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Lamplighter graphs and random walks

• Let X be an infinite, locally finite, connected graph and o ∈ X (can be viewed as
the root).

• Lamp at each vertex: states 0 (switched off) and 1 (switched on). We identify the
set {0, 1, } with the finite group Z/2Z, such that 0 corresponds to the group identity
and write Z2 := Z/2Z.

• A lamplighter person starts in o and performs a random walk on X: makes random
moves and / or changes the state of the lamp at current position (or nearby).

• Configuration on X: a function η : X → Z2. Write Ĉ = {η : X −→ Z2} for the set of
all configurations and define C ⊂ Ĉ as the set of all finitely supported configurations,
where a configuration is said to have finite support if the set supp(η) = {x ∈ X :
η(x) 6= 0} is finite.

• Denote by 0 the configuration which corresponds to ”all lamps switched off”, i.e.
0(x) = 0 for all x ∈ X. Also, C becomes a group with point-wise addition modulo 2.

• The process described above evolves on the state space G = Z2 ≀X = C × X (called
the lamplighter graph). It is a Markov chain Zn = (Yn,Xn) on G, where Xn is the
random position of the lamplighter and Yn the random configuration of the lamps
at time n. We shall call Zn the lamplighter random walk on G. We can also view
Zn as a random walk on a group. For this, let Γ be a finitely generated group which
acts transitively on X by graph automorphisms, such that X is the Cayley graph of
Γ. Consider now the wreath product

G =

(
∑

x∈Γ

Zr

)

⋊ Γ = Zr ≀ Γ

of Γ with Zr. Every x ∈ Γ acts on C by the translation Tx defined as (Txη)(y) =
η(x−1y),∀y ∈ Γ. A group operation on G is given by

(η, x)(η
′

, x
′

) = (η ⊕ Txη
′

, xx
′

),

where x, x
′

∈ Γ, η, η
′

∈ C. We shall call G together with this operation the lamplighter

group over Γ. The lamplighter graph G = Zr ≀ X becomes a Cayley graph of G.

• Let µ the law of the lamplighter random walk Zn = (Yn,Xn) on G and µ̃ the law of
the base random wak Xn on Γ. Suppose that the lamplighter random walk has finite
first moment (

∑
(η,x)∈G dG ((0, o), (η, x)) µ ((η, x)) < ∞), where dG a metric on G. .

Convergence to the geometric boundary

We introduce a class of boundaries for the base graph X and then, to every boundary
element of X, we shall attach a configuration defined in a natural way.
Consider an extended space X̂ = X ∪ ∂X (not necessarily compact) with ideal boundary

∂X, the set of points at infinity. We require that this space has ”good” properties: it is
a Hausdorff space with countable base of topology, the inclusion X →֒ X̂ is a homeomor-
phism, and X is open and dense in X̂ . Suppose that the action of Γ on X extends to an
action on X̂ = X ∪ ∂X by homeomorphisms.
Basic assumptions: the law µ̃ of the base random walk Xn has finite first moment, the RW
Xn converges to a random element of ∂X , and the boundary ∂X of X has the property:
whenever (xn), (yn) are sequences in X such that

xn → ξ ∈ ∂X and
dX(xn, yn)

dX(xn, x0)
→ 0 then yn → ξ. (CP)

The space ∂G = (Ĉ × X̂) \ (C × X) is a natural boundary at infinity for the lamplighter
graph G. Let us write Ĝ = Ĉ × X̂ . Define the set

Ω =
⋃

u∈∂X

Cu × {u}, (1)

where a finitely or infinitely supported configuration ζ is in Cu if and only if supp(ζ) is
finite or else accumulates only at u.

Result

The result regarding the convergence of lamplighter random walks Zn on general base
graphs X is a generalization of Karlsson and Woess [7, Thm 2.2] (Lamplighter random
walks on trees).

Theorem 1. Let Zn = (Yn,Xn) be a random walk with law µ on the group G = Zr ≀ Γ ≡
Zr ≀X such that supp(µ) generates G. If Ω is defined as in (1) and µ has finite first moment,

then there exists an Ω-valued random variable Z∞ = (Y∞,X∞) such that Zn → Z∞ almost

surely, for every starting point. Moreover the distribution of Z∞ is a continuous measure

on Ω.

The Poisson boundary

Let ν be the distribution of Z∞ on Ω (given the initial position o ∈ X and the initial
configuration 0). The measure ν is the harmonic measure for the random walk Zn with
law µ.
(Ω, ν) is a measure space which describes the behaviour of the LRW at infinity. How“good”
is this space? Is this the Poisson boundary, that is, the finest model of a probability space
at infinity of C ×X for distinguishing the possible limitting behaviour of (Zn)? There are
several equivalent definitions for the Poisson boundary. See [Kaimanovich and Vershik,
1983] for RW on discrete groups.
For proving the maximility of the measure space (Ω, ν) we use the Strip Criterion
[Kaimanovich, 2000].

Proposition 2 (Strip Criterion). Let µ a probability measure on G with finite first mo-

ment, and let (B,λ) and (B̂, λ̂) be a µ- and a µ̂-boundary, respectively. Suppose that there

exists a measurable G-equivariant map S assigning to every pair of points (b, b̂) ∈ B × B̂
a non-empty ”strip“ S(b, b̂) ⊂ G, such that, for the ball B(id, n) of radius n in the metric

of G,
1

n
log |S(b, b̂) ∩ B(id, n)| → 0 as n → ∞

for σ× σ̂- almost every (b, b̂) ∈ B× B̂. Then (B,λ) and (B̂, λ̂) are the Poisson boundaries

of the random walks with law µ and µ̂, respectively.

The half-space method

It is a general method for constructing the strip S as a subset of the lamplighter graph,
with the properties required in Proposition 2. We shall apply it to some special cases.

• Suppose that the Basic assumptions hold.

• Suppose to have the extended space X̂ = X ∪ ∂X as above and, in addition:

1. The random walks Xn and X̂n on the graph X converge, a.s. to ∂X, with the
hitting distributions µ∞ and µ̂∞, respectively.

2. For µ∞× µ̂∞-almost every pair (u×v) ∈ ∂X×∂X, one has a strip s(u, v) which
satisfies the properties from the Proposition 2. That is, it is a subset of X, it
is Γ-equivariant, and it has subexponential growth

1

n
log |s(u, v) ∩ B(o, n)| → 0, as n → ∞, (2)

where B(o, n) = {x ∈ X : dX(o, x) ≤ n}.

3. For every x ∈ s(u, v), there is a canonical way (which shall be specified in
several examples) of partitioning the space X̂ = X ∪ ∂X into Γ-equivariant
half-spaces Vx(u) and Vx(v), such that Vx(u) is a neighbourhood of u and Vx(v)
is a neighbourhood of v.

We state here the main result.

Theorem 3. Let Zn = (Yn,Xn) a random walk with law µ on G = Z2 ≀ Γ ≡ Zr ≀ X, such

that supp(µ) generates G. Suppose that µ has finite first moment and Ω is defined as in

(1). If the above conditions are satisfied, then the measure space (Ω, ν) is the Poisson

boundary of Zn, where ν is the limit distribution on Ω of Zn starting at id = (0, o).

See [8] for the general proof of this theorem.

Application of the half-space method

We consider some specific base graphs X. In all these examples the Basic assumptions
are fullfilled and we have the convergence of both the base RW Xn and the reversed RW
X̂n to the boundary ∂X (boundary which will be specified below).

1. Graphs with infinitely many ends

• ∂X ≡ space of ends.

• For the graph X with infinitely many ends, construct its structure tree T , which
is quasi-isometric with X. The ends of the base graphs X, towards the base
random walk converge, are in bijection with the ends of the structure tree T .
Therefore, instead of working with the graph X, we can work with its structure
tree. For this, since is a tree, the half-space method can be easily applied.

• It is an easy exercise to construct the strip in the structure tree and then to lift
it up to a bigger strip, as a subset of the lamplighter graph. Theorem 3 holds.

2. Hyperbolic graphs in the sense on Gromov

• ∂X ≡ the hyperbolic boundary.

• Define s(u, v)= the union of all geodesics between u, v, for all u, v ∈ ∂X.

• For every x ∈ s(u, v) the half-spaces are: Vx(u) the horoball with centre in u

and passing through x and Vx(v) the horoball with centre in v and passing
through x.

• For the Poisson boundary, apply the Theorem 3.

3. Euclidean lattices

• X = Z
d, d ≥ 3 and the boundary ∂X is the unit sphere Sd−1 in R

d.

• For u, v ∈ Sd−1 define the strip s(u, v) = Z
d, which fullfills the conditions

required in Proposition 2.

• For every u, v ∈ Sd−1, let uv the chord joining them, and for every x ∈ uv let
Hx be the hyperplane passing through x and orthogonal on uv.

• Hx splits Z
d into two half-spaces. The configuration can be chosen appropri-

ately, and Theorem 3 holds.

References

[1] Brofferio, S., and Woess, W.: Positive harmonic functions for semi-isotropic random

walks on trees, lamplighter groups, and DL-graphs, Potential Analysis 24 (2006) 245-
265.

[2] Cartwright, D. I., and Soardi, P. M.: Convergence to ends for random walks on the

automorphism group of a tree, Proc. Amer. Math. Soc. 107 (1989) 817-823.

[3] Gromov, M.: Hyperbolic groups. In Essay in Group Theory (S.M.Gersten, ed) 75-263,
Springer, New York, (1987)

[4] Kaimanovich, V.A. : The Poisson formula for groups with hyperbolic properties,
Annals of Math. 152 (2000), 659-692.

[5] Kaimanovich, V.A. and Vershik, A.M.: Random walks on discrete groups: Boundary

and entropy, Ann. Probab. 11 (1983), 457-490.

[6] Kaimanovich, V. A. and Woess, W.: Boundary and entropy of space homogeneous

Markov Chains, Ann. Probab. 30 (2002) 323-363.

[7] Karlsson, A. and Woess, W.: The Poisson boundary of lamplighter random walks on

trees, Geometriae Dedicata 124 (2007) 95-107.

[8] Sava, E.:The Poisson boundary of lamplighter random walks, submitted.

[9] Woess, W.: Random Walks on Infinite Graphs and Groups, Cambridge Tracts in
Mathematics 138, Camb. Univ. Press, (2000).

Research supported by NAWI-Graz.


