Lamplighter random walks (LRW)

Ecaterina Sava

Technische Universität Graz

September 23, 2009

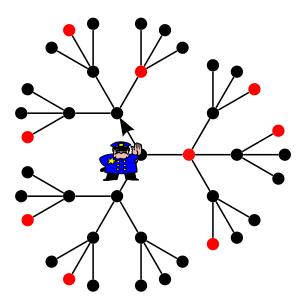
Outline

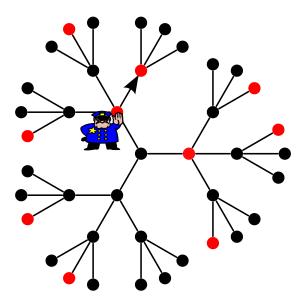
1 Lamplighter random walks on trees

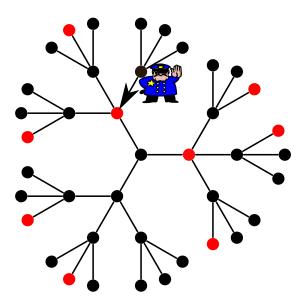
- The general model
- Basic examples
- 2 Behaviour at infinity
 - Behaviour of the base random walk
 - Behaviour of the LRW
- 3 Poisson boundary
 - Preliminaries
 - Other extensions: different base graphs

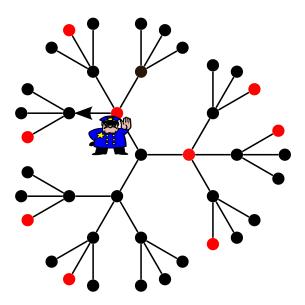
LRW on trees

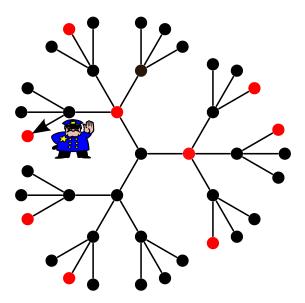
- \mathbb{T} homogeneous tree, degree \geq 3.
- Select a vertex $o \in \mathbb{T}$ as the root.
- Lamp at each vertex: states 0 (switched off) and 1 (switched on).
- A lamplighter person starts in *o* and performs a random walk on T: makes random moves and / or changes the state of the lamp at current position (or nearby).
- At every moment of time we record the configuration of the lamps which are switched on and the position of the lamplighter.
- Consider an example where we start with finitely lamps switched on.











Basic models of LRW

Start with a *random walk* on the tree \mathbb{T} .

1 Walk or switch model: at every step the lamplighter tosses a coin:

- if head comes up then he walks, leaving the lamps unchangend.
- if tail comes up then he modifies the lamp at the current position, without moving.
- **2** Switch-walk-switch model: if the lamplighter stands at x and the actual configuration is η , then:
 - he first switches the lamp at *x* to a random state.
 - then he walks to some neighbour x'.
 - **a**t last, he switches the lamp at x' to a random state.

Formal definition

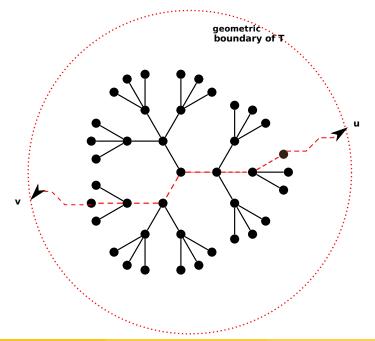
- Configuration of lamps on T: a function η : T → {0,1} with finite support supp(η) = {x ∈ T : η(x) ≠ 0}.
- At every moment of time we observe a pair (η, x), with η the configuration of the lamps and x the current position of the lamplighter in the tree.
- The random process evolves on the state space C × T consisting of pairs (η, x), with C = {configurations}.
- The lamplighter random walk (LRW) $Z_n = (\eta_n, X_n)$ on $\mathcal{C} \times \mathbb{T}$: given by the transition matrix $P = (p((\eta, x), (\eta', x')))$.
- $Z_n = (\eta_n, X_n)$ projects into: η_n random configurations, and X_n random walk on \mathbb{T} .

Base RW X_n

• The projection X_n of $Z_n = (\eta_n, X_n)$ on the underlying tree is a random walk with transition pb.

$$p(x, x') = \sum_{\eta'} p((\eta, x), (\eta', x')).$$

- X_n is known to be transient (it visits every finite subset of T only finitely many times) ⇒ escape of the random walk to "infinity".
- Attach to \mathbb{T} a geometric boundary $\partial \mathbb{T} \equiv$ space of ends.
- An end (boundary point) a way of going off to infinity.
- Ends u ∈ ∂T -represented by geodesic rays u = [o = x₀, x₁,...] starting from a root o ∈ T.
- The tree ${\mathbb T}$ has infinitely many ends.



Convergence to the boundary

• Convergence to the boundary $\partial \mathbb{T}$ of the RW $X_n \equiv \exists$ a $\partial \mathbb{T}$ -valued random variable X_{∞} such that

$$\mathbb{P}_{x}[\lim_{n\to\infty}X_{n}=X_{\infty}]=1, \text{ for all } x.$$

- If X_n on T is of nearest neighbour type and transient ⇒ it converges to ∂T.
- Convergence of the random walk X_n on $\mathbb{T} \Rightarrow$ convergence of the LRW $Z_n = (\eta_n, X_n)$ on the $\mathcal{C} \times \mathbb{T}$.
- Transience \Rightarrow every vertex visited finitely often \Rightarrow after the last visit at a vertex the state of the lamp sitting there remains unchanged \Rightarrow \exists random limit configuration η_{∞} , such that:

$$\eta_{\infty} = \lim_{n \to \infty} \eta_n \in \widehat{\mathcal{C}}$$

where $\eta_{\infty}(x)$ is the definite state of the lamp at x.

Convergence of the LRW

- $\widehat{\mathcal{C}} = \{ \text{all configurations, finitely or infinitely supported} \}$
- $\widehat{\mathbb{T}} = \mathbb{T} \cup \partial \mathbb{T}$ is a compactification of \mathbb{T} .
- $\widehat{\mathcal{C}} \times \widehat{\mathbb{T}}$ is a compactification and $\widehat{\mathcal{C}} \times \partial \mathbb{T}$ is a boundary for the state space $\mathcal{C} \times \mathbb{T}$.

Theorem (Karlsson and Woess, 2006)

If the lamplighter random walk $Z_n = (\eta_n, X_n)$ has finite first moment

$$\sum_{(\eta^{'},x^{'})\in\mathcal{C}\times\mathbb{T}}d\left((\eta,x),(\eta^{'},x^{'})\right)p\left((\eta,x),(\eta^{'},x^{'})\right)<\infty$$

then Z_n converges a.s. to a limit random variable

$$Z_{\infty} = (\eta_{\infty}, X_{\infty}) \in \widehat{\mathcal{C}} \times \partial \mathbb{T}.$$

The Poisson boundary

- $Z_n = (\eta_n, X_n)$ is transient \equiv goes off to infinity.
- Topology of Ĉ × Î̂ provides the model Ĉ × ∂T at infinity for the behaviour of the LRW Z_n = (η_n, X_n).
- Is this the finest model? YES !!! (as a measure space).
- Define $\Omega = \bigcup_{\mathfrak{u} \in \partial \mathbb{T}} \mathcal{C}_{\mathfrak{u}} \times {\mathfrak{u}}$ which is dense in $\widehat{\mathcal{C}} \times \partial \mathbb{T}$.
- $C_{\mathfrak{u}} = \{\zeta \in \widehat{C} : \zeta \text{ accumulates only at } \mathfrak{u}\}.$
- Let ν_(η,x) be the hitting distribution of Z_n, i.e. the distribution on Z_∞ on Ω; write ν if the LRW starts in o with all lamps swiched off.
- ν is the probability measure defined for Borel sets $B \in \Omega$ by

$$\nu(B) = \mathbb{P}[Z_{\infty} \in B].$$

- (Ω, ν) is a measure space which describes the behaviour of the LRW at infinity. How "good" is this space?
- Is this the Poisson boundary, that is, the finest model of a probability space at infinity of $C \times \mathbb{T}$ for distinguishing the possible limitting behaviour of Z_n ? YES, IT IS.
- There are several equivalent definitions for the Poisson boundary. See [Kaimanovich and Vershik, 1983] for RW on discrete groups.
- Poisson boundary=unique up to sets of measure 0.
- For proving the maximility of the measure space (Ω, ν) we use the Strip Criterion [Kaimanovich, 2000] = a purely geometric criterion.

Theorem (Woess and Karlsson, 2006)

If the lamplighter random walk Z_n has finite first moment on $\mathcal{C} \times \mathbb{T}$, then the measure space (Ω, ν) is the Poisson boundary of the LRW.

- Base graphs X for the LRW:
 - a graph with infinitely many ends, or
 - a hyperbolic graph, or
 - an euclidean lattice (RW with drift \neq 0).
- Endowed with natural geometric boundaries ∂X .
 - space of ends
 - hyperbolic boundary
 - the unit sphere

Theorem (S., 2008)

If the LRW $Z_n = (\eta_n, X_n)$ on the base graph \mathbb{X} has finite first moment then it converges a.s. to a $(\widehat{\mathcal{C}} \times \partial \mathbb{X})$ -valued r.v. and the Poisson boundary of the LRW is the space of infinite limit configurations (i.e. the set of all boundary elements $\mathfrak{u} \in \partial \mathbb{X}$ together with all configurations which accumulate only at \mathfrak{u}).

- V. A. Kaimanovich, A. M. Vershik: Random walks on discrete groups: Boundary and entropy Ann. Probab. 11 (1983) 457-490.
- A. Karlsson, W. Woess: The Poisson boundary of lamplighter random walks on trees.
 Geometriae Dedicata 124 (2007) 95-107.
- E. Sava: A note on the Poisson boundary of lamplighter random walks

Monatshefte für Mathematik, (2009) (in print).

Thank you for your attention!