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LRW-The model

T homogeneous tree, degree q + 1 ≥ 3.

Select a vertex o ∈ Tq+1 as the root.

Lamp at each vertex: states 0 (switched off) and 1 (switched
on).

A lamplighter person starts in o and performs a random walk
on T: makes random moves and / or changes the state of the
lamp at current position (or nearby).

Configuration on T: a function η : T→ {0, 1} with finite
support

supp(η) = {x ∈ T : η(x) 6= 0}
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Suppose that we start the random walk in o with all lamps
switched off.

Denote by O the configuration which corresponds to all lamps
switched off, that is,

O(x) = 0, for all x ∈ T.

Initial position of the random walk is the pair (O, o).

At every moment of time we have to observe the pair (η, x),
where η is the current configuration of the lamps and x is the
current position of the lamplighter in the tree.
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Let C = {configurations}.
The process evolves on the state space C × T consisting of
pairs (η, x).

The lamplighter random walk Zn = (Yn,Xn) on C × T is given
by the transition matrix P = (p((η, x), (η

′
, x

′
))).

p((η, x), (η
′
, x

′
)) describes the one-step transition

probabilities, that is,

P[Zn+1 = (η
′
, x

′
)|Zn = (η, x)] = p((η, x), (η

′
, x

′
)).

Assume that the LRW Zn is irreducible.
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Basic examples of lamplighter random walks

Xn a random walk on the tree T.
1 Walk or switch model: at every step the lamplighter tosses a

coin:

if head comes up then he walks, leaving the lamps unchangend.
if tail comes up then he modifies the lamp at the current
position, without moving.

2 Switch-walk-switch model: if the lamplighter stands at x and
the actual configuration is η, then:

he first switches the lamp at x to a random state.
then he walks to some neighbour x

′
.

at last, he switches the lamp at x
′

to a random state.
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Base RW Xn

Under the above assumptions, Xn is a random walk on T,
with one-step transition probabilities

p(x , x
′
) =

∑
η′

p((η, x), (η
′
, x

′
)).

Xn is known to be transient (it visits every finite subset of T
only finitely many times) ⇒ escape of the random walk to
“infinity”.

Attach to T a geometrical boundary ∂T ≡space of ends.

An end (boundary point)-a way of going off to infinity.

Ends u ∈ ∂T -represented by geodesic rays
u = [o = x0, x1, . . .] starting from a root o ∈ T.

The tree Tq+1 has infinitely many ends.
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Convergence to the boundary

Convergence to the boundary ∂T of the RW (Xn)≡ ∃ a
∂T-valued random variable X∞ such that

Px [ lim
n→∞

Xn = X∞] = 1, for all x .

If (Xn) on T is of nearest neighbour type and transient ⇒ it
converges to ∂T.

Convergence of the base random walk Xn on T ⇒
convergence of the lamplighter random walk Zn = (Yn,Xn) on
the lamplighter graph C × T.

Ecaterina Sava The Poisson boundary of lamplighter random walks



Lamplighter random walks
Behaviour at infinity

Poisson boundary
Further generalizations
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Transience ⇒ every vertex visited finitely often ⇒ after the
last visit at a vertex the state of the lamp sitting there remains
unchanged ⇒ ∃ random limit configuration Y∞, such that:

Y∞ = lim
n→∞

Yn ∈ Ĉ

Ĉ={all configurations, finitely or infinitely supported}
Y∞(x) is the definite state of the lamp at x .

T̂ = T ∪ ∂T is a compactification of T.

Ĉ is the natural compactification of C in the topology of
pointwise convergence.

Then Ĉ × T̂ is a compactification of the state space C × T for
the lamplighter random walk Zn = (Yn,Xn).
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Convergence of the lamplighter random walk

Ĉ × ∂T is a boundary for the state space C × T.

Metric on C × T: d((η, x), (η
′
, x

′
)) = d(x , x

′
) + |η4 η

′ |.

Theorem (Karlsson and Woess, 2006)

If the lamplighter random walk Zn = (Yn,Xn) has finite first
moment ∑

(η′ ,x ′ )∈C×T

d((η, x), (η
′
, x

′
))p((η, x), (η

′
, x

′
)) <∞

then (Zn) converges a.s. to a limit random variable

Z∞ = (Y∞,X∞) ∈ Ĉ × ∂T.
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Zn = (Yn,Xn) is transient≡ goes off to infinity.

Topology of Ĉ × T̂ provides the model Ĉ × ∂T at infinity for
the behaviour of the LRW Zn = (Yn,Xn).

Is this the finest model? YES !!! (as a measure space).

Set now Ω =
⋃

u∈∂T Cu × {u}.
Cu = {ζ ∈ Ĉ : ζ accumulates only at u}.
Cu is dense in Ĉ and Ω is dense in Ĉ × ∂T.

Let ν(η,x) be the distribution of Z∞ on Ω (given the position
x ∈ T and the configuration η).

Write ν if the LRW starts in (O, o).

ν is the probability measure defined for Borel sets B ∈ Ω by

ν(B) = P[Z∞ ∈ B|Z0 = (O, o)].
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(Ω, ν) is a measure space which describes the behaviour of the
LRW at infinity. How “good” is this space?

Is this the Poisson boundary, that is, the finest model of a
probability space at infinity of C × T for distinguishing the
possible limitting behaviour of (Zn)?

There are several equivalent definitions for the Poisson
boundary. See [Kaimanovich and Vershik, 1983] for RW on
discrete groups.

If every bounded harmonic function h on C × T w.r.t the
transition matrix has a unique integral representation

h(η, x) =

∫
Ω
ϕdν(η,x), for some ϕ ∈ L∞(Ω, ν)

then (Ω, ν) is the Poisson boundary of (Zn).
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Triviality of the Poisson boundary ≡ absence of non-constant
bounded harmonic functions.

Poisson boundary=unique up to sets of measure 0.

For proving the maximility of the measure space (Ω, ν) we use
the Strip Criterion [Kaimanovich, 2000].

Strip criterion= a purely geometrical criterion, under the
assumption of space-homogeneity (there is a group of
isometries of T which acts transitively on T and the transition
probabilities are invariant w.r.t. the group action).

Theorem (Woess and Karlsson, 2006)

If the lamplighter random walk Zn has finite first moment on
C × T, then the measure space (Ω, ν) is the Poisson boundary of
the LRW.
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Base graphs X for the LRW:

a graph with infinitely many ends, or
a hyperbolic graph, or
an euclidean lattice (RW with drift 6= 0).

Endowed with natural geometric boundaries ∂X.

space of ends
hyperbolic boundary
the unit sphere

Theorem (S.,2007)

If the LRW Zn = (Yn,Xn) on the base graph X has finite first
moment then it converges a.s. to a (Ĉ × ∂X)-valued r.v. and the
Poisson boundary of the LRW is the space of infinite limit
configurations (i.e. the set of all boundary elements u ∈ ∂X
together with all configurations which accumulate only at u).
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1 Take a group which acts transitively on an homogeneous tree
and fixes one end of the tree (this is not a discrete group).
Then the Poisson boundary of LRW on this tree, in the case
of drift-free case, is unknown.

2 The Poisson boundary of LRW on Zd , for d ≥ 3, when there
is no drift, is still unknown.
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