal{C} \times X$ (called the lamplighter graph). It is a Markov chain $\mathbb{Z}_n = (Y_n, X_n)$ on G, where X_n is the random position of the lamplighter and Y_n the random configuration of the lamps at time n. We shall call \mathbb{Z}_n the lamplighter random walk on G. We can also view \mathbb{Z}_n as a random walk on a group. For this, let Γ be a finitely generated group which acts transitively on X by graph automorphisms, such that X is the Cayley graph of Γ . Consider now the *wreath product*

$$\mathcal{G} = \left(\sum_{x \in \Gamma} \mathbb{Z}_r\right) \rtimes \Gamma = \mathbb{Z}_r \wr \Gamma$$

of Γ with \mathbb{Z}_r . Every $x \in \Gamma$ acts on \mathcal{C} by the translation T_x defined as $(T_x\eta)(y) = \eta(x^{-1}y), \forall y \in \Gamma$. A group operation on \mathcal{G} is given by

$$(\eta, x)(\eta', x') = (\eta \oplus T_x \eta', xx'),$$

where $x, x' \in \Gamma, \eta, \eta' \in C$. We shall call \mathcal{G} together with this operation the *lamplighter* group over Γ . The lamplighter graph $G = \mathbb{Z}_r \wr X$ becomes a Cayley graph of \mathcal{G} .

• Let μ the law of the lamplighter random walk $Z_n = (Y_n, X_n)$ on \mathcal{G} and $\tilde{\mu}$ the law of the base random wak X_n on Γ . Suppose that the lamplighter random walk has finite first moment $(\sum_{(\eta,x)\in G} d_G((\mathbf{0}, o), (\eta, x)) \mu((\eta, x)) < \infty)$, where d_G a metric on G.

Convergence to the geometric boundary

We introduce a class of boundaries for the base graph X and then, to every boundary element of X, we shall attach a configuration defined in a natural way.

Consider an extended space $\widehat{X} = X \cup \partial X$ (not necessarily compact) with ideal *boundary* ∂X , the set of points at infinity. We require that this space has "good" properties: it is a Hausdorff space with countable base of topology, the inclusion $X \hookrightarrow \widehat{X}$ is a homeomorphism, and X is open and dense in \widehat{X} . Suppose that the action of Γ on X extends to an action on $\widehat{X} = X \cup \partial X$ by homeomorphisms.

Basic assumptions: the law $\tilde{\mu}$ of the base random walk X_n has finite first moment, the RW X_n converges to a random element of ∂X , and the boundary ∂X of X has the property: whenever $(x_n), (y_n)$ are sequences in X such that

$$x_n \to \xi \in \partial X$$
 and $\frac{d_X(x_n, y_n)}{d_X(x_n, x_0)} \to 0$ then $y_n \to \xi$. (CP)

The space $\partial G = (\widehat{\mathcal{C}} \times \widehat{X}) \setminus (\mathcal{C} \times X)$ is a natural boundary at infinity for the lamplighter graph G. Let us write $\widehat{G} = \widehat{\mathcal{C}} \times \widehat{X}$. Define the set

$$\Omega = \bigcup_{\mathfrak{u} \in \partial X} \mathcal{C}_{\mathfrak{u}} \times \{\mathfrak{u}\},$$

where a finitely or infinitely supported configuration ζ is in $C_{\mathfrak{u}}$ if and only if $supp(\zeta)$ is finite or else accumulates only at \mathfrak{u} .

Result

The result regarding the convergence of lamplighter random walks Z_n on general base graphs X is a generalization of Karlsson and Woess [7, Thm 2.2] (Lamplighter random walks on trees).

Theorem 1. Let $Z_n = (Y_n, X_n)$ be a random walk with law μ on the group $\mathcal{G} = \mathbb{Z}_r \wr \Gamma \equiv \mathbb{Z}_r \wr X$ such that $supp(\mu)$ generates \mathcal{G} . If Ω is defined as in (1) and μ has finite first moment, then there exists an Ω -valued random variable $Z_{\infty} = (Y_{\infty}, X_{\infty})$ such that $Z_n \to Z_{\infty}$ almost surely, for every starting point. Moreover the distribution of Z_{∞} is a continuous measure on Ω .

The Poisson boundary

Let ν be the distribution of Z_{∞} on Ω (given the initial position $o \in X$ and the initial configuration **0**). The measure ν is the *harmonic measure* for the random walk Z_n with law μ .

 (Ω, ν) is a measure space which describes the behaviour of the LRW at infinity. How "good" is this space? Is this the Poisson boundary, that is, the finest model of a probability space at infinity of $\mathcal{C} \times X$ for distinguishing the possible limitting behaviour of (Z_n) ? There are several equivalent definitions for the Poisson boundary. See [Kaimanovich and Vershik, 1983] for RW on discrete groups.

For proving the maximility of the measure space (Ω, ν) we use the Strip Criterion [Kaimanovich, 2000].

Proposition 2 (Strip Criterion). Let μ a probability measure on \mathcal{G} with finite first moment, and let (B, λ) and $(\widehat{B}, \widehat{\lambda})$ be a μ - and a $\widehat{\mu}$ -boundary, respectively. Suppose that there exists a measurable \mathcal{G} -equivariant map S assigning to every pair of points $(b, \widehat{b}) \in B \times \widehat{B}$ a non-empty "strip" $S(b, \widehat{b}) \subset G$, such that, for the ball B(id, n) of radius n in the metric of \mathcal{G} ,

 $\frac{1}{n} \log |S(b,\hat{b}) \cap B(id,n)| \to 0 \text{ as } n \to \infty$

for $\sigma \times \hat{\sigma}$ - almost every $(b, \hat{b}) \in B \times \hat{B}$. Then (B, λ) and $(\hat{B}, \hat{\lambda})$ are the Poisson boundaries of the random walks with law μ and $\hat{\mu}$, respectively.

The half-space method

It is a general method for constructing the strip S as a subset of the lamplighter graph, with the properties required in Proposition 2. We shall apply it to some special cases.

- Suppose that the Basic assumptions hold.
- Suppose to have the extended space $\hat{X} = X \cup \partial X$ as above and, in addition:
 - 1. The random walks X_n and \hat{X}_n on the graph X converge, a.s. to ∂X , with the hitting distributions μ_{∞} and $\hat{\mu}_{\infty}$, respectively.
 - For µ_∞×µ_∞-almost every pair (u×v) ∈ ∂X×∂X, one has a strip s(u, v) which satisfies the properties from the Proposition 2. That is, it is a subset of X, it is Γ-equivariant, and it has subexponential growth

 $\frac{1}{n} \log |\mathfrak{s}(\mathfrak{u}, \mathfrak{v}) \cap B(o, n)| \to 0, \text{ as } n \to \infty,$

where $B(o, n) = \{x \in X : d_X(o, x) \le n\}.$

3. For every $x \in \mathfrak{s}(\mathfrak{u}, \mathfrak{v})$, there is a canonical way (which shall be specified in several examples) of partitioning the space $\widehat{X} = X \cup \partial X$ into Γ -equivariant half-spaces $V_x(\mathfrak{u})$ and $V_x(\mathfrak{v})$, such that $V_x(\mathfrak{u})$ is a neighbourhood of \mathfrak{u} and $V_x(\mathfrak{v})$ is a neighbourhood of \mathfrak{v} .

We state here the main result.

(1)

Theorem 3. Let $Z_n = (Y_n, X_n)$ a random walk with law μ on $\mathcal{G} = \mathbb{Z}_2 \wr \Gamma \equiv \mathbb{Z}_r \wr X$, such that $supp(\mu)$ generates \mathcal{G} . Suppose that μ has finite first moment and Ω is defined as in (1). If the above conditions are satisfied, then the measure space (Ω, ν) is the Poisson boundary of Z_n , where ν is the limit distribution on Ω of Z_n starting at $id = (\mathbf{0}, o)$.

See [8] for the general proof of this theorem.

Application of the half-space method

We consider some specific base graphs X. In all these examples the Basic assumptions are fullfilled and we have the convergence of both the base RW X_n and the reversed RW \hat{X}_n to the boundary ∂X (boundary which will be specified below).

1. Graphs with infinitely many ends

- $\partial X \equiv$ space of ends.
- For the graph X with infinitely many ends, construct its structure tree \mathcal{T} , which is quasi-isometric with X. The ends of the base graphs X, towards the base random walk converge, are in bijection with the ends of the structure tree \mathcal{T} . Therefore, instead of working with the graph X, we can work with its structure tree. For this, since is a tree, the half-space method can be easily applied.
- It is an easy exercise to construct the strip in the structure tree and then to lift it up to a bigger strip, as a subset of the lamplighter graph. Theorem 3 holds.
- it up to a bigger strip, as a subset of the famplighter graph. Theorem
- 2. Hyperbolic graphs in the sense on Gromov
 - $\partial X \equiv$ the hyperbolic boundary.
 - Define $\mathfrak{s}(\mathfrak{u},\mathfrak{v})$ = the union of all geodesics between $\mathfrak{u},\mathfrak{v}$, for all $\mathfrak{u},\mathfrak{v} \in \partial X$.
 - For every $x \in \mathfrak{s}(\mathfrak{u}, \mathfrak{v})$ the half-spaces are: $V_x(\mathfrak{u})$ the horoball with centre in \mathfrak{u} and passing through x and $V_x(\mathfrak{v})$ the horoball with centre in \mathfrak{v} and passing through x.
 - For the Poisson boundary, apply the Theorem 3.

3. Euclidean lattices

- $X = \mathbb{Z}^d$, $d \ge 3$ and the boundary ∂X is the unit sphere S_{d-1} in \mathbb{R}^d .
- For $\mathfrak{u}, \mathfrak{v} \in S_{d-1}$ define the strip $\mathfrak{s}(\mathfrak{u}, \mathfrak{v}) = \mathbb{Z}^d$, which fulfills the conditions required in Proposition 2.
- For every $\mathfrak{u}, \mathfrak{v} \in S_{d-1}$, let $\overline{\mathfrak{uv}}$ the chord joining them, and for every $x \in \overline{\mathfrak{uv}}$ let H_x be the hyperplane passing through x and orthogonal on $\overline{\mathfrak{uv}}$.
- H_x splits \mathbb{Z}^d into two half-spaces. The configuration can be chosen appropriately, and Theorem 3 holds.

References

(2)

- Brofferio, S., and Woess, W.: Positive harmonic functions for semi-isotropic random walks on trees, lamplighter groups, and DL-graphs, Potential Analysis 24 (2006) 245-265.
- [2] Cartwright, D. I., and Soardi, P. M.: Convergence to ends for random walks on the automorphism group of a tree, Proc. Amer. Math. Soc. 107 (1989) 817-823.
- Gromov, M.: Hyperbolic groups. In Essay in Group Theory (S.M.Gersten, ed) 75-263, Springer, New York, (1987)
- Kaimanovich, V.A.: The Poisson formula for groups with hyperbolic properties, Annals of Math. 152 (2000), 659-692.
- [5] Kaimanovich, V.A. and Vershik, A.M.: Random walks on discrete groups: Boundary and entropy, Ann. Probab. 11 (1983), 457-490.
- [6] Kaimanovich, V. A. and Woess, W.: Boundary and entropy of space homogeneous Markov Chains, Ann. Probab. 30 (2002) 323-363.
- [7] Karlsson, A. and Woess, W.: The Poisson boundary of lamplighter random walks on trees, Geometriae Dedicata 124 (2007) 95-107.
- [8] Sava, E.: The Poisson boundary of lamplighter random walks, submitted.
- [9] Woess, W.: Random Walks on Infinite Graphs and Groups, Cambridge Tracts in Mathematics 138, Camb. Univ. Press, (2000).

Research supported by NAWI-Graz.