The Poisson boundary of lamplighter random walks on general graphs

ECATERINA SAVA
Graz University of Technology, Austria
email: sava@tu Graz.at

The lamplighter graph
Let \(X \) be an infinite, locally finite, connected graph and \(u \in X \) (can be viewed as the root). A lamplighter graph is obtained by defining the lamplighters to be

\[\lambda \Gamma = \{ (x,y) \mid x,y \in \Gamma \} \]

A lamplighter graph is a random walk on \(X \) that makes lamplighters move and / or changes the state of the lamp at current position (or nearby).

Result
The theorem regarding the convergence of lamplighter random walks \(Z_n \) on general base graphs \(X \) is a generalization of Karlsson and Woess [7]. Thus 2.2 (Lamplighter random walks on trees).

Theorem 1. Let \(Z_n = (Y_n, X_n) \) be a random walk with law \(\mu \) on the group \(G \) and \(\Gamma = \mathbb{Z} \times X \) such that \(\text{supp}(\mu) \) generates \(G \). If \(\Omega \) is defined as in (1) and \(\mu \) has finite first moment, then there exists an \(\Omega \)-valued random variable \(Z_\infty = (Y_\infty, X_\infty) \) such that \(Z_n \to Z_\infty \) almost surely, for every starting point. Moreover the distribution of \(Z_\infty \) is a continuous measure on \(\Omega \).

The Poisson boundary
Let \(\nu \) be the distribution of \(Z_\infty \) on \(\Omega \) (given the initial position \(u \in X \) and the initial configuration \(0 \)). The measure \(\nu \) is the harmonic measure for the random walk \(Z_n \) with law \(\mu \).

\((\Omega, \nu) \) is a measure space which describes the behaviour of the LRW at infinity. How “good” is this space? In this the Poisson boundary, that is, the finest model of a probability space at infinity of \(C \times X \) for distinguishing the possible limiting behaviour of \(Z_n \). There are several equivalent definitions for the Poisson boundary. See [Kaimanovich and Vershik, 1988] for RW on discrete groups.

Application of the half-space method
We consider some specific base graphs \(X \). In all these examples the Basic assumptions are fulfilled and we have the convergence of both the base RW \(X_n \) and the reversed RW \(X_n \) to the boundary \(\Omega X \) (boundary which will be specified below).

1. Graphs with infinitely many ends
 - \(\Omega X = \{ \text{space of ends} \} \)
 - For the graph \(X \) with infinitely many ends, construct its structure tree \(T \), which is quasi-isometric with \(X \). The ends of the base graph \(X \) towards the base random walk converge, are in bijection with the ends of the structure tree \(T \). Therefore, instead of working with the graph \(X \), we can work with its structure tree. For this, since a tree, the half-space method can be easily applied.
 - It is an easy exercise to construct the strip in the structure tree and then to lift it up to a bigger strip, as a subset of the lamplighter graph. Theorem 3 holds.

2. Hyperbolic graphs in the sense of Gromov
 - \(\Omega X = \{ \text{the hyperbolic boundary} \} \)
 - Define \(\omega(u,v) \) the union of all geodesics between \(u, v \), for all \(u, v \in \Omega X \).
 - For every \(x \in \{u,v\} \) the half-spaces are \(V_x(u,v) \) the horoball with centre \(u \) and passing through \(x \) and \(V_x(v,u) \) the horoball with centre \(v \) and passing through \(x \).
 - For the Poisson boundary, apply the Theorem 3.

3. Euclidean lattices
 - \(X = \mathbb{Z}^d, d \geq 3 \) and the boundary \(\Omega X \) is the unit sphere \(S_{d-1} \) in \(\mathbb{R}^d \).
 - For \(u \in S_{d-1} \) define the strip \(\omega(u,v) = \mathbb{R}^d \), fulfills the conditions required in Proposition 2.
 - For every \(x \in S_{d-1} \), let \(\mathbb{R}^d \) the chord joining them, and for every \(x \in \mathbb{R}^d \) let \(H_x \) be the hyperplane passing through \(x \) and orthogonal to \(\mathbb{R}^d \).
 - \(H_x \) splits \(\mathbb{R}^d \) into two half-spaces. The configuration can be chosen appropriately, and Theorem 3 holds.

References

Research supported by NAWI Graz.