> Ecaterina Sava

Introduction

Languages and graphs Example

Results

Markov chains Idea of the proof

Application

Entropy sensitivity of languages associated with infinite graphs

(joint work with Wilfried Huss, Wolfgang Woess)

Ecaterina Sava

Graz University of Technology, Austria

November 19, 2009

Outline

sensitivity of languages associated with infinite graphs

Entropy

Ecaterina Sava

Introduction

Languages and graphs Example

Results Markov chains

Application

1 Introduction

2 Languages and graphsExample

3 Results

- Markov chains
- Idea of the proof

4 Application

Introduction

sensitivity of languages associated with infinite graphs

Entropy

Ecaterina Sava

Introduction

Languages and graphs Example

Results

Markov chains Idea of the proof

Application

Σ finite alphabet.

- Σ* the set of all finite words over Σ.
- A language L over Σ is a subset of Σ^* .
- Growth or entropy of *L* is

$$\mathsf{h}(L) = \limsup_{n \to \infty} \frac{1}{n} \log \big| \{ w \in L : |w| = n \} \big|.$$

- All our languages are infinite.
- For finite $F \subset \mathbf{\Sigma}^*$, $F = \{$ subwords of elements of $L \}$

$$L^F = \{ w \in L : \text{ no } v \in F \text{ is a subword of } w \}.$$

 We associate with infinite, directed, graphs, a class of languages L.

Introduction

sensitivity of languages associated with infinite graphs

Entropy

Ecaterina Sava

Introduction

Languages and graphs Example

Results

Markov chains Idea of the proof

Application

• Question: is $h(L^F) < h(L)$ strictly?

If YES, under which conditions (on the graph)?

- If h(L^F) < h(L), for every F of forbidden words, then L is called growth sensitive or entropy sensitive.
- Group theory:

Grigorchuk and De la Harpe ('97): On problems related to growth, entropy, and spectrum in group theory Ceccherini-Silberstein and Scarabotti ('04): Random walks, entropy and hopfianity of free groups

 Symbolic dynamics: Lind and Marcus ('95): An introduction to symbolic dynamics and coding (topological entropy of a sofic system)

Introduction

Entropy sensitivity of languages associated with infinite graphs

> Ecaterina Sava

Introduction

Languages and graphs Example

Results

Markov chains Idea of the proof

Application

 Ceccherini-Silberstein and Woess ('03,'09): Growth and ergodicity of context-free languages and

Context-free pairs of groups. 1–Context-free pairs and graphs

- Basic object: oriented, labeled graph (X, E, I) with edges labeled by elements of a finite alphabet Σ.
- each edge $e \in E$ is of the form e = (x, a, y), multiple edges and loops are allowed.
- A path of length *n* in *X* is a sequence $\pi = e_1 e_2 \dots e_n$ of edges such that $e_i^+ = e_{i+1}^-$.
- For $x, y \in X$, π is a path from x to y if $e_1^- = x$ and $e_n^+ = y$.
- The label $I(\pi)$ is $I(\pi) = I(e_1)I(e_2) \dots I(e_n) \in \mathbf{\Sigma}^*$.

> Ecaterina Sava

Introduction

Languages and graphs Example

Results

Markov chains Idea of the proof

Application

Languages and graphs

Let Π_{x,y} be the set of all paths π from x to y in X.
With X we associate the language

$$L_{x,y} = \{\ell(\pi) \in \mathbf{\Sigma}^* : \pi \in \Pi_{x,y}\}, \text{ where } x, y \in X.$$

- Question: Is this language growth-sensitive? For which class of graphs *X*?
- Answer: Yes, for uniformly connected and fully deterministic graphs X.
- (X, E, I) is deterministic if for every x ∈ X and a ∈ Σ, there is at most one edge with initial point x and label a.
- (X, E, I) is fully deterministic if there is exactly one edge with label a going out from x.

Ecaterina Sava

Introduction

Languages and graphs

Example

Results Markov chai

Idea of the pro

Let $\mathbf{\Sigma} = \{a, b\}$ and consider the following graph.

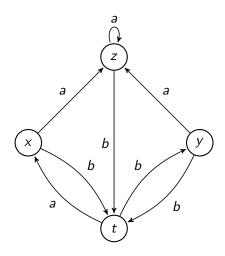


Figure: Fully deterministic graph

 $L_{x,y}$ is the set of all labeles of paths from x to y.

> Ecaterina Sava

Introduction

Languages and graphs Example

Reculte

Markov chains Idea of the proof

Application

Assumptions on the graph

- X strongly connected
- X uniformly connected = strongly connected + not too big circles.
- We write

$$h(X) = h(X, E, \ell) = \sup_{x,y \in X} h(L_{x,y})$$

for the entropy of our oriented, labelled graph.

- For a strongly connected graph, $h(L_{x,y}) = h(X)$ for all $x, y \in X$.
- Assume that the set of forbidden subwords $F \subset \Sigma^*$ is relatively dense in X.

> Ecaterina Sava

Introduction

Languages and graphs Example

Results

Markov chains Idea of the proof

Application

Theorem (W. Huss, E. Sava, W. Woess '09)

Suppose that (X, E, ℓ) is uniformly connected and deterministic with label alphabet Σ . Let $F \subset \Sigma^+$ be a finite, non-empty set which is relatively dense in X. Then

$$\sup_{x,y\in X} \mathsf{h}(L^{\mathsf{F}}_{x,y}) < \mathsf{h}(X) \quad strictly.$$

Theorem (W. Huss, E. Sava, W. Woess '09) If (X, E, ℓ) is uniformly connected and fully deterministic then $L_{x,y}$ is growth-sensitive for all $x, y \in X$.

> Ecaterina Sava

Introduction

Languages and graphs Example

Results

Markov chains Idea of the proof

Application

Equip the graph X with transition probabilites: to each edge e = (x, a, y) we associate $p(e) \ge \alpha > 0$ s.t.

е

$$\sum_{e \in E: \ e^- = x} p(e) \leq 1 \quad ext{for every } x \in X \, .$$

Markov chains

 Consider the Markov chain over X with one-step transition probabilities

$$p(x,y) = \sum_{a \in \mathbf{\Sigma}: (x,a,y) \in E} p(x,a,y).$$

- In each step we record the edges and their labels.
- $p^{(n)}(x, y)$: the probability that the particle starting at x is at y at time n, i.e. the (x, y)-element of the n^{th} -power P^n of $P = (p(x, y))_{x,y \in X}$.

> Ecaterina Sava

Introduction

Languages and graphs Example

Results

Markov chains Idea of the proof

Application

• Consider the spectral radius of the Markov chain *P*:

$$\rho(P) = \limsup_{n \to \infty} p^{(n)}(x, y)^{1/n}$$

ρ(P) is related to the entropy of X (if P is the SRW on X):

$$\mathsf{h}(X) = \mathsf{h}(L_{x,y}) = \mathsf{log}(\rho(P) \cdot |\mathbf{\Sigma}|).$$

- Let now F ⊂ Σ*: interpret F as a sequence of forbidden transitions, i.e. we restrict the motion of the particle such that at no time, it is allowed to traverse any path π with I(π) ∈ F in k succesive steps, with k = |π|.
- p_F⁽ⁿ⁾(x, y): the probability that the particle starting in x is at position y after n steps, without having made any sequence of forbidden transitions.

> Ecaterina Sava

Introduction

Languages and graphs Example

Results

Markov chains Idea of the proof

Application

Consider

$$\rho_{x,y}(P_F) = \limsup_{n \to \infty} p_F^{(n)}(x,y)^{1/n}, \quad x,y \in X.$$

Relation between $\rho_{x,y}(P_F)$ and the entropy $h(L_{x,y}^F)$:

$$\mathsf{h}(L_{x,y}^{\mathsf{F}}) = \mathsf{log}(\rho_{x,y}(P_{\mathsf{F}}) \cdot |\mathbf{\Sigma}|).$$

• Recall that
$$h(X) = \log(\rho(P) \cdot |\mathbf{\Sigma}|)$$

How do we prove that

$$\sup_{x,y\in X} h(L_{x,y}^{F}) < h(X) \quad \text{strictly}?$$

We just have to compare

$$\sup_{x,y\in X}\rho_{x,y}(P_F) \quad \text{with} \quad \rho(P).$$

> Ecaterina Sava

Introduction

Languages and graphs Example

Results

Markov chains Idea of the proof

Application

Theorem (W. Huss, E. Sava, W. Woess, '09)

Suppose that (X, E, ℓ) is strongly connected with label alphabet Σ and equipped with transition probabilities $p(e) \ge \alpha > 0$, $e \in E$. Let $F \subset \Sigma^+$ be a finite, non-empty set which is relatively dense in X. Then

$$\sup_{x,y\in X}
ho_{x,y}(P_F)<
ho(P)$$
 strictly.

Proof.

We shall proceed in two steps:

1 Step 1: *P* stochastic and $\rho(P) = 1$

2 Step 2: general case, when ρ(P) < 1, then we reduce this case to the previous one.</p>

> Ecaterina Sava

Introduction

Languages and graphs Example

Results

Markov chains Idea of the proof

Application

Step 1: *P* stochastic and $\rho(P) = 1$

Show that there exists k ∈ N and ε₀ > 0 s.t. the matrix Q = (p_F^(k)(x, y))_{x,y∈X} is strictly substochastic with all rows bounded by 1 − ε₀, i.e

$$\sum_{y \in X} p_F^{(k)}(x, y) \le 1 - \varepsilon_0 \quad \text{for all } x \in X.$$

Consider Qⁿ = (q⁽ⁿ⁾(x, y))_{x,y∈X}: q⁽ⁿ⁾(x, y) is the probability that the MC starting at x is in y at time nk, and does not make any forbidden sequence of transitions in intervals [(j − 1)k, jk].

 $p_F^{(nk)}(x,y) \le q^{(n)}(x,y) \,.$

> Ecaterina Sava

Introduction

Languages and graphs Example

Results Markov chains

Idea of the proof

Application

• Therefore, for every $x \in X$ and $i = 0, \dots, k - 1$,

$$\sum_{y \in X} p_F^{(nk+i)}(x,y) \le \sum_{z \in X} q^{(n)}(x,z) \underbrace{\sum_{y \in X} p_F^{(i)}(z,y)}_{\le 1}$$

$$\leq (1-arepsilon_0)^n$$
,

Since $p_F^{(nk+i)}(x, y)$ is a subsequence of $p^{(n)}(x, y)$, we conclude that

$$\limsup_{n\to\infty} p_F^{(nk+i)}(x,y)^{1/(nk+i)} \leq (1-\varepsilon_0)^{1/k},$$

so that
$$ho_{{\sf x},y}({\sf P}_{\sf F})\leq (1-arepsilon_0)^{1/k}=1-arepsilon$$
 , $arepsilon>0$.

> Ecaterina Sava

Introduction

Languages and graphs Example

Results Markov chains Idea of the proof

Application

Step 2: General case

• For P, there exists a strictly positive function h

$$Ph = \rho(P) \cdot h$$

• Consider now the *h*-transform of p(e) of *P*:

$$p^{h}(e) = p^{h}(x, a, y) = \frac{p(x, a, y)h(y)}{\rho(P)h(x)}$$

• The associated transition matrix P^h (the *h*-process):

$$p^h(x,y) = \sum_{a:(x,a,y)\in E} p^h(x,a,y)$$

Then ρ(P^h) = 1 and using uniform connectedness, we show that there is a constant ᾱ > 0 such that p^h(e) ≥ ᾱ for each e = (x, a, y) ∈ E.

> Ecaterina Sava

Introduction

Languages and graphs Example

Results

Markov chains Idea of the proof

Application

- With P^h we are now in the situation of Step 1, and we get $\rho_{x,y}(P^h_F) \leq 1 \varepsilon$, for all $x, y \in X$.
- Show that ρ_{x,y}(P^h_F) = ρ_{x,y}(P_F)/ρ(P), which will conclude the proof.

Proof of the entropy sensitivity.

Use the previous result:

$$\sup_{\mathsf{x}, y \in X}
ho_{\mathsf{x}, y}(P_{\mathsf{F}}) <
ho(\mathsf{P}) \quad ext{strictly.}$$

• Equip the edges of X with $p(x, a, y) = 1/|\mathbf{\Sigma}|$.

$$h(X) = \limsup_{n \to \infty} \frac{1}{n} \log(p^n(x, y) |\mathbf{\Sigma}|^n) = \log(\rho(P) \cdot |\mathbf{\Sigma}|).$$

Analogously h(L^F_{x,y}) = log(ρ_{x,y}(P_F) · |Σ|).
 It follows that sup_{x,y∈X} h(L^F_{x,y}) < h(X) strictly.

> Ecaterina Sava

Introduction

Languages and graphs Example

Results

Markov chains Idea of the proof

Application

Schreier graphs

- *G* be a finitely generated group and *K* a subgroup.
- Σ be a finite alphabet and ψ : Σ → G be such that the set ψ(Σ) generates G as a semigroup.
- Extend ψ to a monoid homomorphism from Σ^* to G by $\psi(w) = \psi(a_1) \cdots \psi(a_n)$, if $w = a_1 \dots a_n$ with $a_i \in \Sigma$ (and $\psi(\epsilon) = 1_G$)
- ψ is called a semigroup presentation of G.
- The Schreier graph $X = X(G, K, \psi)$ has vertex set

$$X = \{Kg : g \in G\},\$$

the set of all right K-cosets in G, and the set of all labelled, directed edges E is given by

$$E = \{e = (x, a, y) : x = Kg, y = Kg\psi(a)\},\$$

where $g \in G$, $a \in \Sigma$.

• X is fully deterministic and uniformly connected.

> Ecaterina Sava

Introduction

Languages and graphs Example

Results

Markov chains Idea of the proo

Application

• The word problem of (G, K) with respect to ψ is the language

$$L(G, K, \psi) = \{ w \in \mathbf{\Sigma}^* : \psi(w) \in K \}.$$

■ Consider the "root" vertex o = K of the Schreier graph, then L(G, K, ψ) = L_{o,o}.

Corollary

The word problem of the pair (G, K) with respect to any semigroup presentation ψ is growth sensitive, with respect to forbidding an arbitrary non-empty subset $F \subset \Sigma^*$.

> Ecaterina Sava

Introduction

Languages and graphs Example

Results

Markov chains Idea of the proof

Application

Thank you for your attention!

> Ecaterina Sava

Introduction

Languages and graphs Example

Results

Markov chains Idea of the proo

Application

 T. Ceccherini-Silberstein, F. Scarabotti, *Random walks,* entropy and hopfianity of free groups.
 In Random Walks and Geometry (V. A. Kaimanovich, ed.) pp. 413–419, de Gruyter, Berlin, 2004.

 T. Ceccherini-Silberstein, Growth and ergodicity of context-free languages. II. The linear case.
 Trans. Amer. Math. Soc. 359 (2007) 605–618.

T. Ceccherini-Silberstein, W. Woess, *Growth-sensitivity of context-free languages.* Theoret. Comput. Sci. **307** (2003) 103–116.

T. Ceccherini-Silberstein, W. Woess, Context-free pairs of groups I - Context-free pairs and graphs. in preparation.

R. I. Grigorchuk, P. de la Harpe, On problems related to growth, entropy, and spectrum in group theory.
 J. Dynam. Control Systems 3 (1997) 51–89.