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ABSTRACT

We consider random walks on non-amenable Baumslag–Solitar groups

BS(p, q) and describe their Poisson–Furstenberg boundary. The latter is

a probabilistic model for the long-time behaviour of the random walk. In

our situation, we identify it in terms of the space of ends of the Bass–Serre

tree and the real line using Kaimanovich’s strip criterion.

1. Introduction

For any two non-zero integers p and q the Baumslag–Solitar group BS(p, q) is

given by the presentation BS(p, q) = 〈 a, b : abp = bqa 〉. These groups were

introduced by Baumslag and Solitar in [BS62], who identified BS(2, 3) as the

first example of a two-generator one-relator non-Hopfian group. We consider

∗ Research supported by the Austrian Science Fund (FWF): W1230-N13 and

P24028-N18, the Canada Research Chairs Program, and the European Research

Council (ERC): No 725773 “GroIsRan”.
∗∗ Research supported by the Austrian Science Fund (FWF): J3575-N26.

Received January 21, 2016 and in revised form November 15, 2017

1



2 J. CUNO AND E. SAVA-HUSS Isr. J. Math.

random walks on BS(p, q). Each of them is driven by a probability measure μ

whose support generates BS(p, q) as a semigroup. The random walk starts at

the identity element and proceeds with independent μ-distributed increments

X1, X2, . . . being multiplied from the right to the current state.

The Poisson–Furstenberg boundary was introduced by Furstenberg in [Fur63]

and [Fur71]. It is a probabilistic model for the long-time behaviour of the ran-

dom walk and simultaneously provides a way to represent all bounded harmonic

functions on the state space. In [Kai91, Theorem 5.1], Kaimanovich considered

random walks on BS(1, 2). Under the assumption of finite first moment, he

identified their Poisson–Furstenberg boundary geometrically. In particular, he

showed that the latter is trivial if the random walk has no vertical drift, i.e.,

the expected exponent sum of the increments with respect to the generator a

is equal to zero.

For random walks on non-amenable groups the situation is different. As

long as they are irreducible, their Poisson–Furstenberg boundary can never be

trivial. This motivates the present paper, in which we study random walks on

non-amenable Baumslag–Solitar groups. It is organised as follows. In Section 2,

we discuss some algebraic and geometric properties of Baumslag–Solitar groups

BS(p, q) with 1 ≤ p < q. We explain how these groups can be understood

through their projections to the Bass–Serre tree T and the hyperbolic plane H.

Afterwards, we recall the construction of the space of ends ∂T and the hyper-

bolic boundary ∂H, which contains the real line R as a subset. These spaces

shall later be used to associate a geometric boundary to BS(p, q). In Section 3,

we turn to random walks on groups. We outline some results about the Poisson–

Furstenberg boundary and then state Kaimanovich’s strip criterion, which is an

important tool to identify this boundary geometrically.

In Section 4, we study random walks on BS(p, q) with finite first moment.

We consider the pointwise projections of the random walk to T and H. If the

random walk has negative vertical drift, then the projection to H converges

almost surely to a random element in R. For the projection to T , we do not

need to distinguish between different vertical drifts; as soon as 1 < p < q, it

converges almost surely to a random element in ∂T . We thus endow ∂T (or even

∂T × R) with the Borel σ-algebra B∂T (or B∂T×R) and the hitting measure

ν∂T (or ν∂T×R). Finally, Kaimanovich’s strip criterion shows that the resulting

probability space is isomorphic to the Poisson–Furstenberg boundary.
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Up to and including Section 4.1, we assume that the two non-zero integers p

and q satisfy 1 ≤ p < q. Then, we restrict ourselves to the non-amenable

subcase 1 < p < q. In the appendix, we explain how to obtain similar results

for the remaining non-amenable cases 1 < p < −q and 1 < p = |q|. Our main

result is the following.

Theorem 1.1 (“identification theorem”): Let Z = (Z0, Z1, . . . ) be a random

walk on a non-amenable Baumslag–Solitar group G = BS(p, q) with 1 < p < q

and increments X1, X2, . . . of finite first moment. Depending on the vertical

drift δ, we distinguish three cases:

(1) If δ > 0, then the Poisson–Furstenberg boundary is isomorphic to

(∂T,B∂T , ν∂T ) endowed with the boundary map bnd∂T : Ω → ∂T .

(2) If δ < 0, then the Poisson–Furstenberg boundary is isomorphic to

(∂T × R,B∂T×R, ν∂T×R) endowed with bnd∂T×R : Ω → ∂T × R.

(3) If δ = 0 and ln(AX1 ) has finite second moment and there is an ε > 0

such that ln(1 + |BX1 |) has finite (2+ ε)-th moment, then the Poisson–

Furstenberg boundary is isomorphic to (∂T,B∂T , ν∂T ) endowed with

bnd∂T : Ω → ∂T .

Note that the driftless case is a little more subtle and requires additional

assumptions on the moments. Here, the terms Ag and Bg denote the imaginary

and real part of the projection of an element g ∈ G to the hyperbolic plane H.

The two assumptions are certainly satisfied if X1 has finite (2 + ε)-th moment.

Further details can be found at the beginning of Section 4.1.

Acknowledgements. We would like to thank Wolfgang Woess for suggesting

this problem to us and supporting us with references and ideas while the research

was carried out. Moreover, we are grateful to Vadim Kaimanovich and the

anonymous reviewer, both of whom made valuable suggestions that led to a

substantial improvement of the present paper.

2. Baumslag–Solitar groups

2.1. Amenability of Baumslag–Solitar groups. The structure of

Baumslag–Solitar groups can be studied by means of HNN extensions. Indeed,

BS(p, q) is precisely the HNN extension Z∗ϕ with isomorphism ϕ : pZ → qZ

given by ϕ(p) := q. This allows us to use the respective machinery, such as
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Britton’s lemma, see [Bri63], which implies that a freely reduced non-empty

word w over the letters a and b and their formal inverses can only represent the

identity element 1 ∈ BS(p, q) if it contains abra−1 with p | r or a−1bra with q | r
as a subword. In particular, if neither |p| = 1 nor |q| = 1, then the elements

x := a and y := bab−1 generate a non-abelian free subgroup and BS(p, q) is

non-amenable. On the other hand, if |p| = 1 or |q| = 1, a simple calculation

shows that the normal subgroup 〈〈 b 〉〉 � BS(p, q) is abelian with quotient iso-

morphic to Z. In this case, BS(p, q) is solvable and therefore amenable. As we

will address briefly in Section 3.4, the distinction between these two cases is of

importance when working with random walks.

2.2. Projection to the Bass–Serre tree. Assume first that 1 ≤ p < q.

The Cayley graph Γ of the groupG := BS(p, q) with respect to the standard gen-

erators a and b is the directed multigraph with vertex set G, edge set G× {a, b},
source function s : G × {a, b} → G given by s(g, x) := g, and target function

t : G × {a, b} → G given by t(g, x) := gx. Every directed multigraph can be

converted into a simple graph by ignoring the direction and the multiplicity of

the edges and deleting the loops. For the purpose of this paper, it is sufficient

to think of Γ as a simple graph, and we shall tacitly do so.

Definition 2.1 (“levels”): Let λ : {a, b} → Z be the map given by λ(a) := 1 and

λ(b) := 0. It follows from von Dyck’s theorem, see, e.g., [CZ93, §1.1.3], that
this map can be uniquely extended to a group homomorphism λ : G → Z. We

think of it as a level function.

Consider the illustration of Γ in Figure 1. Intuitively speaking, we may look

at it from the side to see the associated Bass–Serre tree. Formally, let

B := 〈 b 〉 ≤ G

and let T be the graph with vertex set G/B = {gB : g ∈ G} and edge set

{{gB, gaB} : g ∈ G}. This graph is actually a tree; it is connected and, by

Britton’s lemma, it does not contain any cycle. We use the symbol πT to denote

the canonical projection to the cosets, i.e., the map πT : G → G/B given by

πT (g) := gB.

Remark 2.2: Since λ(b) = 0, the level function is well-defined on the vertices

of T . It is not hard to see that every vertex of T has exactly p+ q neighbours;

p of them are one level below and q of them are one level above the vertex.
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Figure 1. The Cayley graph Γ of BS(1, 2) with respect to the

standard generators a and b.

2.3. Projection to the hyperbolic plane. The second projection captures

the information that is obtained by looking at Γ from the front. It is convenient

to describe it in terms of the hyperbolic plane. So, let H be the hyperbolic plane

as per the Poincaré half-plane model, i.e., H := {z ∈ C : Im(z) > 0}, endowed
with the standard metric

dH(z1, z2) := ln
( |z1 − z̄2|+ |z1 − z2|
|z1 − z̄2| − |z1 − z2|

)
= arcosh

(
1 +

|z1 − z2|2
2 · Im(z1) Im(z2)

)
.

The isometry group Isom(H) consists of all maps ϕ : H → H of the form

ϕ(z) =
αz + β

γz + δ︸ ︷︷ ︸
1

or ϕ(z) =
α · (−z̄) + β

γ · (−z̄) + δ︸ ︷︷ ︸
2

with α, β, γ, δ ∈ R, αδ − βγ > 0,

see, e.g., [Bea83, Theorem 7.4.1]. For the time being, we shall only work with the

orientation-preserving isometries 1 . The orientation-reversing ones 2 will later

be of relevance, in Section A.1 of the appendix. Let πIsom(H) : {a, b} → Isom(H)

be the map given by πIsom(H)(a) := (z �→ q
p · z) and πIsom(H)(b) := (z �→ z + 1).

As in Definition 2.1, it follows from von Dyck’s theorem that this map can be

uniquely extended to a group homomorphism πIsom(H) : G → Isom(H). Now,

we define πH : G → H by πH(g) := πIsom(H)(g)(i).
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Lemma 2.3: For every g∈G the point πH(ga) ∈ H is above the point πH(g) ∈ H;

the two points have the same real part and their distance in the hyperbolic

plane is a := ln( qp ). Similarly, the point πH(gb) ∈ H is to the right of the point

πH(g) ∈ H; the two points have the same imaginary part and their distance in

the hyperbolic plane is b := ln(3+
√
5

2 ).

Proof. This is clear for g = 1. Now, pick an arbitrary element g ∈ G. The

points πH(ga) ∈ H and πH(g) ∈ H are obtained by evaluating πIsom(H)(g) at

πH(a) ∈ H and πH(1) ∈ H. Since g can be written as a product over a±1 and

b±1, its image πIsom(H)(g) is the respective composition of πIsom(H)(a
±1) and

πIsom(H)(b
±1). Being dilations and translations, the latter preserve the relative

position of any two points in H, and so does πIsom(H)(g). The same argument

works for the second assertion, which completes the proof.

Here and throughout the present paper, we use the symbol N0 to denote the

non-negative integers and the symbol N to denote the strictly positive ones.

Definition 2.4 (“path”, “reduced path”): Given a simple graph with vertex set

V , we consider finite paths v : {0, 1, . . . , n} → V , infinite paths v : N0 → V ,

and doubly infinite paths v : Z → V . In any case, being a path means that for

every possible choice of k the vertices v(k) and v(k + 1) are adjacent. A path

is reduced if for every possible choice of k the vertices v(k) and v(k + 2) are

distinct.

Remark 2.5 (“discrete hyperbolic plane”): One way to recover hyperbolic struc-

tures within the Cayley graph Γ is the following. Fix an ascending doubly in-

finite path v : Z → G/B in the tree T . Ascending refers to the level function

constructed in Definition 2.1 and Remark 2.2, and it means that for every k ∈ Z

the vertex v(k) is located below the following vertex v(k + 1). Let Gv be the

full πT -preimage of the path, i.e., the set consisting of all g ∈ G such that πT (g)

is contained in v(Z). The subgraph Γv ≤ Γ spanned by Gv, see 1 in Figure 2,

is connected so that the graph distance dΓv is a metric. This subgraph is some-

times referred to as discrete hyperbolic plane or plane of bricks, which makes

particular sense in light of the fact that the restriction πH|Gv : Gv → H is a

quasi-isometry, even a bi-Lipschitz map, between the graph Γv endowed with

the graph distance dΓv and the hyperbolic plane H endowed with the standard

metric dH.
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Figure 2. A part of a discrete hyperbolic plane Γv (right) and

its projection to H (left).

2.4. Compactifications. Both the tree T and the hyperbolic plane H have a

natural compactification. In case of T , it is the end compactification, which

can be constructed as follows. Fix a base point, say B ∈ G/B, and consider

the set T̂ of all reduced paths that start in B, be they finite or infinite. The

endpoint map yields a one-to-one correspondence between the finite paths and

the vertices G/B. We may therefore think of G/B as a subset of T̂ . The set T̂

can be endowed with the metric

dT̂ (x, y) :=

⎧⎨⎩2−|x∧y| if x 	= y,

0 if x = y,

where |x∧y| denotes the number of edges the two paths run together until they

separate, see 1 in Figure 3. In other words, |x ∧ y| is the maximal number

k ∈ N0 such that x and y are both defined at k and the vertices x(k) and

y(k) agree. Hence, the later the paths separate the closer they are. The set T̂

endowed with the metric dT̂ is a compact metric space that contains G/B as a

discrete and dense subset. The complement of G/B is the set of infinite paths,

it is denoted by ∂T and called the space of ends.

In case of H, we temporarily switch to the Poincaré disc model. Instead of

working in the half-plane H = {z ∈ C : Im(z) > 0}, we consider the open unit

disc D := {z ∈ C : |z| < 1}. The Cayley transform W : H ↪→→ D given by

W (z) :=
z − i

z + i
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is one possibility to convert between the two models. The hyperbolic topology

on D is the one induced by the Cayley transform. It agrees with the stan-

dard topology on D so that, topologically speaking, the hyperbolic plane in

the Poincaré disc model is just a subspace of the complex plane C. We may

therefore compactify it by taking the closed unit disc D̂ := {z ∈ C : |z| ≤ 1},
see Figure 3. In order to translate this compactification back to the Poincaré

half-plane model, we first extend both the domain and the codomain of the

Cayley transform so that we obtain a bijection W : H ∪ R ∪ {∞} ↪→→ D̂, and

then apply its inverse. The space

Ĥ := H ∪ R ∪ {∞}
is our compactification. It is, once again, endowed with the induced topology,

and thus a compact space that contains H as a dense subset. The complement

of H is the union R ∪ {∞}, it is denoted by ∂H and called the hyperbolic

boundary. Having introduced the hyperbolic boundary this way, the following

lemma gives us a helpful criterion for convergence. Its proof is elementary and

we leave it to the reader.

Lemma 2.6: A sequence (x0, x1, . . . ) in H converges to r ∈ R = ∂H � {∞} if

and only if it does with respect to the standard topology on the complex plane

C. The sequence converges to ∞ ∈ ∂H if and only if the absolute values |xn|
tend to ∞.

x

1 y

B

Figure 3. The space of ends (left) and the hyperbolic boundary

in the Poincaré disc model (right).
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3. Random walks on groups

3.1. Preliminaries. The aim of the present paper is to study random walks.

Given a countable state space X , an initial probability measure ϑ : X → [0, 1],

and transition probabilities p : X × X → [0, 1], we are interested in the

Markov chain Z = (Z0, Z1, . . . ) that starts according to ϑ and proceeds ac-

cording to p. Formally, we construct the probability space (Ω,A ,P), where

Ω := {(x0, x1, . . . ) : xn ∈ X} is the set of trajectories, A is the product σ-

algebra, and P is the probability measure induced by ϑ and p. The projections

Zn : Ω → X given by Zn(x0, x1, . . . ) := xn then become random variables that

constitute the Markov chain. We shall use the term random walk instead of

Markov chain.

Assume now that X is a countable group G. In this situation, we may

adapt the transition probabilities p : G × G → [0, 1] to the group structure.

More precisely, let μ : G → [0, 1] be a probability measure on G and consider

the random walk given by the following data. The initial probability measure

ϑ : G → [0, 1] puts all mass on the identity element 1 ∈ G and the transition

probabilities p : G × G → [0, 1] are given by p(g, h) := μ(g−1h). We could

also have said p(g, gx) := μ(x), which leads to a handy interpretation. The

random walk starts at the identity element and has independent μ-distributed

increments being multiplied from the right to the current state. Hence, Z0 = 1

a.s. (= almost surely) and for every n ∈ N, Zn = X1 · · ·Xn, where X1, X2, . . .

is a sequence of independent μ-distributed random variables.

Throughout the present paper, we assume that the support

supp(μ) = {g ∈ G : μ(g) > 0}

generates G as a semigroup. In other words, the random walk is irreducible;

any two states can be reached from each other with positive probability.

Given a probability space, e.g., (Ω,A ,P) described above, and a real valued

random variable X : Ω → R, the latter has finite first moment if
∫ |X | dP is

finite. In this case, both
∫
X+ dP and

∫
X− dP are finite and we can define the

expectation E(X) :=
∫
X+ dP− ∫

X− dP. Of course, the difference would still

make sense if only one of the two integrals was finite. But this case is not of

relevance for us and when writing E(X) we implicitly mean that E(X) is a real

number. More generally, given any non-negative k ∈ R, the random variable

X : Ω → R has finite k-th moment if
∫ |X |k dP is finite.
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Definition 3.1 (“word metric”): If G is a finitely generated group and S ⊆ G is

a finite generating set, then the word metric dS : G × G → N0 is the distance

in the respective Cayley graph. In other words,

dS(g, h) := min{n ∈ N0 : ∃ s1, . . . , sn ∈ S and ε1, . . . , εn ∈ {1,−1}
such that g−1h = s1

ε1 · · · snεn}.
Definition 3.2 (“finite k-th moment” for G-valued random variables): Let G be

a finitely generated group and S ⊆ G be a finite generating set. A random

variable X : Ω → G has finite k-th moment if the image dS(1, X) : Ω → N0 has

finite k-th moment in the classical sense, i.e., if∫
dS(1, X)k dP < ∞.

It is well-known that this property does not depend on the choice of S.

3.2. Lebesgue–Rohlin spaces. In order to define the Poisson–Furstenberg

boundary, we need to ensure that we are working with Lebesgue–Rohlin spaces,

which are also known as standard probability spaces. For definitions, basic

examples, and fundamental results, we refer to [Roh52], [Hae73], and [Rud90].

Two short summaries can also be found in [CFS82, Appendix 1] and [KKR04,

Appendix].

Example 3.3: A Polish space is a topological space that is separable and com-

pletely metrisable. All Polish spaces endowed with their Borel σ-algebra B

and a Borel measure μ become, after completion, examples of Lebesgue–Rohlin

spaces, see [Roh52, §2.7] and [Hae73, p. 248, Example 1].

In light of Example 3.3, we observe that the space of trajectories Ω introduced

in Section 3.1 is the productXN0 and can therefore be endowed with the product

topology. The resulting space is actually Polish; see, e.g., [Wil70, Theorem

24.11]. Since its Borel σ-algebra agrees with the product σ-algebra A , the

completion of (Ω,A ,P) is a Lebesgue–Rohlin space. Let us assume that, as soon

as a measurable space is endowed with a probability measure, we are working

with its completion. We may therefore say that (Ω,A ,P) is a Lebesgue–Rohlin

space.

As it is customary, we always deal with Lebesgue–Rohlin spaces mod 0, i.e.,

up to subsets of measure 0, even when it is not indicated explicitly.
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3.3. Poisson–Furstenberg boundary. Several equivalent definitions of the

Poisson–Furstenberg boundary are given in [KV83]. Since we are interested in

the long-time behaviour of the trajectories x = (x0, x1, . . . ) ∈ Ω, we identify

those pairs of trajectories whose tails sooner or later behave identically. More

precisely, we define an equivalence relation ∼ on Ω by setting

x ∼ y : ⇐⇒ ∃ t1, t2 ∈ N0 such that ∀n ∈ N0 the equation xt1+n = yt2+n holds.

Consider the partition ζ of Ω into the equivalence classes mod ∼. It induces a

sub-σ-algebra A (ζ) ⊆ A consisting of all those measurable sets A ∈ A that

are, mod 0, unions of elements in ζ. Being a complete sub-σ-algebra, A (ζ)

corresponds to a measurable partition ζ1 of Ω. This partition is unique, up

to equivalence mod 0. It has the properties that the induced sub-σ-algebra

A (ζ1) ⊆ A coincides with A (ζ) and that the quotient of (Ω,A ,P) by ζ1 is a

Lebesgue–Rohlin space.

The latter is called the Poisson–Furstenberg boundary and we denote it

by (B,B, ν). It is naturally endowed with a boundary map bnd : Ω → B

assigning to every trajectory x ∈ Ω the element in ζ1 that contains it. The

boundary map is a measurable and measure-preserving map between Lebesgue–

Rohlin spaces; such a map is called a homomorphism.

Here, we consider irreducible random walks on countable groups G. In this

situation, the measurableG-action on Ω given by g(x0, x1, . . . ) := (gx0, gx1, . . . )

induces a measurable G-action on B so that the measure ν is μ-stationary,

i.e.,

ν(A) =
∑
g∈G

μ(g) · ν(g−1A),

and quasi-invariant, i.e., the G-action maps null sets A to null sets gA.

3.4. Some results about the Poisson–Furstenberg boundary. Given

such a random walk, it is a challenging problem to decide whether the Poisson–

Furstenberg boundary is trivial or not. In the latter case, one may wonder how

to identify it geometrically. We shall only address a few results; a survey was

given by Erschler in [Ers10]. As always, we assume that the random walk is

irreducible.

If G is abelian, then the Poisson–Furstenberg boundary is trivial, see [Bla55]

and [CD60]. The same holds true for all groups of polynomial growth, and for

groups of subexponential growth endowed with a probability measure μ with

finite first moment. For the special case of probability measures with finite
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support see [Ave74] and for the general case see, e.g., [KW02, Theorem 5.3]

and [Ers04, §4]. Moreover, it was shown in [Ers04] that the assumption of finite

first moment cannot be dropped. If G is amenable, then there is at least one

symmetric probability measure μ such that the Poisson–Furstenberg boundary

is trivial, see the conjecture in [Fur73, §9]. The proof was announced in [VK79,

Theorem 4] and given in [Ros81] and [KV83].

For random walks on the Baumslag–Solitar group G = BS(1, 2) with finite

first moment, one can be more specific. Here, the Poisson–Furstenberg bound-

ary is isomorphic to R for δ < 0, trivial for δ = 0, and isomorphic to Q2

for δ > 0, see [Kai91, Theorem 5.1]. Further results about random walks on

rational affinities are given in [Bro06]. If G is non-amenable, then the Poisson–

Furstenberg boundary can never be trivial, see [Fur73, §9] and [KV83, §4.2].
This holds in particular for random walks on non-amenable Baumslag–Solitar

groups, even when δ = 0.

Remark 3.4: There are striking similarities between solvable Baumslag–Solitar

groups and lamplighter groups. For example, while BS(1, 2) can be described as

the semidirect product Z[ 12 ]�Z, where 1 ∈ Z acts by doubling, the lamplighter

group Z2 �Z is defined as (
⊕

i∈Z
Z2)�Z, where 1 ∈ Z acts by shifting the index

by 1. For results on the Poisson–Furstenberg boundary of random walks on

lamplighter groups, see [VK79], [KV83], [LP15], and also [Sav10].

3.5. Kaimanovich’s strip criterion. Kaimanovich’s strip criterion, which

we recall below, is a tool for identifying the Poisson–Furstenberg boundary

geometrically. We state it as a theorem and then briefly discuss the notions

appearing in the statement. For the proof, we refer to [Kai00, §6.4].
Theorem 3.5 (“strip criterion”): Let Z = (Z0, Z1, . . . ) be a random walk on a

countable group G driven by a probability measure μ with finite entropy H(μ).

Moreover, let (B−,B−, ν−) and (B+,B+, ν+) be μ̌- and μ-boundaries, respec-

tively. If there exist a gauge G = (G1,G2, . . . ) on G with associated gauge

function | · | = | · |G and a measurable G-equivariant map S assigning to pairs

of points (b−, b+) ∈ B− × B+ non-empty strips S (b−, b+) ⊆ G such that for

every g ∈ G and ν− ⊗ ν+-almost every (b−, b+) ∈ B− ×B+

1

n
· ln(card(S (b−, b+)g ∩ G|Zn|))

n→∞−−−−−→ 0 in probability,

then the μ-boundary (B+,B+, ν+) is maximal.
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Remark 3.6: The proof shows that it is not even necessary to verify the conver-

gence for every g ∈ G. It suffices to consider the special case g = 1 as long as we

can ensure that a random strip contains the identity element 1 ∈ G with positive

probability, i.e., that ν− ⊗ ν+{(b−, b+) ∈ B− ×B+ : 1 ∈ S (b−, b+)} > 0.

The entropy of the probability measure μ is given by

H(μ) :=
∑
g∈G

− log2(μ(g)) · μ(g).

Here, as usual, one defines − log2(0) · 0 := 0. The assumption of finite entropy

will be no issue for us because Baumslag–Solitar groups are finitely generated

and the increments of the random walks under consideration will all have finite

first moment. This implies that their probability measures μ have finite entropy,

as stated in the following lemma. Its proof is elementary. For an idea see, e.g.,

[GPS94, Theorem 4.1].

Lemma 3.7: Let G be a finitely generated group and let μ : G → [0, 1] be a

probability measure. If a μ-distributed random variable X : Ω → G has finite

first moment, then μ has finite entropy.

Kaimanovich defines a μ-boundary as the quotient of the Poisson–

Furstenberg boundary with respect to some G-invariant measurable partition;

see, e.g., [Kai00, §1.5]. The Poisson–Furstenberg boundary is therefore it-

self a μ-boundary, the maximal one. Moreover, every Lebesgue–Rohlin space

(B+,B+, ν+) endowed with a measurable G-action and a homomorphism

bnd+ : Ω → B+ that is 1 ∼-invariant and 2 G-equivariant is a μ-boundary. At

this point, recall that the random walk is irreducible, whence the properties 1

and 2 already imply that the measure ν+ is μ-stationary and quasi-invariant.

While μ is the probability measure that drives the random walk, the symbol

μ̌ denotes the reflected probability measure, which is given by μ̌(g) := μ(g−1).

Accordingly, a μ̌-boundary is a Lebesgue–Rohlin space (B−,B−, ν−) that sat-
isfies the requirements of a μ-boundary when replacing μ by μ̌.

A gauge G is an exhaustion G = (G1,G2, . . . ) of the group G, i.e., a sequence

of subsets Gk ⊆ G which is increasing G1 ⊆ G2 ⊆ · · · and whose union G1 ∪G2 ∪
· · · is the whole group G. Given a gauge G and an element g ∈ G, we may ask

for the minimal index k ∈ N with the property that g ∈ Gk. This index is the

value of the associated gauge function | · | = | · |G at g.
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Remark 3.8: Kaimanovich distinguishes between various kinds of gauges, see

[Kai00]. For example, a gauge G is subadditive if any two group elements

g1, g2 ∈ G satisfy |g1g2| ≤ |g1| + |g2| and it is temperate if all gauge sets Gk

are finite and grow at most exponentially. Even though these two properties do

play a crucial role in the corollaries to the strip criterion given in [Kai00, §6.5],
they are not required in the strip criterion itself. And, in fact, not all of our

gauges will have these two properties.

The power set {0, 1}G is naturally endowed with the product σ-algebra, which

enables us to talk about measurability of the map S : B− × B+ → {0, 1}G.
More precisely, the product σ-algebra on {0, 1}G is generated by the coordinate

projections. Since the set {0, 1} consists of only two elements, the σ-algebra

is already generated by the preimages of 1 ∈ {0, 1}. In order to show that

S is measurable, it thus suffices to verify that for every g ∈ G the set of all

(b−, b+) ∈ B− × B+ whose strip S (b−, b+) ⊆ G contains the element g ∈ G

is measurable. As soon as we know that S is G-equivariant, it even suffices

to verify measurability for g = 1, which will be immediate for the strips under

consideration.

4. Identification of the Poisson–Furstenberg boundary

4.1. Convergence to the boundary of the hyperbolic plane. Let us

now return to G = BS(p, q) with 1 ≤ p < q and consider a random walk

Z = (Z0, Z1, . . . ) on G. When working with the projection πH : G → H,

we may analyse the imaginary part Im(πH(g)) and the real part Re(πH(g))

separately, and it is convenient to abbreviate the former by Ag and the latter

by Bg. Occasionally, we do not assume that X1 has some finite moment but

impose this assumption on the images ln(AX1 ) and ln(1+ |BX1 |). The following
lemma relates the two situations.

Lemma 4.1: If X1 has finite k-th moment, then ln(AX1) and ln(1+ |BX1|) have
finite k-th moment, too.

Remark 4.2: It follows from the definition of πH that for every g ∈ G the

equation Ag = qλ(g)p−λ(g) holds. Taking the logarithm on both sides yields the

equation ln(Ag) = ln( qp ) · λ(g). So, instead of thinking of ln(Ag) we may think

of a multiple of λ(g).
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Proof of Lemma 4.1. Let S := {a, b} ⊆ G be the standard generating set. Then∫
| ln(AX1 )|k dP =

(
ln
(q
p

))k

·
∫

|λ(X1)|k dP

≤
(
ln
(q
p

))k

·
∫

dS(1, X1)
k dP︸ ︷︷ ︸

< ∞

< ∞.

This proves the first assertion. For the second one, Lemma 2.3 implies that the

distance dH(πH(1), πH(g)) is at most max{a, b} · dS(1, g). This allows us to

estimate ln(1 + |Bg|) by a multiple of dS(1, g). Indeed,

ln(1 + |Bg|) ≤ ln
(
1 +

1

2
· |Bg|2 +

√(
1 +

1

2
· |Bg|2

)2

− 1
)

= arcosh
(
1 +

1

2
· |Bg|2

)
= dH(i, i+Bg) ≤ dH(i, Ag · i+Bg) + dH(Ag · i+Bg, i+Bg)

= dH(πH(1), πH(g)) + | ln(Ag)|
≤ max{a, b} · dS(1, g) + ln

( q
p

)
· |λ(g)|

≤ max{a, b} · dS(1, g) + ln
( q
p

)
· dS(1, g).

Therefore,∫
ln(1 + |BX1 |)k dP ≤

(
max{a, b}+ ln

( q
p

))k

·
∫

dS(1, X1)
k dP︸ ︷︷ ︸

< ∞

< ∞,

which proves the second assertion.

Definition 4.3 (“vertical drift”): If ln(AX1) has finite first moment, then λ(X1)

has finite first moment and we can define the expectation E(λ(X1)). We call

the latter the vertical drift and denote it by δ.

The following lemmas concern the behaviour of the projections πH(Zn). They

seem to be well-known and we do not claim originality. But, for the sake of

completeness, we give rigorous proofs.

Lemma 4.4: Assume that ln(AX1) has finite first moment. If Z has positive

vertical drift δ > 0, then the projections πH(Zn) converge a.s. to ∞ ∈ ∂H.
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Proof. By the strong law of large numbers,

λ(Zn)

n
=

λ(X1) + · · ·+ λ(Xn)

n

n→∞−−−−−→
a.s.

E(λ(X1)) = δ > 0.

Therefore, the projections λ(Zn) tend a.s. to∞. By Remark 4.2, so do the imag-

inary parts AZn and the absolute values |πH(Zn)|. Now, Lemma 2.6 completes

the proof.

Lemma 4.5: Assume that both ln(AX1) and ln(1 + |BX1 |) have finite first mo-

ment. If Z has negative vertical drift δ < 0, then the projections πH(Zn)

converge a.s. to a random element r ∈ R = ∂H� {∞}.
Proof. The proof of Lemma 4.4 can be adapted to show that the imaginary

parts AZn converge a.s. to 0, whence we only need to understand the be-

haviour of the real parts BZn . By the construction of the group homomorphism

πIsom(H) : G → Isom(H), each isometry πIsom(H)(g) with g ∈ G is of the form

z �→ αz + β with α, β ∈ R and α > 0. So, the equation πH(g) = Ag · i+Bg

yields πIsom(H)(g)(z) = Ag · z +Bg and, in light of the multiplication

(πIsom(H)(g1) ◦ πIsom(H)(g2))(z) = Ag1 · Ag2 · z +Ag1 · Bg2 +Bg1 ,

we obtain

πH(Zn) = πIsom(H)(Zn)(i) = πIsom(H)(X1 · · ·Xn)(i)

= (πIsom(H)(X1) ◦ · · · ◦ πIsom(H)(Xn))(i)

= AX1 · · ·AXn · i+
n∑

k=1

AX1 · · ·AXk−1
· BXk

.

Therefore, the real parts BZn are the partial sums of the series
∑∞

k=1 Ck with

Ck := AX1 · · ·AXk−1
·BXk

. In order to verify a.s. convergence of this series, we

apply Cauchy’s root test,

|Ck| 1k ≤ exp
(
ln
(q
p

)
· λ(X1) + · · ·+ λ(Xk−1)

k − 1︸ ︷︷ ︸
→ E(λ(X1))= δ < 0 a.s.

· k − 1

k︸ ︷︷ ︸
→ 1

)
· exp

( ln(1 + |BXk
|)

k︸ ︷︷ ︸
→ 0 a.s.

)

k→∞−−−−−→
a.s.

( q
p

)δ

< 1.

The convergence claimed in the first factor follows from the strong law of large

numbers, the one claimed in the second factor from the Borel–Cantelli lemma.

Indeed, let Qk := 1
k · ln(1+ |BXk

|). In order to show that Qk converges a.s. to 0,
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recall that ln(1 + |BX1 |) has finite first moment. For every ε > 0 we may thus

estimate
∞∑
k=1

P(Qk > ε) ≤
∞∑
k=1

P

(⌈ ln(1 + |BX1 |)
ε

⌉
≥ k

)
= E

(⌈ ln(1 + |BX1 |)
ε

⌉)
.

Now, the Borel–Cantelli lemma yields

P(∃ infinitely many k ∈ N such that Qk > ε) = 0,

from where we may conclude that Qk converges a.s. to 0, as claimed above.

Therefore, lim supk→∞ |Ck| 1k < 1 a.s., whence
∑∞

k=1 Ck converges a.s. to a

random element r ∈ R.

What remains is the driftless case. An answer was given by Brofferio in

[Bro03, Theorem 1]. It says that if ln(AX1) and ln(1 + |BX1 |) have finite first

moment, then the projections πH(Zn) converge a.s. to ∞ ∈ ∂H. For us, a result

of slightly different flavour will be of relevance.

Lemma 4.6: Assume that ln(AX1 ) has finite second moment and there is an

ε > 0 such that ln(1 + |BX1 |) has finite (2 + ε)-th moment. If Z has no vertical

drift, i.e., δ = 0, then the projections πH(Zn) have sublinear speed, i.e.,

dH(πH(Z0), πH(Zn))

n

n→∞−−−−−→
a.s.

0.

The proof is based on ideas that go back to Élie [Éli82, Lemme 5.49] and have

also been used in [CKW94, Proposition 4b]. We first adapt these ideas to our

situation in Lemma 4.7 and then deduce Lemma 4.6. By assumption, there is

no vertical drift so that the pointwise projection λ(Z) = (λ(Z0), λ(Z1), . . . ) to

Z is recurrent. In particular, we know that there exists a.s. a strictly increasing

sequence τ(0), τ(1), . . . given by τ(0) := 0 and

τ(n) := inf {k ∈ N : k > τ(n− 1) and λ(Zk) > λ(Zτ(n−1))}
for all n ∈ N. We call τ(n) the n-th ladder time, see Figure 4 for an illustra-

tion, and write τ := τ(1) for short.

Lemma 4.7: Under the same assumptions as in Lemma 4.6, the random variable

ln

(
1 +

τ∑
k=1

|BXk
|
)

has finite first moment.
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πH(Zτ(0))

πH(Zτ(1))

Figure 4. The first ladder times τ(0) and τ(1).

Proof. We adapt the proof of [Éli82, Lemme 5.49] to our situation. Pick an

ε > 0 that satisfies the requirements of Lemmas 4.6 and 4.7 and let

β :=
1

2 + ε
.

Since ln(AX1 ) has finite second moment, we know that λ(X1) has finite second

moment and therefore P(τ > k) is asymptotically equivalent to const ·k− 1
2 with

a strictly positive constant; see [Éli82, §5.44] referring to [Fel71, p. 415]. In

other words, the quotient of P(τ > k) and const · k− 1
2 converges to 1. Thus∫

τβ dP ≤
∫
�τβ� dP =

∞∑
k=1

P(�τβ� ≥ k) =
∞∑
k=0

P(τ > k
1
β )︸ ︷︷ ︸

∼ const · k−(1+ ε
2
)

.

In particular, there is a k0 ∈ N such that for all k ≥ k0 the inequality

P(τ > k
1
β ) < k−(1+ ε

4 )

holds. Since
∑∞

k=k0
k−(1+ ε

4 ) is finite, we know that
∫
τβ dP is finite. By con-

struction, the increments τ(1)− τ(0), τ(2) − τ(1), . . . are i.i.d. (= independent

and identically distributed), whence the fact that 0 < β < 1, which implies that

(x + y)β ≤ xβ + yβ, and the strong law of large numbers yield

(∗)
τ(n)

β

n
≤ (τ(1)−τ(0))β+ · · ·+(τ(n)−τ(n− 1))β

n

n→∞−−−−−→
a.s.

E(τβ),

=⇒ lim sup
n→∞

τ(n)β

n
<∞ a.s.
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Now, we are prepared for the main argument. The sums

τ(1)∑
k=τ(0)+1

|BXk
|,

τ(2)∑
k=τ(1)+1

|BXk
|, . . .

are i.i.d., they are non-negative and not a.s. equal to zero. Hence, in view of

[Éli82, Lemme 5.23], the following equivalence holds:∫
ln

(
1 +

τ∑
k=1

|BXk
|
)
dP < ∞ ⇐⇒ lim sup

n→∞

( τ(n)∑
k=τ(n−1)+1

|BXk
|
) 1

n

︸ ︷︷ ︸
=: K

< ∞ a.s.

It thus suffices to verify the right-hand side. In order to do so, we would like to

estimate

K ≤ lim sup
n→∞

exp

(
ln(1 +

∑τ(n)
k=1 |BXk

|)
n

)
≤ exp

(
lim sup
n→∞

ln(1 +
∑τ(n)

k=1 |BXk
|)

τ(n)
β︸ ︷︷ ︸

=: L

· lim sup
n→∞

τ(n)
β

n︸ ︷︷ ︸
<∞ a.s. (∗)

)
.

A priori, it might be the case that L is infinite and the second factor in the

rightmost term is 0, in which case the product would not make any sense. We

claim that L is a.s. finite, which does not only legitimate the above estimate

but also completes the proof. Indeed, observe that

L ≤ lim sup
n→∞

ln(1 + τ(n) ·max{|BXk
| : 1 ≤ k ≤ τ(n)})

τ(n)
β

≤ lim sup
n→∞

ln(τ(n))

τ(n)
β︸ ︷︷ ︸

= 0

+ lim sup
n→∞

ln(1 + max{|BXk
| : 1 ≤ k ≤ τ(n)})

τ(n)
β

= lim sup
n→∞

(max{ln(1 + |BXk
|) 1

β : 1 ≤ k ≤ τ(n)}
τ(n)

)β

≤ lim sup
n→∞

( ∑τ(n)
k=1 ln(1 + |BXk

|) 1
β

τ(n)︸ ︷︷ ︸
=: Mn

)β

.

Now, recall that 1
β = 2 + ε. By the strong law of large numbers, Mn converges

a.s. to E(ln(1 + |BX1 |)
1
β ). This implies that lim supn→∞ Mn

β is a.s. finite, and

so is L.
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Proof of Lemma 4.6. Recall from the proof of Lemma 4.7, that P(τ > k) is

asymptotically equivalent to const·k− 1
2 with a strictly positive constant. In par-

ticular, there is a k0 ∈ N such that for all k ≥ k0 the inequality P(τ > k) > k−1

holds, whence∫
τ dP =

∞∑
k=1

P(τ ≥ k) =

∞∑
k=0

P(τ > k) ≥
∞∑

k=k0

k−1 = ∞.

Since τ(1) − τ(0), τ(2) − τ(1), . . . are i.i.d. and non-negative, we may deduce

from the strong law of large numbers by truncating the random variables (see,

e.g., [Rou14, p. 309, Lemma 6]) that

τ(n)

n
=

(τ(1)−τ(0))+(τ(2)−τ(1))+ · · ·+(τ(n)−τ(n− 1))

n

n→∞−−−−−→
a.s.

∞

and

(∗∗) n

τ(n)

n→∞−−−−−→
a.s.

0.

This convergence can be used to estimate the distance between πH(Z0) and

πH(Zn) from above. Indeed, for every n ∈ N0 let m = m(n) ∈ N0 be the unique

element with

τ(m) ≤ n < τ(m+ 1).

It exists a.s. because the ladder times

0 = τ(0) < τ(1) < · · ·
do. Now, observe that

dH(πH(Z0), πH(Zn))

n
≤ dH(i, AZτ(m)

· i)
n︸ ︷︷ ︸
1

+
dH(AZτ(m)

· i, AZτ(m)
· i+BZn)

n︸ ︷︷ ︸
2

+
dH(AZτ(m)

· i +BZn , AZn · i+BZn)

n︸ ︷︷ ︸
3

.

The meaning of the three summands is illustrated in Figure 5. We will consider

them separately and show that each of them converges a.s. to 0. For 1 and 3 ,
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1

2

3

πH(Zτ(m))

πH(Zn)

πH(Z0)

Figure 5. Estimation of the distance between πH(Z0) and πH(Zn).

this is straightforward. Indeed,

1 =
| ln(AZτ(m)

)|
n

≤ | ln(AZτ(m)
)|

τ(m)
= ln

(q
p

)
·
∣∣∣λ(X1) + · · ·+ λ(Xτ(m))

τ(m)

∣∣∣
n→∞−−−−−→
a.s.

ln
( q
p

)
· |E(λ(X1))| = ln

( q
p

)
· |δ| = 0

and similarly

3 ≤ dH(AZτ(m)
· i, i)

n
+

dH(i, AZn · i)
n

= 1 +
| ln(AZn)|

n

= 1 + ln
( q
p

)
·
∣∣∣λ(X1) + · · ·+ λ(Xn)

n

∣∣∣ n→∞−−−−−→
a.s.

0.

For 2 , recall from the proof of Lemma 4.5 that

BZn =
n∑

k=1

AX1 · · ·AXk−1
· BXk

and observe that for all ,m ∈ N0 with τ(m) ≤  ≤ τ(m + 1) the following

holds:

(†)

|BZ�
−BZτ(m)

|
AZτ(m)

≤AX1 · · ·AXτ(m)
·∑	

k=τ(m)+1 AXτ(m)+1
· · ·AXk−1

· |BXk
|

AX1 · · ·AXτ(m)

=
	∑

k=τ(m)+1

AXτ(m)+1
· · ·AXk−1︸ ︷︷ ︸

≤ 1

· |BXk
|

≤
	∑

k=τ(m)+1

|BXk
| a.s.
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Hence, using that AZτ(0)
< AZτ(1)

< · · · < AZτ(m)
, we obtain

2 =
1

n
· arcosh

(
1 +

1

2
·
( |BZn |
AZτ(m)

)2)
=
1

n
· ln

(
1 +

1

2
·
( |BZn |
AZτ(m)

)2

+

√(
1 +

1

2
·
( |BZn |
AZτ(m)

)2)2

− 1

)
≤ 1

n
·
(
ln(2) + ln

(
1 +

( |BZn |
AZτ(m)

)2))
≤ 1

n
·
(
ln(2) + 2 · ln

(
1 +

|BZn |
AZτ(m)

))
≤ 1

n
·
(
ln(2) + 2 · ln

(
1 +

|BZτ(1)
−BZτ(0)

|
AZτ(0)

+
|BZτ(2)

−BZτ(1)
|

AZτ(1)

+ · · ·+ |BZτ(m)
−BZτ(m−1)

|
AZτ(m−1)

+
|BZn −BZτ(m)

|
AZτ(m)

))
,

which allows us to use that τ(m) ≤ n < τ(m + 1) together with (†), and then

by applying (∗∗) we obtain

· · · ≤ 1

n
·
(
ln(2) + 2 · ln

(
1 +

n∑
k=1

|BXk
|
))

≤ 1

n
·
(
ln(2) + 2 · ln

(
1 +

τ(m+1)∑
k=1

|BXk
|
))

≤ ln(2)

n︸ ︷︷ ︸
→ 0

+2 ·
ln(1 +

∑τ(1)
k=τ(0)+1 |BXk

|) + · · ·+ ln(1 +
∑τ(m+1)

k=τ(m)+1 |BXk
|)

m+ 1︸ ︷︷ ︸
→ E(ln(1+

∑
τ
k=1 |BXk

|)) a.s. by Lemma 4.7

· m+ 1

τ(m)︸ ︷︷ ︸
→ 0
a.s.

· τ(m)

n︸ ︷︷ ︸
≤ 1
a.s.

n→∞−−−−−→
a.s.

0.

4.2. Convergence to the space of ends of the Bass–Serre tree. Even

though the projections πT (Zn) do not need to satisfy the Markov property, we

are still able to show that they converge a.s. to a random end by applying a

result of Cartwright and Soardi, [CS89, p. 820, Theorem], which is based on a

technique developed by Furstenberg in [Fur63] and [Fur71]. The authors con-

sider a random walk Φ = (Φ0,Φ1, . . . ) on the automorphism group of a locally



Vol. TBD, 2018 RANDOM WALKS ON BAUMSLAG–SOLITAR GROUPS 23

finite and infinite tree and prove under a mild assumption on the probability

measure that the sequence of vertices obtained by evaluating each automor-

phism Φn at a fixed vertex v converges a.s. to a random end. Their assumption

is that the random walk is driven by a regular Borel probability measure whose

support is not contained in any amenable subgroup. However, the proof of

[CS89, p. 820, Theorem] shows that it suffices to assume that the support is not

contained in any amenable closed subgroup. Given that 1 < p < q, this result

can be immediately applied to our setting.

Lemma 4.8: Let 1 < p < q. Then, the projections πT (Zn) converge a.s. to a

random end ξ ∈ ∂T .

Proof. Since the group G acts on the tree T , we may consider the group ho-

momorphism ϕ : G → Aut(T ) associated to this action. The automorphism

group Aut(T ) is endowed with the topology of pointwise convergence. Since G

is discrete, ϕ is certainly measurable. The pointwise images

(ϕ(Z0), ϕ(Z1), . . . )

constitute a random walk on Aut(T ) that satisfies the assumption of [CS89,

p. 820, Theorem]. Indeed, the random walk on Aut(T ) is driven by the push-

forward Borel probability measure ϕ∗(μ). Because Aut(T ) is a locally compact

Hausdorff space with a countable base (see, e.g., [Woe91, §2]) every Borel prob-

ability measure on Aut(T ) is regular (see, e.g., [Coh13, Proposition 7.2.3]) and

so is ϕ∗(μ). It remains to show that the support of the latter is not contained

in any amenable closed subgroup.

Observe that the support of ϕ∗(μ) generates the subgroup

ϕ(G) ≤ Aut(T ).

Since ϕ(G) acts transitively on T and does not fix an end, every closed sub-

group that contains ϕ(G) has these two properties as well and is therefore not

amenable; see [Neb88, Theorem 2]. In other words, the support of ϕ∗(μ) is not
contained in any amenable closed subgroup of Aut(T ). Now, [CS89, p. 820,

Theorem] yields that the sequence obtained by evaluating each automorphism

ϕ(Zn) at a fixed vertex v converges a.s. to a random end ξ ∈ ∂T . Since

πT (Zn) = ZnB = ϕ(Zn)(B),

setting v := B completes the proof.
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4.3. Construction of μ-boundaries. Resuming Sections 4.1 and 4.2, we

may formulate the following theorem.

Theorem 4.9 (“convergence theorem”): Let Z = (Z0, Z1, . . . ) be a random

walk on a non-amenable Baumslag–Solitar group G = BS(p, q) with 1 < p < q

and increments X1, X2, . . . of finite first moment. Then, the projections πT (Zn)

converge a.s. to a random end ξ ∈ ∂T . Moreover, depending on the vertical

drift δ, we distinguish three cases:

(1) If δ > 0, then the projections πH(Zn) converge a.s. to ∞ ∈ ∂H.

(2) If δ < 0, then the projections πH(Zn) converge a.s. to a random element

r ∈ R = ∂H� {∞}.
(3) If δ = 0 and ln(AX1 ) has finite second moment and there is an ε > 0

such that ln(1 + |BX1 |) has finite (2 + ε)-th moment, then projections

πH(Zn) have sublinear speed.

So, let us assume that 1 < p < q and that the increments X1, X2, . . . have

finite first moment. We may therefore consider the map bnd∂T : Ω → ∂T and,

in the special case that δ < 0, also the map bndR : Ω → R, defined almost

everywhere, assigning to a trajectory ω = (x0, x1, . . . ) ∈ Ω the limit

bnd∂T (ω) := lim
n→∞πT (xn) ∈ ∂T and bndR(ω) := lim

n→∞πH(xn) ∈ R.

The topological spaces ∂T and R are endowed with their Borel σ-algebras B∂T

and BR. Even though the maps bnd∂T and bndR are only defined almost

everywhere, they are measurable in the sense that the preimages of measurable

sets are measurable. Given bnd∂T and bndR, we may construct their product

map bnd∂T×R : Ω → ∂T × R. It is measurable with respect to the product

σ-algebra B∂T ⊗ BR. Because both ∂T and R are metrisable and separable

topological spaces, it is not hard to see that the product σ-algebra B∂T ⊗ BR

agrees with the Borel σ-algebra B∂T×R; see, e.g., [Bil99, Appendix M.10]. The

pushforward probability measures

ν∂T := (bnd∂T )∗(P) and ν∂T×R := (bnd∂T×R)∗(P)

on the respective measurable spaces are called the hitting measures. Since

∂T and R, and therefore also ∂T × R, are Polish spaces, Example 3.3 implies

that (∂T,B∂T , ν∂T ) and (∂T ×R,B∂T×R, ν∂T×R) are Lebesgue–Rohlin spaces.

The maps bnd∂T and bnd∂T×R are homomorphisms and, by construction, they

are 1 ∼-invariant.



Vol. TBD, 2018 RANDOM WALKS ON BAUMSLAG–SOLITAR GROUPS 25

Each of the topological spaces ∂T and R is endowed with a continuous G-

action. The one on ∂T is induced by the left-multiplication g(hB) := (gh)B

on T . More precisely, recall that ends are infinite reduced paths that start

in B. The pointwise left-multiplication maps every such path ξ ∈ ∂T to some

other path that need not start in B anymore. The end gξ ∈ ∂T is obtained by

connecting B to the initial vertex of this path and reducing the concatenation

if necessary. The G-action on R is induced by the isometric G-action on H that

we addressed in Section 2.3. In light of the representation of the elements of

Isom(H) as rational functions, we can also evaluate them on the boundary ∂H

and finally observe that the isometries associated to the elements of G leave the

subset R ⊆ ∂H invariant. The G-actions on ∂T and R induce a componentwise

G-action on the product ∂T × R, which is also continuous.

All three G-actions are measurable with respect to the Borel σ-algebras and,

since they map null sets A to null sets gA, they remain measurable when

we proceed to the completions. In particular, the spaces (∂T,B∂T , ν∂T ) and

(∂T × R,B∂T×R, ν∂T×R) are endowed with measurable G-actions and, by con-

struction, the maps bnd∂T and bnd∂T×R are 2 G-equivariant. We have thus

derived the following lemma.

Lemma 4.10: For any vertical drift δ, in particular for δ ≥ 0, the Lebesgue–

Rohlin space (∂T,B∂T , ν∂T ) endowed with the homomorphism bnd∂T : Ω → ∂T

is a μ-boundary. If δ < 0, then (∂T × R,B∂T×R, ν∂T×R) endowed with

bnd∂T×R : Ω → ∂T × R is also a μ-boundary.

Before we will use Kaimanovich’s strip criterion to show that the above μ-

boundaries are maximal, we analyse the hitting measures. This requires a

preliminary observation.

Lemma 4.11: The G-actions on ∂T and R, as well as the componentwise G-

action on the product ∂T×R, are topologically minimal, i.e., each orbit is dense.

Because all three spaces are infinite and Hausdorff, this implies that each orbit

is infinite.

Proof. Consider the G-action on ∂T . Choose an end ξ ∈ ∂T and a non-empty

open subset S ⊆ ∂T . We shall construct an element g ∈ G such that gξ ∈ S.

Because S is non-empty and open, all ends with a certain finite initial piece

belong to S. In other words, there is an element h ∈ G such that all ends that

start in B and traverse the vertex hB are contained in S. If we set g := h ∈ G,
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then the end gξ ∈ ∂T will have the correct finite initial piece unless cancellation

takes place. In the latter case, we set g := hb ∈ G instead. Since |p| 	= 1 and

|q| 	= 1, cancellation will take place in at most one of the two cases, which proves

the first assertion.

Next, consider the G-action on R, an element r ∈ R, and a non-empty open

subset S ⊆ R. Because S is non-empty and open, there are s ∈ R and ε > 0 such

that the interval (s−ε, s+ε) is contained in S. We assume that 1 < p < q, so we

can find integers k1, k2 ∈ Z with k1 < 0 such that qk1p−k1 < ε and the elements

qk1p−k1(r + k2) and qk1p−k1(r + k2 + 1) are both contained in (s − ε, s + ε).

Therefore, we set g := ak1bk2 ∈ G to obtain

gr = ak1bk2r = ak1(r + k2) = qk1p−k1(r + k2) ∈ (s− ε, s+ ε) ⊆ S.

Finally, consider the G-action on the product ∂T × R, an element

(ξ, r) ∈ ∂T × R, and a non-empty open subset S ⊆ ∂T × R. Because S is

non-empty and open, there are non-empty and open subsets S1 ⊆ ∂T and

S2 ⊆ R such that S1×S2 is contained in S. We shall now construct an element

g ∈ G such that both gξ ∈ S1 and gr ∈ S2. Look at the tree component first.

We already know that there is an element h ∈ G such that all ends that start in

B and traverse the vertex hB are contained in S1. Let k0 ∈ {0, 1}, whichever
ensures that the reduced path from B to the vertex hbk0a−1B traverses the

vertex hB. Now, look at the real component. We can find integers k1, k2 ∈ Z

with k1 < 0 such that the elements ak1bk2r and ak1bk2+1r are both contained

in (hbk0)−1S2. Back to the tree component, we choose k3 ∈ {0, 1} such that the

end hbk0ak1bk2+k3ξ traverses the vertex hbk0ak1B. Then, by construction, it

also traverses the vertex hB. We set g := hbk0ak1bk2+k3 ∈ G to obtain gξ ∈ S1

and gr ∈ S2.

Given Lemma 4.11 and the μ-stationarity and quasi-invariance of the hitting

measures, it is well-known that the latter are non-atomic and have full support.

Indeed, if there were atoms, then we could choose an atom ξ of maximal mass.

Because the respective hitting measure ν is μ-stationary, the value ν(ξ) is a

convex combination of all values ν(g−1ξ) with g ∈ supp(μ). Therefore, each

ν(g−1ξ) must be equal to ν(ξ). Iteration of this procedure yields that the

equality does not only hold for every g ∈ supp(μ) but also for every g in the

semigroup generated by supp(μ), i.e., for every g ∈ G. Since the orbit Gξ is

infinite, this contradicts the finiteness of the hitting measure ν. Concerning the
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assertion of full support, if there was a non-empty open null set S, then the

topological minimality of the G-action would imply that the translates gS with

g ∈ G form a countable covering of the whole space with null sets, which is a

contradiction. For further details see, e.g., [Woe89, Lemma 3.4] and [MNS17,

Lemma 2.2 and 2.3].

4.4. Proof of the main result. We are now ready to prove our main re-

sult, Theorem 1.1 announced in the introduction. It identifies the Poisson–

Furstenberg boundary of random walks Z = (Z0, Z1, . . . ) on non-amenable

Baumslag–Solitar groups

G = BS(p, q)

with 1 < p < q and increments X1, X2, . . . of finite first moment.

Proof of Theorem 1.1. We seek to apply the strip criterion, Theorem 3.5. By

Lemma 3.7, the probability measure μ driving the random walk has finite

entropy. By Lemma 4.10, the Lebesgue–Rohlin space (∂T,B∂T , ν∂T ) is a μ-

boundary. If Z has negative vertical drift δ < 0, then (∂T × R,B∂T×R, ν∂T×R)

is also a μ-boundary. Let us consider the case δ < 0 first. We thus take the μ-

boundary (∂T × R,B∂T×R, ν∂T×R) and the μ̌-boundary (∂T,B∂T , ν̌∂T ). Here,

ν̌∂T denotes the hitting measure of the pointwise projection of the random walk

Ž = (Ž0, Ž1, . . .) driven by the reflected probability measure μ̌ to the tree T .

Next, we define gauges and strips. Let S := {a, b} ⊆ G be the standard

generating set and define gauges Gk := {g ∈ G : dS(1, g) ≤ k}, i.e., the gauges

exhaust the group G with balls centred at the identity element 1 ∈ G and the

gauge function | · | = | · |G is essentially the distance to 1 with respect to the

word metric dS .

Since the hitting measures are non-atomic, see Section 4.3, we know that

ν̌∂T ⊗ ν∂T×R-almost every pair of points (ξ−, (ξ+, r+)) ∈ ∂T × (∂T × R) has

distinct ends ξ−, ξ+ ∈ ∂T . In this situation, we may connect ξ− and ξ+ by a

doubly infinite reduced path v : Z → T and define the strip S (ξ−, (ξ+, r+)) as
follows. It consists of all g ∈ G in the full πT -preimage of the path, i.e., the

image πT (g) is contained in v(Z), with the additional property that the real

part Re(πH(g)) has minimal distance to r+ ∈ R among all real parts Re(πH(h))

with h ∈ gB, see the left-hand side of Figure 6. To all remaining pairs we

assign the whole of G as a strip. This way, the map S becomes measurable

and G-equivariant. Since the hitting measures have full support, see Section 4.3
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r+ ∈ R

Figure 6. Strips for the cases δ 	= 0 (left) and δ = 0 (right).

again, it is not hard to see that a random strip contains the identity element

1 ∈ G with positive probability, i.e., the map S satisfies the inequality of

Remark 3.6. So, it suffices to verify the following convergence for an arbitrary

pair (ξ−, (ξ+, r+)) ∈ ∂T × (∂T × R) with distinct ends ξ−, ξ+ ∈ ∂T ,

1

n
· ln(card(S (ξ−, (ξ+, r+)) ∩ G|Zn|))

n→∞−−−−−→
a.s.

0.

The strip S (ξ−, (ξ+, r+)) intersects the gauge G|Zn| in at most 2 · |Zn|+1 many

cosets from G/B and each of them contains at most two elements of the strip.

Therefore,

1

n
· ln(card(S (ξ−, (ξ+, r+)) ∩ G|Zn|)) ≤

ln((2 · |Zn|+ 1) · 2)
n

=
ln((2 · dS(1, Zn) + 1) · 2)

n

n→∞−−−−−→
a.s.

0.

In the final step above, we used that X1 has finite first moment. Indeed,

1

n
· dS(1, Zn) =

1

n
· dS(1, X1 · · ·Xn)

≤ 1

n
·

n∑
k=1

dS(1, Xk)
n→∞−−−−−→
a.s.

E(dS(1, X1)),

from where we may first conclude that the sequence 1
n ·dS(1, Zn) is a.s. bounded

and second that the sequence 1
n · ln((2 · dS(1, Zn) + 1) · 2) converges a.s. to 0.
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So, we can finally apply the strip criterion and obtain that

(∂T × R,B∂T×R, ν∂T×R)

is isomorphic to the Poisson–Furstenberg boundary. Vice versa, if Z has positive

vertical drift δ > 0, then the same argument yields that (∂T,B∂T , ν∂T ) is

isomorphic to the Poisson–Furstenberg boundary.

It remains to consider the driftless case, i.e., δ = 0. Then, both μ and μ̌ are

driftless and there is no natural candidate for a real number that determines the

horizontal position of the strip. But the fact that the projections πH(Zn) have

sublinear speed, see Lemma 4.6, allows us to solve this issue. More precisely,

take the μ-boundary (∂T,B∂T , ν∂T ) and the μ̌-boundary (∂T,B∂T , ν̌∂T ) and

define gauges

Gk := {g ∈ G : dT (πT (1), πT (g)) ≤ k2 and dH(πH(1), πH(g)) ≤ k}.
Again, ν̌∂T ⊗ ν∂T -almost every pair of points (ξ−, ξ+) ∈ ∂T × ∂T has distinct

ends ξ−, ξ+ ∈ ∂T , which we may connect by a doubly infinite reduced path

v : Z → T . Let S (ξ−, ξ+) be the full πT -preimage of the path, i.e., the set

consisting of all g ∈ G such that πT (g) is contained in v(Z); see the right-hand

side of Figure 6. Again, to all remaining pairs we assign the whole of G as a

strip. This way, the map S becomes measurable, G-equivariant, and satisfies

the inequality of Remark 3.6. Now, pick an arbitrary pair (ξ−, ξ+) ∈ ∂T × ∂T

with distinct ends ξ−, ξ+ ∈ ∂T . We claim that

1

n
· ln(card(S (ξ−, ξ+) ∩ G|Zn|)) ≤

ln((2 · |Zn|2 + 1) · exp(|Zn|+ 2))

n

=
ln(2 · |Zn|2 + 1)

n︸ ︷︷ ︸
1

+
|Zn|+ 2

n︸ ︷︷ ︸
2

.

Indeed, the inequality holds for a similar reason as above. The strip S (ξ−, ξ+)
intersects the gauge G|Zn| in at most 2 · |Zn|2 + 1 many cosets from G/B.

Slightly more involved is the observation that each of them contains at most

exp(|Zn| + 2) many elements of the gauge. Fix a coset gB. The projections

πH(h) of the elements h ∈ gB are located on a horizontal line L ⊆ H with

imaginary part y := Im(πH(g)). One necessary condition for such an element

h ∈ gB to be contained in the gauge G|Zn| is that the projection πH(h) is

contained in the closed disc D := {z ∈ H : dH(i, z) ≤ |Zn|} ⊆ H. If L ∩ D is

empty, then the coset gB does not contain any element of the gauge and we
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are done. Otherwise, there is a unique x ∈ R with x ≥ 0 such that L ∩ D is

the horizontal line between z1 := −x + iy and z2 := x + iy; see Figure 7. The

projections πH(h) with h ∈ gB have the property that the real parts Re(πH(h))

and Re(πH(hb)) differ exactly by y. So, L∩D contains at most 1 + 2x
y many of

them. Let us now estimate 1 + 2x
y in terms of |Zn|. Since z1 and z2 are both

contained in D, their distance is at most 2 · |Zn|. Therefore,

2 · |Zn| ≥ dH(z1, z2) = arcosh
(
1 +

|z2 − z1|2
2 · Im(z1) Im(z2)

)
=arcosh

(
1 +

2x2

y2

)
≥ ln

(
1 +

2x2

y2

)
.

And, in particular,

exp(2 · |Zn|) > 2x2

y2
, ⇐⇒ exp

(
|Zn|+ 1

2
· ln(2)

)
>

2x

y
,

=⇒ exp(|Zn|+ 2) > 1 +
2x

y
.

So, the coset gB contains strictly fewer than exp(|Zn|+2) elements of the gauge.

We will now show that both summands 1 and 2 converge a.s. to 0, which will

complete the proof. Let us first observe that

(‡)
|Zn| − 1 ≤max{dH(πH(1), πH(Zn)),

√
dT (πT (1), πT (Zn))}

≤max{dH(πH(1), πH(Zn)),
√
dS(1, Zn)}.

Concerning 1 , we deduce from (‡) and Lemma 2.3 that

|Zn| ≤ max{a, b, 1} · dS(1, Zn) + 1

and finally obtain by the same argument as above

1 =
ln(2 · |Zn|2 + 1)

n
≤ ln(2 · (max{a, b, 1} · dS(1, Zn) + 1)2 + 1)

n

n→∞−−−−−→
a.s.

0.

On the other hand, concerning 2 , we apply (‡) and Lemma 4.6 to obtain

2 =
|Zn|+2

n
≤max{dH(πH(1), πH(Zn)),

√
dS(1, Zn)}+3

n

n→∞−−−−−→
a.s.

0.
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i

y
L

D

z1 = −x+ iy z2 = x+ iy

Figure 7. The horizontal line L, the closed disc D, and their

intersection L ∩D.

Appendix: The remaining non-amenable cases

Recall from Section 2.1 that a Baumslag–Solitar group BS(p, q) is non-amenable

if and only if neither |p| = 1 nor |q| = 1. Until now, we have only identified the

Poisson–Furstenberg boundary for random walks on non-amenable Baumslag–

Solitar groups BS(p, q) with 1 < p < q. Replacing one of the two generators by

its inverse yields

BS(p, q) ∼= BS(q, p) and BS(p, q) ∼= BS(−p,−q).

So, in order to cover the remaining non-amenable cases, it suffices to consider

1 < p < −q and 1 < p = |q|. Below, we explain how to adjust our methods to

obtain similar results for these cases.

A.1. Action by suitable isometries on the hyperbolic plane. Assume

that G = BS(p, q) with 1 < p < −q. The definition of the tree T and the level

function λ remain the same and even Remark 2.2 can be adapted, replacing q by

|q|. Recall that, in Section 2.3, we first constructed the group homomorphism

πIsom(H) : G → Isom(H) and then used it to define the projection πH : G → H.

This is precisely what we are going to do again; but, this time, with another

isometry πIsom(H)(a). Let πIsom(H) : {a, b} → Isom(H) be the map given by

πIsom(H)(a) :=
(
z �→ |q|

p
· (−z̄)

)
and πIsom(H)(b) := (z �→ z + 1).

It follows from von Dyck’s theorem that this map can be uniquely extended to a

group homomorphism πIsom(H) : G → Isom(H). Now, we define πH : G → H by

πH(g) := πIsom(H)(g)(i).
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Lemma A.1: For every g ∈ G the point πH(ga) ∈ H is above the point

πH(g) ∈ H; the two points have the same real part and their distance in the

hyperbolic plane is a := ln( |q|p ). The point πH(gb) ∈ H is either to the right

or to the left of the point πH(g) ∈ H depending on whether the level λ(g) is

even or odd; in any case, the two points have the same imaginary part and their

distance in the hyperbolic plane is b := ln(3+
√
5

2 ).

Proof sketch. The proof is similar to the one of Lemma 2.3, and we shall

only address the differences. The points πH(gb) ∈ H and πH(g) ∈ H are ob-

tained by evaluating πIsom(H)(g) at πH(b) ∈ H and πH(1) ∈ H. Again, the

image πIsom(H)(g) is a composition of πIsom(H)(a
±1) and πIsom(H)(b

±1). While

πIsom(H)(b
±1) are translations, each occurrence of πIsom(H)(a

±1) yields both a

dilation and a reflection at the imaginary axis. This implies that the point

πH(gb) ∈ H is to the right of the point πH(g) if and only if the number of occur-

rences of πIsom(H)(a
±1) is even, which is the case if and only if λ(g) is even.

Using this projection, and replacing q by |q| wherever it is necessary, we

may repeat most of the arguments from Section 4. For example, the defini-

tions of the imaginary part Ag and the real part Bg now yield the equation

ln(Ag) = ln( |q|p ) · λ(g). In order to identify the Poisson–Furstenberg boundary

geometrically, we first showed that the pointwise projections of the random walk

to H and T converge a.s. to random elements in the respective boundaries.

While the proof of Lemma 4.4 for δ > 0 can be adapted, the one of Lemma 4.5

for δ < 0 requires some additional work. We have to show that the real parts

BZn converge a.s. to a random element r ∈ R. In the original proof, we used

that AZn = AX1 · · ·AXn and BZn =
∑n

k=1 Ck with Ck := AX1 · · ·AXk−1
·BXk

.

The first formula for AZn remains true. However, the second one for BZn does

not because we are now in a situation where not only the scaling but also the

direction of the next horizontal increment depends on the current level. Instead,

we obtain that

BZn =

n∑
k=1

Ck

with Ck := εX1 · AX1 · · · εXk−1
· AXk−1

· BXk
where εg := 1 if λ(g) is even and

εg := −1 if λ(g) is odd. This allows us to apply Cauchy’s root test as in the

proof of Lemma 4.5. Moreover, the proofs of Lemmas 4.6 and 4.7 for δ = 0 can

also be adapted because the estimates are not in terms of the actual horizontal

increments but only of their absolute values.
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Concerning the boundary ∂T , it suffices to observe that the proof of Lemma

4.8 only requires the property that the subgroup ϕ(G) ≤ Aut(T ) acts transi-

tively on T and does not fix an end, which is always the case unless |p| = 1 or

|q| = 1. Therefore, it still shows that the projections πT (Zn) converge a.s. to

a random end in ∂T . As in Lemma 4.11, we can show that the G-actions on

∂T and ∂T × R are topologically minimal, whence the hitting measures ν∂T

and ν∂T×R are non-atomic and have full support. This allows us to adapt the

proof of Theorem 1.1 and to obtain the following version of the identification

theorem.

Theorem A.2 (“identification theorem” for 1 < p < −q): Let Z = (Z0, Z1, . . . )

be a random walk on a non-amenable Baumslag–Solitar group G = BS(p, q)

with 1 < p < −q and increments X1, X2, . . . of finite first moment. Depending

on the vertical drift δ, we distinguish three cases:

(1) If δ > 0, then the Poisson–Furstenberg boundary is isomorphic to

(∂T,B∂T , ν∂T ) endowed with the boundary map bnd∂T : Ω → ∂T .

(2) If δ < 0, then the Poisson–Furstenberg boundary is isomorphic to

(∂T × R,B∂T×R, ν∂T×R) endowed with bnd∂T×R : Ω → ∂T × R.

(3) If δ = 0 and ln(AX1 ) has finite second moment and there is an ε > 0

such that ln(1 + |BX1 |) has finite (2+ ε)-th moment, then the Poisson–

Furstenberg boundary is isomorphic to (∂T,B∂T , ν∂T ) endowed with

bnd∂T : Ω → ∂T .

A.2. Action by isometries on the Euclidean plane. Let us now assume

that G = BS(p, q) with 1 < p = |q|. Again, the definition of the tree T and the

level function λ remain the same and Remark 2.2 can be adapted. However,

the situation differs fundamentally from the ones discussed so far because each

brick, see 1 and 2 in Figure 2, would now have equally many edges on its upper

and lower level. Therefore, we shall use the Euclidean plane R2 instead of the

hyperbolic plane H. In order to construct a projection πR2 : G → R2, consider

the map πIsom(R2) : {a, b} → Isom(R2) given by

πIsom(R2)(a) :=

⎧⎨⎩((x, y) �→ (x, y + 1)) if q > 0

((x, y) �→ (−x, y + 1)) if q < 0

and

πIsom(R2)(b) :=((x, y) �→ (x+ 1, y)).
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In both cases, q > 0 and q < 0, we may apply von Dyck’s theorem to extend

the map uniquely to a group homomorphism πIsom(R2) : G → Isom(R2). Now,

we define πR2 : G → R2 by πR2(g) := πIsom(R2)(g)(0, 0). Note that, instead of

the discrete hyperbolic plane, we obtain a discrete Euclidean plane Γv.

We want to show that, as soon as the projections converge to a random

element in ∂T , independently of the vertical drift, the Poisson–Furstenberg

boundary is isomorphic to (∂T,B∂T , ν∂T ). In particular, we do not need to

introduce any boundary to capture the behaviour of the projections πR2(Zn).

Even though the action of the group G on the tree T is not faithful anymore,

the proof of Lemma 4.8 still shows that the projections πT (Zn) converge a.s. to

a random end in ∂T . As in the first assertion of Lemma 4.11, we can show that

the G-action on ∂T is topologically minimal, whence the hitting measure ν∂T

is non-atomic and has full support. This finally allows us to prove the following

version of the identification theorem.

Theorem A.3 (“identification theorem” for 1 < p = |q|): Let Z = (Z0, Z1, . . . )

be a random walk on a non-amenable Baumslag–Solitar group G = BS(p, q)

with 1 < p = |q| and increments X1, X2, . . . of finite first moment. Then, the

Poisson–Furstenberg boundary is isomorphic to (∂T,B∂T , ν∂T ) endowed with

the boundary map bnd∂T : Ω → ∂T .

Proof sketch. As in the proof of Theorem 1.1, we take the μ-boundary

(∂T,B∂T , ν∂T ) and the μ̌-boundary (∂T,B∂T , ν̌∂T ). Then, we define gauges

Gk := {g ∈ G : dT (πT (1), πT (g)) ≤ k and dR2(πR2 (1), πR2(g)) ≤ k}.
Again, ν̌∂T ⊗ ν∂T -almost every pair of points (ξ−, ξ+) ∈ ∂T × ∂T has distinct

ends ξ−, ξ+ ∈ ∂T , which we may connect by a doubly infinite reduced path

v : Z → T . Let S (ξ−, ξ+) be the full πT -preimage of the path, i.e., the set

consisting of all g ∈ G such that πT (g) is contained in v(Z). To all remaining

pairs we assign the whole of G as a strip. This way, the map S becomes

measurable, G-equivariant, and satisfies the inequality of Remark 3.6. Now,

pick an arbitrary pair (ξ−, ξ+) ∈ ∂T × ∂T with distinct ends ξ−, ξ+ ∈ ∂T . We

claim that

1

n
· ln(card(S (ξ−, ξ+) ∩ G|Zn|)) ≤

ln((2 · |Zn|+ 1) · (2 · |Zn|+ 1))

n
.

Indeed, the strip S (ξ−, ξ+) intersects the gauge G|Zn| in at most 2 · |Zn| + 1

many cosets from G/B, and each of them contains at most 2 · |Zn| + 1 many
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elements of the gauge. Now, it suffices to consider the standard generating set

S := {a, b} ⊆ G and to observe that |Zn| ≤ dS(1, Zn) + 1. Then, as in the

proof of Theorem 1.1, we may use the fact that 1
n · dS(1, Zn) is a.s. bounded

and conclude that

· · · = ln((2 · |Zn|+ 1)2)

n
≤ ln((2 · dS(1, Zn) + 3)2)

n

n→∞−−−−−→
a.s.

0,

which allows us to apply the strip criterion.
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Annales Scientifiques de l’École Normale Supérieure 15 (1982), 257–364.

[Ers04] A. Erschler, Boundary behavior for groups of subexponential growth, Annals of

Mathematics 160 (2004), 1183–1210.

[Ers10] A. Erschler, Poisson–Furstenberg boundaries, large-scale geometry and growth of

groups, in Proceedings of the International Congress of Mathematicians, Vol. II,

Hindustan Book Agency, New Delhi, 2010, pp. 681–704.

[Fel71] W. Feller, An Introduction to Probability Theory and its Applications, Vol. II,

John Wiley & Sons, New York–London–Sydney, 1971.

[Fur63] H. Furstenberg, A Poisson formula for semi-simple Lie groups, Annals of Mathe-

matics 77 (1963), 335–386.

[Fur71] H. Furstenberg, Random walks and discrete subgroups of Lie groups, in Advances

in Probability and Related Topics, Vol. 1, Dekker, New York, 1971, pp. 1–63.

[Fur73] H. Furstenberg, Boundary theory and stochastic processes on homogeneous spaces,

in Harmonic Analysis on Homogeneous Spaces, Proceedings of Symposia in Pure

Mathematics, Vol.26, American Mathematical Society, Providence, RI, 1973,

pp. 193–229.

[GPS94] S. W. Golomb, R. E. Peile and R. A. Scholtz, Basic Concepts in Information

Theory and Coding, Applications of Communications Theory, Plenum Press, New

York, 1994.

[Hae73] J. Haezendonck, Abstract Lebesgue–Rohlin spaces, Bulletin de la Société
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