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Introduction

Σ finite alphabet.

Σ∗ the set of all finite words over Σ.

A language L over Σ is a subset of Σ∗.

Growth or entropy of L is

h(L) = lim sup
n→∞

1

n
log
∣∣{w ∈ L : |w | = n}

∣∣.
All our languages are infinite.

For finite F ⊂ Σ∗, F = {subwords of elements of L}

LF = {w ∈ L : no v ∈ F is a subword of w}.

We associate with infinite, directed, graphs, a class of
languages L.
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Introduction

Question: is h(LF ) < h(L) strictly?

If YES, under which conditions (on the graph)?

If h(LF ) < h(L), for every F of forbidden words, then L is
called growth sensitive or entropy sensitive.

Group theory:
Grigorchuk and De la Harpe (’97): On problems related to
growth, entropy, and spectrum in group theory
Ceccherini-Silberstein and Scarabotti (’04): Random
walks, entropy and hopfianity of free groups

Symbolic dynamics: Lind and Marcus (’95): An
introduction to symbolic dynamics and coding (topological
entropy of a sofic system)



Entropy
sensitivity of

languages
associated

with infinite
graphs

Ecaterina
Sava

Introduction

Languages
and graphs

Example

Results

Markov chains

Idea of the proof

Application

Introduction

Ceccherini-Silberstein and Woess (’03,’09):
Growth and ergodicity of context-free languages
and
Context-free pairs of groups. 1–Context-free pairs and
graphs

Basic object: oriented, labeled graph (X ,E , l) with edges
labeled by elements of a finite alphabet Σ.

each edge e ∈ E is of the form e = (x , a, y), multiple
edges and loops are allowed.

A path of length n in X is a sequence π = e1e2 . . . en of
edges such that e+

i = e−i+1.

For x , y ∈ X , π is a path from x to y if e−1 = x and
e+
n = y .

The label l(π) is l(π) = l(e1)l(e2) . . . l(en) ∈ Σ∗.
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Languages and graphs

Let Πx ,y be the set of all paths π from x to y in X .

With X we associate the language

Lx ,y = {`(π) ∈ Σ∗ : π ∈ Πx ,y}, where x , y ∈ X .

Question: Is this language growth-sensitive? For which
class of graphs X ?

Answer: Yes, for uniformly connected and fully
deterministic graphs X .

(X ,E , l) is determinstic if for every x ∈ X and a ∈ Σ,
there is at most one edge with initial point x and label a.

(X ,E , l) is fully determinstic if there is exactly one edge
with label a going out from x .
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Let Σ = {a, b} and consider the following graph.

x y

z

a a

a

t

b

a

b b

b

Figure: Fully deterministic graph

Lx ,y is the set of all labeles of paths from x to y .
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Assumptions on the graph

X strongly connected

X uniformly connected = strongly connected + not too
big circles.

We write

h(X ) = h(X ,E , `) = sup
x ,y∈X

h(Lx ,y )

for the entropy of our oriented, labelled graph.

For a strongly connected graph, h(Lx ,y ) = h(X ) for all
x , y ∈ X .

Assume that the set of forbidden subwords F ⊂ Σ∗ is
relatively dense in X .
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Theorem (W. Huss, E. Sava, W. Woess ’09)

Suppose that (X ,E , `) is uniformly connected and deterministic
with label alphabet Σ. Let F ⊂ Σ+ be a finite, non-empty set
which is relatively dense in X . Then

sup
x ,y∈X

h(LF
x ,y ) < h(X ) strictly.

Theorem (W. Huss, E. Sava, W. Woess ’09)

If (X ,E , `) is uniformly connected and fully deterministic then
Lx ,y is growth-sensitive for all x , y ∈ X .
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Markov chains

Equip the graph X with transition probabilites: to each
edge e = (x , a, y) we associate p(e) ≥ α > 0 s.t.∑

e∈E : e−=x

p(e) ≤ 1 for every x ∈ X .

Consider the Markov chain over X with one-step transition
probabilities

p(x , y) =
∑

a∈Σ: (x ,a,y)∈E

p(x , a, y) .

In each step we record the edges and their labels.

p(n)(x , y): the probability that the particle starting at x is
at y at time n, i.e. the (x , y)-element of the nth-power Pn

of P =
(
p(x , y)

)
x ,y∈X

.
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Consider the spectral radius of the Markov chain P:

ρ(P) = lim sup
n→∞

p(n)(x , y)1/n

ρ(P) is related to the entropy of X (if P is the SRW on
X ):

h(X ) = h(Lx ,y ) = log
(
ρ(P) · |Σ|

)
.

Let now F ⊂ Σ∗: interpret F as a sequence of forbidden
transitions, i.e. we restrict the motion of the particle such
that at no time, it is allowed to traverse any path π with
l(π) ∈ F in k succesive steps, with k = |π|.
p

(n)
F (x , y): the probability that the particle starting in x is

at position y after n steps, without having made any
sequence of forbidden transitions.
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Consider

ρx ,y (PF ) = lim sup
n→∞

p
(n)
F (x , y)1/n, x , y ∈ X .

Relation between ρx ,y (PF ) and the entropy h(LF
x ,y ):

h(LF
x ,y ) = log

(
ρx ,y (PF ) · |Σ|

)
.

Recall that h(X ) = log
(
ρ(P) · |Σ|

)
How do we prove that

sup
x ,y∈X

h(LF
x ,y ) < h(X ) strictly?

We just have to compare

sup
x ,y∈X

ρx ,y (PF ) with ρ(P).
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Theorem (W. Huss, E. Sava, W. Woess, ’09)

Suppose that (X ,E , `) is strongly connected with label
alphabet Σ and equipped with transition probabilities
p(e) ≥ α > 0, e ∈ E . Let F ⊂ Σ+ be a finite, non-empty set
which is relatively dense in X . Then

sup
x ,y∈X

ρx ,y (PF ) < ρ(P) strictly.

Proof.
We shall proceed in two steps:

1 Step 1: P stochastic and ρ(P) = 1

2 Step 2: general case, when ρ(P) < 1, then we reduce this
case to the previous one.
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Step 1: P stochastic and ρ(P) = 1

Show that there exists k ∈ N and ε0 > 0 s.t. the matrix
Q = (p

(k)
F (x , y))x ,y∈X is strictly substochastic with all

rows bounded by 1− ε0, i.e∑
y∈X

p
(k)
F (x , y) ≤ 1− ε0 for all x ∈ X .

Consider Qn =
(
q(n)(x , y)

)
x ,y∈X

: q(n)(x , y) is the
probability that the MC starting at x is in y at time nk,
and does not make any forbidden sequence of transitions
in intervals [(j − 1)k , jk].

p
(nk)
F (x , y) ≤ q(n)(x , y) .
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Therefore, for every x ∈ X and i = 0, . . . , k − 1,∑
y∈X

p
(nk+i)
F (x , y) ≤

∑
z∈X

q(n)(x , z)
∑
y∈X

p
(i)
F (z , y)︸ ︷︷ ︸
≤ 1

≤ (1− ε0)n ,

Since p
(nk+i)
F (x , y) is a subsequence of p(n)(x , y), we

conclude that

lim sup
n→∞

p
(nk+i)
F (x , y)1/(nk+i) ≤ (1− ε0)1/k ,

so that ρx ,y (PF ) ≤ (1− ε0)1/k = 1− ε, ε > 0.
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Step 2: General case

For P, there exists a strictly positive function h

Ph = ρ(P) · h

Consider now the h-transform of p(e) of P:

ph(e) = ph(x , a, y) =
p(x , a, y)h(y)

ρ(P)h(x)

The associated transition matrix Ph (the h-process):

ph(x , y) =
∑

a : (x ,a,y)∈E

ph(x , a, y) .

Then ρ(Ph) = 1 and using uniform connectedness, we
show that there is a constant ᾱ > 0 such that ph(e) ≥ ᾱ
for each e = (x , a, y) ∈ E .
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With Ph we are now in the situation of Step 1, and we get
ρx ,y (Ph

F ) ≤ 1− ε, for all x , y ∈ X .

Show that ρx ,y (Ph
F ) = ρx ,y (PF )/ρ(P), which will conclude

the proof.

Proof of the entropy sensitivity.

Use the previous result:

sup
x,y∈X

ρx,y (PF ) < ρ(P) strictly.

Equip the edges of X with p(x , a, y) = 1/|Σ|.

h(X ) = lim sup
n→∞

1

n
log
(
pn(x , y)|Σ|n

)
= log

(
ρ(P) · |Σ|

)
.

Analogously h(LF
x,y ) = log

(
ρx,y (PF ) · |Σ|

)
.

It follows that supx,y∈X h(LF
x,y ) < h(X ) strictly.
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Schreier graphs

G be a finitely generated group and K a subgroup.

Σ be a finite alphabet and ψ : Σ→ G be such that the
set ψ(Σ) generates G as a semigroup.

Extend ψ to a monoid homomorphism from Σ∗ to G by
ψ(w) = ψ(a1) · · ·ψ(an), if w = a1 . . . an with ai ∈ Σ (and
ψ(ε) = 1G )

ψ is called a semigroup presentation of G .

The Schreier graph X = X (G ,K , ψ) has vertex set

X = {Kg : g ∈ G},

the set of all right K -cosets in G , and the set of all
labelled, directed edges E is given by

E = {e = (x , a, y) : x = Kg , y = Kgψ(a)},

where g ∈ G , a ∈ Σ.

X is fully deterministic and uniformly connected.
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The word problem of (G ,K ) with respect to ψ is the
language

L(G ,K , ψ) = {w ∈ Σ∗ : ψ(w) ∈ K}.

Consider the “root” vertex o = K of the Schreier graph,
then L(G ,K , ψ) = Lo,o .

Corollary

The word problem of the pair (G ,K ) with respect to any
semigroup presentation ψ is growth sensitive, with respect to
forbidding an arbitrary non-empty subset F ⊂ Σ∗.
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Thank you for your attention!
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