
Diophantine Approximations and Fractals

Part II

1 Basics on regular continued fractions

For a0 ∈ N0 (i.e. a0 is a non-negative integer) and a1, a2, a3, . . . ∈ N (i.e. ai is a positive
integers for i = 1, 2, 3, . . . ) we consider an expression of the form

a0 +
1

a1 +
1

a2 +
1

a3 . . .

.

Such an expression is called a regular continued fraction (which we shall abreviate by ‘CF’),
and the numbers ai are called elements of the CF. The number of elements in a CF may
be finite or infinite. For ease of notation we write

[a0; a1, a2, . . .] = a0 +
1

a1 +
1

a2 + . . .

.

Since a finite CF results from a finite number of rational operations, it is clear that every
finite CF represents a positive real number (in fact, we shall see that this statement also
holds for the infinite CFs, and furthermore that also the converse is true, namely that every
positive real number can be represented in an unique way by a CF). In particular, the
number represented by a finite(!) CF must be a rational number (whereas, as we shall see,
a real number is represented by an infinite CF if and only if it is an irrational number).
Examples:
A rational number:

17
5

=
15 + 2

5
= 3 +

2
5

= 3 +
1
5
2

= 3 +
1

4+1
2

= 3 +
1

2 + 1
2

= [3; 2, 2].

An irrational number:
√

2 = 1 + (
√

2− 1) = 1 +
1
1√
2−1

= 1 +
1√

2 + 1
= 1 +

1
2 + (

√
2− 1)

= 1 +
1

2 + (
√

2− 1)
= . . . = 1 +

1

2 +
1

2 + . . .

= [1; 2, 2, 2, 2, . . .].

Note that in this form for a finite CF we could have that the last element is equal to 1 ,
which then gives two ways of representing a rational number by a CF. We resolve this by
demanding that in a finite CF the final element is always greater than 1 .
For instance, in the above example we then would have obtained

17
5

= . . . = 3 +
1

2 + 1
2

= 3 +
1

2 + 1
1+ 1

1

= [3; 2, 1, 1],
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but we simply do not allow this representation.

The CF-algorithm: Given a positive real number ξ . Let [[ξ]] denote the greatest integer
less than or equal to ξ . Put a0 = [[ξ]] . If a0 = ξ then we are finished, that is the CF of ξ
is equal to [a0] . If a0 6= ξ , then there exists a real number r1 > 1 such that

ξ = a0 +
1
r1
.

Consider r1 , and let [[r1]] denote the greatest integer less than or equal to r1 . Put a1 =
[[r1]] . Either we have that ξ = a0 + 1

a1
and we are finished, that is the CF of ξ is equal

to [a0; a1] , or we have ξ 6= a0 + 1
a1

. If we are in the latter case, then there exists a real
number r2 > 1 such that

ξ = a0 +
1

a1 + 1
r2

.

Consider r2 , and let [[r2]] denote the greatest integer less than or equal to r2 . Put a2 =
[[r2]] , and proceed as before.
More generally, the mechanism of finding an , given that a0, . . . , an−1 have been found, is
as follows.
Assume that a0, . . . , an−1 have been found. If we have that

ξ = a0 +
1

a1 +
1

a2 + . . .
1

an−1

,

then we are finished and ξ is a rational number with CF equal to [a0; a1, . . . , an−1] . Whereas
if

ξ 6= a0 +
1

a1 +
1

a2 + . . .
1

an−1

,

then there exists a real number rn > 1 such that

ξ = a0 +
1

a1 + +
1

a2 + . . .
1

an−1 + 1
rn

.

Consider rn , and let [[rn]] denote the greatest integer less than or equal to rn . Put
an = [[rn]] .
Clearly, this process of finding an can either stop at some stage (in which case ξ is a
rational number), or it carries on forever (in which case ξ is an irrational number).

Definition 1.1 For [a0; a1, a2, . . .] a given CF (which can be finite or infinite) we define

• pn
qn

= [a0; a1, a2, . . . , an];

• rn = [an; an+1, an+2, . . .].

The number pn
qn

is called n -th order convergent and rn is called n -th order remainder.
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Theorem 1.2 For [a0; a1, a2, . . .] a given CF (which can be finite or infinite) we have for
n ∈ N0

1. pn+1 = an+1pn + pn−1 ;

2. qn+1 = an+1qn + qn−1 ;

3. qnpn−1 − pnqn−1 = (−1)n .

Where we have set p−1 = q0 = 1, q−1 = 0 and p0 = a0 .

Proof: 1. and 2. : (by induction)
For n = 0 , we have that

p1

q1
= [a0; a1] = a0 +

1
a1

=
a1a0 + 1

a1
=
a1p0 + p−1

a1q0 + q−1
.

Hence, the statement is true for n = 0 , giving the start of our induction.
Now assume that for n ≥ 1 the statement is true all k < n (for all CFs).
Let us first consider

[a1; a2, . . . , an] =
An−1

Bn−1
, [a1; a2, . . . , an−1] =

An−2

Bn−2
and [a1; a2, . . . , an−2] =

An−3

Bn−3
.

Since the inductive assumption is applicable in this situation, we have that

An−1 = anAn−2 +An−3 and Bn−1 = anBn−2 +Bn−3.

Furthermore, we have

pn−1

qn−1
= a0 +

1
[a1; a2, . . . , an−1]

= a0 +
Bn−2

An−2
=
a0An−2 +Bn−2

An−2
,

which implies that
pn−1 = a0An−2 +Bn−2 and qn−1 = An−2.

Similarly, we derive
pn−2 = a0An−3 +Bn−3 and qn−2 = An−3.

Using these observations, we now obtain

pn
qn

= a0 +
Bn−1

An−1
= a0 +

anBn−2 +Bn−3

anAn−2 +An−3
=
a0(anAn−2 +An−3) + (anAn−2 +An−3)

anAn−2 +An−3

=
an(a0An−2 +Bn−2) + a0An−3 +Bn−3

anAn−2 +An−3
=
anpn−1 + pn−2

anqn−1 + qn−2
,

which finishes the proof of 1. and 2. .
In order to prove 3. , multiply the formula in 1. by qn and the formula in 2. by pn , and
then subtract the first from the second. This gives

qn+1pn − pn+1qn = −(qnpn−1 − pnqn−1),

and by iterating this ( (n+ 1) -times), we get

qn+1pn − pn+1qn = . . . = (−1)n+1(q0p−1 − p0q−1) = (−1)n+1,

which then proves 3. . 2
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Corollary 1.3 For all n ∈ N we have

pn−1

qn−1
− pn
qn

=
(−1)n

qnqn−1
.

Theorem 1.4 For [a0; a1, a2, . . .] a given CF (which can be finite or infinite) we have for
n ∈ N0

qn+1pn−1 − pn+1qn−1 = (−1)nan+1.

Proof: Multiply 1. in the previous theorem by qn−1 , and 2. by pn−1 . Subtracting the
so obtained first equality from the second, we get

qn+1pn−1 − pn+1qn−1 = an+1(qnpn−1 − pnqn−1) = (−1)nan+1.

2

Corollary 1.5 For all n ∈ N we have

pn−1

qn−1
− pn+1

qn+1
=

(−1)nan+1

qn+1qn−1
.

Lemma 1.6 For the denominators qn of the convergents of a CF we have for n ∈ N

qnqn−1 ≥
1√
2

2n−1.

Proof: We have
qn = anqn−1 + qn−2 ≥ qn−1.

Hence, it follows
qn = anqn−1 + qn−2 ≥ qn−1 + qn−2 ≥ 2qn−2

≥ . . . ≥
{

2
n
2 q0 for n even

2
n−1

2 q1 for n odd

≥ 2
n−1

2 .

Using this estimate, we derive

qnqn−1 ≥ 2
n−1

2 2
n−2

2 ≥ 1√
2

2n−1.

2

Proposition 1.7 For an infinite CF [a0; a1, a2, . . .] we have the following.

1. The sequence
(
p2n
q2n

)
of convergents of even order is increasing.

2. The sequence
(
p2n+1
q2n+1

)
of convergents of odd order is decreasing.

3. Every convergent of odd order is greater than any convergent of even order, and vice
versa, that is every convergent of even order is less than any convergent of odd order.

4. The distances between two consecutive convergents tend to zero, i.e.

lim
n→∞

(
pn+1

qn+1
− pn
qn

)
= 0.

4



With other ‘words’, we have that
p0

q0
<
p2

q2
<
p4

q4
< . . . <

p2n

q2n
↗ ξ ↙ p2n+1

q2n+1
< . . .

p5

q5
<
p3

q3
<
p1

q1
,

where ξ is the limit of the convergents, that is ξ = limn→∞ pn/qn .
Proof: By Corollary 5 we have

p2n

q2n
=
p2n+2

q2n+2
+

(−1)2n+1a2n+2

q2nq2n+2
=
p2n+2

q2n+2
− a2n+2

q2nq2n+2
<
p2n+2

q2n+2
,

and
p2n−1

q2n−1
=
p2n+1

q2n+1
+

(−1)2na2n+1

q2n−1q2n+1
=
p2n+1

q2n+1
+

a2n+1

q2n−1q2n+1
>
p2n+1

q2n+1
.

This proves the first two assertions in the proposition. To see the third, we use Corollary 3
and what we have just proven, and derive

p2n

q2n
=
p2n+1

q2n+1
− 1
q2nq2n+1

<
p2n+1

q2n+1
<
p2n−1

q2n−1
<
p2n−3

q2n−3
< . . . <

p1

q1
.

Hence for each n ∈ N , we have p2n
q2n

is strictly less than all convergents of odd order less
than or equal to 2n+ 1 . We are now going to prove (by way of contradiction) that this also
holds for all convergents of odd order greater than 2n+ 1 .
Therefore, we assume that the statement is false, i.e. we assume that there exists an odd
number 2k + 1 such that 2k + 1 > 2n+ 1 and

p2n

q2n
≥ p2k+1

q2k+1
.

By the first part of the proposition, we have
p2n

q2n
<
p2n+2

q2n+2
< . . . <

p2k

q2k
.

Hence, by combining these two latter estimates, we get
p2k+1

q2k+1
<
p2k

q2k
.

This clearly contradicts the fact which we have just seen to be true, namely the fact that
p2k

q2k
<
p2k+1

q2k+1
,

which finishes the proof of the third assertion in the proposition.
The forth assertion is an immediate consequence of Corollary 3 and Lemma 6.

2

We summarize our considerations in the following theorem.

Theorem 1.8 To every positive real number ξ there corresponds a unique CF with value
equal to ξ (where in the finite case we assume that the final element in the CF is greater
than 1 ) . This CF is finite if ξ is rational, and infinite if ξ is irrational.
In particular, if the CF is infinite, then ξ is equal to the limit of its convergents, that is

ξ = lim
n→∞

pn
qn
,

where we have more precisely
p0

q0
<
p2

q2
<
p4

q4
< . . . <

p2n

q2n
↗ ξ ↙ p2n+1

q2n+1
< . . .

p5

q5
<
p3

q3
<
p1

q1
.
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Theorem 1.9 For ξ = [a0; a1, a2, . . .] and n ∈ N , we have

ξ =
pnrn+1 + pn−1

qnrn+1 + qn−1
.

Proof: (by induction) For n = 0 we have

p0r1 + p−1

q0r1 + q−1
=
a0r1 + 1

r1
= a0 +

1
r1

= ξ.

Now assume that the statement is true for n . Then

ξ =
pnrn+1 + pn−1

qnrn+1 + qn−1
=
pn(an+1 + 1

rn+2
) + pn−1

qn(an+1 + 1
rn+2

) + qn−1

=
pnan+1rn+2 + pn + pn−1rn+2

qnan+1rn+2 + qn + qn−1rn+2
=

(pnan+1 + pn−1)rn+2 + pn
(qnan+1 + qn−1)rn+2 + qn

=
pn+1rn+2 + pn
qn+1rn+2 + qn

.

2

Corollary 1.10 For ξ = [a0; a1, a2, . . .] and n ∈ N , we have

rn+1 =
−qn−1ξ + pn−1

qnξ − pn
.

Proof: Solve the equation in Theorem 9 for rn+1 . 2

Definition 1.11 • An irrational number α is called quadratic irrational number if there
exist integers A,B,C ∈ Z such that

Aα2 +Bα+ C = 0.

• A number ξ = [a0; a1, a2, . . .] is said to be a periodic CF if from some stage onwards
the CF expansion of ξ is periodic, that is there exist numbers k, l ∈ N such that for
all m ≥ k we have that am+l = am , i.e.

ξ = [a0; a1, . . . , ak−1, ak, ak+1 . . . , ak+l−1, ak, ak+1, . . . , ak+l−1, ak, ak+1, . . .].

( In this situation, one usually then writes

ξ = [a0; a1, . . . , ak−1, ak, ak+1 . . . , ak+l−1].)

Theorem 1.12 A number ξ = [a0; a1, a2, . . .] is a periodic CF if and only if ξ is a
quadratic irrational number.

Proof: Since ξ has a periodic CF expansion, we have that there are numbers k, l ∈ N such
that

rm+l = rm for all m ≥ k.

Therefore, using Theorem 9, we deduce

ξ =
pm−1rm + pm−2

qm−1rm + qm−2
=
pm+l−1rm+l + pm+l−2

qm+l−1rm+l + qm+l−2
=
pm+l−1rm + pm+l−2

qm+l−1rm + qm+l−2
,

and hence
pm−1rm + pm−2

qm−1rm + qm−2
=
pm+l−1rm + pm+l−2

qm+l−1rm + qm+l−2
.
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Clearly, by multiplying both sides of this equation with the two denominators, this equality
can be written in the form

Ar2m +Brm + C = 0,

with appropriate integers A,B and C . Hence, the number rm is a quadratic irrational
number. With this knowledge we now return to the formula which we already derived before

ξ =
pm−1rm + pm−2

qm−1rm + qm−2
.

which implies that (see Corollary 10)

rm =
−qm−2ξ + pm−2

qm−1ξ − pm−1
.

Inserting this in the quadratic equation above, we obtain

A

(
−qm−2ξ + pm−2

qm−1ξ − pm−1

)2

+B

(
−qm−2ξ + pm−2

qm−1ξ − pm−1

)
+ C = 0,

which implies that

A(−qm−2ξ + pm−2)2 +B(qm−1ξ − pm−1)(−qm−2ξ + pm−2) + C(qm−1ξ − pm−1)2 = 0.

Clearly (by getting rid of the brackets), the latter equality can now be written in the form

Dξ2 + Eξ + F = 0,

with appropriate integers D,E and F . It follows that ξ is a quadratic irrational number.
The proof of the opposite direction is slightly more involved and will be omitted. 2
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Summary on Basics on Continued Fractions
Every irrational number ξ can be approximated by a sequence of rationals pn/qn which
are ‘good approximations’ in the sense that there exists a constant c > 0 such that∣∣∣∣ξ − pn

qn

∣∣∣∣ < c

q2n
for all n ∈ N.

The rationals pn/qn are called convergents (or ‘approximants’). For

ξ = [a0; a1, a2, . . .] = a0 +
1

a1 +
1

a2 + . . .

,

they are given by
pn/qn = [a0; a1, a2, . . . , an]

(we shall always assume that a0 ≥ 0 and ai+1 ≥ 1 for all i ∈ N ). There are useful formulas
which relate these quantities.
For n ∈ N we have (with p−1 = q0 = 1, q−1 = 0 and p0 = a0 )

• pn+1 = an+1pn + pn−1 ;

• qn+1 = an+1qn + qn−1 ;

• qnpn−1 − pnqn−1 = (−1)n .

Definition 1.13 For ξ = [a0; a1, a2, . . .] and n ∈ N , let rn and sn be defined as follows.

rn := [an; an+1, an+2, . . .] and sn :=
qn−1

qn
.

For these quantities the following holds (for n ∈ N ).

• rn = an + 1
rn+1

;

• Since qn+1 = an+1qn + qn−1 , we have for the ratio qn+1
qn

= an+1 + 1
qn/qn−1

. Clearly,
this process may be continued until q1/q0 = a1 is reached. Therefore,

sn+1 =
1

[an+1; an, . . . , a1]
.

Theorem 1.14 For ξ = [a0; a1, a2, . . .] and n ∈ N , we have

ξ =
pnrn+1 + pn−1

qnrn+1 + qn−1
.

Proof: (by induction) For n = 0 we have

p0r1 + p−1

q0r1 + q−1
=
a0r1 + 1

r1
= a0 +

1
r1

= ξ.

Now assume that the statement is true for n . Then

ξ =
pnrn+1 + pn−1

qnrn+1 + qn−1
=
pn(an+1 + 1

rn+2
) + pn−1

qn(an+1 + 1
rn+2

) + qn−1

=
pnan+1rn+2 + pn + pn−1rn+2

qnan+1rn+2 + qn + qn−1rn+2
=

(pnan+1 + pn−1)rn+2 + pn
(qnan+1 + qn−1)rn+2 + qn

=
pn+1rn+2 + pn
qn+1rn+2 + qn

.

2
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Corollary 1.15 ∣∣∣∣ξ − pn
qn

∣∣∣∣ =
1

q2n(rn+1 + sn)
for all n ∈ N.

Proof:∣∣∣∣ξ − pn
qn

∣∣∣∣ =
∣∣∣∣pnrn+1 + pn−1

qnrn+1 + qn−1
− pn
qn

∣∣∣∣ =
∣∣∣∣pnqnrn+1 + pn−1qn − pnqnrn+1 − pnqn−1

(qnrn+1 + qn−1)qn

∣∣∣∣
=

∣∣∣∣qnpn−1 − pnqn−1

q2n(rn+1 + sn)

∣∣∣∣ =
1

q2n(rn+1 + sn)
.

2

2 Elementary Diophantine Approximations

2.1 Hurwitz’s Theorem

Theorem 2.1 For all irrationals ξ = [a0; a1, a2, . . .] and for all n ∈ N , we have that∣∣∣∣ξ − pi
qi

∣∣∣∣ ≤ 1
2q2i

is fulfilled for at least one element i ∈ {n, n+ 1} .

Proof: By way of contradiction, assume that the statement in the theorem is false. This
means that ∣∣∣∣ξ − pi

qi

∣∣∣∣ > 1
2q2i

holds simultaneously for i = n and i = n + 1 . Since
∣∣∣ξ − pi

qi

∣∣∣ = 1
q2
i
(ri+1+si)

, this is
equivalent to

ri+1 + si < 2 for i = n, n+ 1.

(a) For i = n we get 2 > rn+1 + sn = an+1 + 1
rn+2

+ sn, and hence,

1
rn+2

< 2− (an+1 + sn) = 2− 1
sn+1

.

(b) For i = n+ 1 we get
rn+2 < 2− sn+1.

Combining (a) and (b), we derive 1 < 4− 2sn+1 − 2s−1
n+1 + 1 ,

and hence 0 < 2− sn+1 − s−1
n+1 , implying

0 > (sn+1 − 1)2,

and hence we derive a contradiction. 2

Theorem 2.2 For all irrationals ξ = [a0; a1, a2, . . .] and for all n ∈ N , we have that∣∣∣∣ξ − pi
qi

∣∣∣∣ ≤ 1√
5 q2i

is fulfilled for at least one element i ∈ {n, n+ 1, n+ 2} .
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Note, the number 1√
5

is called the Hurwitz number.

Proof: As in the proof of the previous theorem (with 2 replaced by
√

5 ), assume by way
of contradiction that for each i ∈ {n, n+ 1, n+ 2} we have

ri+1 + si <
√

5.

Proceeding for i = n and i = n+ 1 as in (a) and (b) in the previous proof, we derive

s2n+1 −
√

5sn+1 + 1 < 0. (1)

Analogously, for i = n+ 1 and i = n+ 2 , we get

s2n+2 −
√

5sn+2 + 1 < 0. (2)

By the quadratic formula, (1) and (2) give (with γ :=
√

5+1
2 and γ∗ :=

√
5−1
2 )

γ∗ < si < γ for i = n+ 1, n+ 2. (3)

Using this, we get

sn+2 =
1

an+2 + sn+1
≤ 1

1 + sn+1
<

1
1 + γ∗

= γ∗,

which contradicts (3). 2

Theorem 2.3 (Hurwitz’s theorem) For the golden mean γ :=
√

5+1
2 = [1; 1, 1, 1, . . .] we

have that ∣∣∣∣γ − pn
qn

∣∣∣∣ ≤ C

q2n

is satisfied for at most finitely many reduced pn/qn if and only if C < 1√
5

.

Proof: First note that rn = γ for all n ∈ N . Secondly, note that

s−1
n = [an;an−1, . . . , a1] = γ + ([an;an−1, . . . , a1]− [an;an−1, . . .]) = γ + δn,

where for δn we have that limn→∞ δn = 0 . Hence, it follows

sn =
1

γ + δn
=

1
γ

+
1

γ + δn
− 1
γ

=
1
γ

+
−δn

γ2 + γδn
=

1
γ

+ εn,

where for εn we have that limn→∞ εn = 0 . These two observations then give

rn+1 + sn = γ +
1
γ

+ εn =
√

5 + εn →
√

5 ( for n→∞).

Now, if C < 1√
5

is given, say C = 1√
5+ρ

for some fixed ρ > 0 , then∣∣∣∣γ − pn
qn

∣∣∣∣ =
1

q2n(rn+1 + sn)
=

1
q2n(
√

5 + εn)
≤ 1
q2n(
√

5 + ρ)
,

where the latter inequality can be fulfilled only for finitely many n (due to the fact that√
5 + ρ <

√
5 + εn can be satisfied for at most finitely many n ). 2

Corollary 2.4 For each irrational number ξ , the inequality∣∣∣∣ξ − pn
qn

∣∣∣∣ ≤ K

q2n

is fulfilled for infinitely many reduced pn/qn as long as K ≥ 1√
5

.
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2.2 The Lagrange Spectrum

Definition 2.5 • Let c denote some positive real number. An irrational ξ is called
c -approximable if an only if ∣∣∣∣ξ − pn

qn

∣∣∣∣ < c

q2n

is satisfied for infinitely many reduced pn/qn .

• To each irrational number ξ we associate a non-negative real number ν(ξ) , defined
by

ν(ξ) := inf{c > 0 : ξ is c -approximable }.

• Two irrational numbers ξ, η are called equivalent (and we write ξ ∼ η ) if and only
if there exist k, l ∈ N such that rk(ξ) = rl(η) (i.e. eventually the continued fraction
expansions of ξ and η coincide).

Lemma 2.6 Let ξ, η be irrational. If ξ ∼ η , then ν(ξ) = ν(η) .

Proof: Let ξ, η be irrational such that ξ ∼ η . Then there exist k, l ∈ N such that
rk+i(ξ) = rl+i(η) for all i ∈ N . Without loss of generality, assume that l ≥ k . Then ξ
and η must be of the form

ξ = [a0; a1, . . . , ak, c1, c2, c3, . . .] and η = [b0; b1, . . . , bk, bk+1, . . . , bl, c1, c2, c3, . . .].

In order to prove the assertion of the lemma, it is sufficient to show that∣∣∣∣ 1
rk+n(ξ) + sk+n−1(ξ)

− 1
rl+n(η) + sl+n−1(η)

∣∣∣∣→ 0 for n→∞.

For this it is sufficient to show that

|rk+n(ξ) + sk+n−1(ξ)− (rl+n(η) + sl+n−1(η))| → 0 for n→∞.

But this follows, since

|rk+n(ξ) + sk+n−1(ξ)− (rl+n(η) + sl+n−1(η))| = |sk+n−1(ξ)− sl+n−1(η)|

=
∣∣∣∣ 1
[cn−1; . . . , c1, ak, . . . , a0]

− 1
[cn−1; . . . , c1, bl, . . . , b0]

∣∣∣∣→ 0 ( for n→∞).

2

Definition 2.7 An irrational ξ ∼ γ is called noble number (i.e. the continued fraction
expansion of a noble number has from some stage onward exclusively 1 ’s as its entries).

Corollary 2.8 • For each irrational number ξ we have that ν(ξ) ≤ 1√
5

.

• A number η is a noble number if and only if ν(ξ) = 1√
5

.

Theorem 2.9 Let N be some fixed positive integer. If ξ = [a0; a1, a2, . . .] is irrational
such that for some n ∈ N we have that∣∣∣∣ξ − pi

qi

∣∣∣∣ > 1
q2i
√
N2 + 4

is fulfilled for all i ∈ {n, n+ 1, n+ 2} , then it follows that an+2 < N .
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Proof: We proceed as in the proof of the first two theorem of the section (with 2 , resp.√
5 , now replaced by

√
N2 + 4 ). In this way, considering i = n and i = n+ 1 , we derive

s2n+1 −
√
N2 + 4 sn+1 + 1 < 0.

And also, by considering i = n+ 1 and i = n+ 2 , we derive along the same lines

s2n+2 −
√
N2 + 4 sn+2 + 1 < 0.

Then, using the quadratic formula, we obtain
√
N2 + 4−N

2
< si, s

−1
i <

√
N2 + 4 +N

2
for i = n+ 1, n+ 2.

Using this, we then have

an+2 = sn+1 + an+2 − sn+1 = s−1
n+2 − sn+1 <

√
N2 + 4 +N

2
−
√
N2 + 4−N

2
= N.

2

Corollary 2.10 For each irrational number ξ and for every N ∈ N , exactly one of the
following two alternatives occurs.

Either: ∣∣∣∣ξ − pn
qn

∣∣∣∣ ≤ 1
q2n
√
N2 + 4

is fulfilled for infinitely many pn/qn (or with other words, ν(ξ) ≤ 1/
√
N2 + 4 ),

Or: There exists a number n0 > 0 (depending on N and ξ ) such that

an < N for all n ≥ n0

(or with other words, ξ ∈ BN (see Definition 2.18).).

Corollary 2.11 For each non-noble irrational number ξ we have that∣∣∣∣ξ − pn
qn

∣∣∣∣ ≤ 1
2
√

2 q2n

is fulfilled for infinitely many reduced pn/qn . (Or with other words, for each non-noble
number ξ we have ν(ξ) ≤ 1/(2

√
2) .)

In fact, by means of similar ideas as in the proof of Hurwitz’s theorem (theorem 2.3), one
derives that

ν(ξ) =
1

2
√

2
if and only if ξ ∼

√
2 (= [1; 2, 2, 2, . . .]).

Proof: This follows immediately, since if ξ = [a0; a1, . . .] is non-noble then we have an ≥ 2 ,
for infinitely many n . Hence, by theorem 2.9, we have∣∣∣∣ξ − p

q

∣∣∣∣ ≤ 1√
8 q2n

for infinitely many reduced p/q , which implies that ν(ξ) ≤ 1/(2
√

2) . 2

12



Lemma 2.12 Let ξ = [a0; a1, a2, . . .] be an irrational number such that ν(ξ) is neither
equal to 1√

5
nor to 1

2
√

2
, but such that ξ ∼ [b0; b1, b2, . . .] with bi ≤ 2 for all i ∈ N . It

then follows that

ν(ξ) ≤ 6
17
.

Proof: Without loss of generality we can assume that there are infinitely many 1 ’s and
2 ’s in [b0; b1, b2, . . .] (since otherwise ξ would be equivalent to either 1/

√
5 or 1/(2

√
2) ).

Hence there are infinitely many values n such that an = 1 and an+1 = 2 . For these n ,
we have

rn+1 + sn = [an+1; an+2, . . .] +
1

[an; . . . , a1]
≥ 2 +

1

2 +
1
1

+
1

1 +
1
1

=
7
3

+
1
2

=
17
6
.

It follows that ν(ξ) ≤ 6
17 . 2

Lemma 2.13 If ξ = [a0; a1, . . .] is irrational such that an ≥ 3 for infinitely many n , then
ν(ξ) ≤ 1√

13
.

Proof: By Theorem 2.9 we have that if an ≥ 3 for infinitely many n , then∣∣∣∣ξ − pn−2

qn−2

∣∣∣∣ ≤ 1√
32 + 4 q2n−2

(
=

1√
13 q2n−2

)

must hold for infinitely many n . Hence, ν(ξ) ≤ 1√
13

. 2

Definition 2.14 The set of numbers

L := {ν(ξ) : ξ is irrational }

is called the Lagrange spectrum.

Also note that since 1
3 > 1√

13
, we have by Lemma 2.13 that irrational numbers in the

Lagrange spectrum in
(

1
3 ,

1√
5

]
must have the property that they are equivalent to irrational

numbers whose continued fraction expansion contain exclusively 1 ’s and 2 ’s.
As an immediate consequence of Hurwitz’s Theorem (Theorem 2.3), we obtain the following
theorem.
Theorem 2.15

L ⊂
[
0,

1√
5

]
.

Proposition 2.16 For an irrational number ξ we have that ν(ξ) ∈ L ∩
[

1√
12
, 1√

5

]
if and

only if ξ ∼ [a0; a1, a2, . . .] , for [a0; a1, a2, . . .] such that an ≤ 2 for all n ∈ N .

One can say much more about the structure of the Lagrange spectrum
(

1
3 ,

1√
5

]
. It has the

following very interesting properties. The proof of this theorem is slightly more involved
and will be omitted.

Theorem 2.17 The Lagrange spectrum L in
(

1
3 ,

1√
5

]
consists of a countable set of num-

bers, and these numbers accumulate only at the value 1
3 .

13



There are still plenty of fascinating open problems concerning the Lagrange spectrum. We
now list a few known results about it. Some of these we have already obtained.

• Each number in the Lagrange spectrum in
(

1
3 ,

1√
5

]
is of the form 1/

√
9− 4

m2 , where

m is a positive integer solution of the equation m2 + k2 + l2 = 3mkl , for k and l
some positive integers. It is known that there are infinitely many solutions m of this
equation. The first numbers in the Lagrange spectrum are

1√
5

=
1√

9− 4
12

 ,
1

2
√

2

=
1√

9− 4
22

 ,
5√
221

=
1√

9− 4
52

 ,

1√
9− 4

132

,
1√

9− 4
292

,
1√

9− 4
342

,
1√

9− 4
892

,
1√

9− 4
1942

,
1√

9− 4
4332

, . . . .

Note that since 1/
√

9− 4
m2 accumulates at 1/3 (for m tending to infinity), it is

clear that the Lagrange spectrum in
(

1
3 ,

1√
5

]
accumulates at 1/3 .

• We have that ν(x) ≥ 1√
12

if and only if x is equivalent to a number whose continued
fraction expansion contains exclusively 1’s and 2’s.

• In the interval
(

1√
13
, 1√

12

)
the Lagrange spectrum is empty. That is

L ∩
(

1√
13
,

1√
12

)
= ∅.

• Let f be the so called Freimann number which is given by

f :=
491993569

2221564096 + 283748
√

462
.

One then knows that in the interval [0, f ) the Lagrange spectrum is continuous. This
means that for every c ∈ [0, f ) there exists an irrational number x such that ν(x) = c .

Hausdorff dimensions of parts of the Lagrange spectrum
We already know that L ∩

(
1
3 ,

1√
5

]
is countable. Moreover, in the interval [0, f ) the

Lagrange spectrum is continuous. Hence, we have the following immediate result.

Corollary 2.18 The following hold.

1. dimH

(
L ∩

(
1
3 ,

1√
5

])
= 0.

2. dimH (L ∩ (0, f ]) = 1.

There are numerous interesting results concerning Hausdorff dimensions of parts of the
Lagrange spectrum. For instance, we have the following.

Theorem 2.19 We have that the following hold.

1. dimH

(
L ∩

[
1√
10
, 1√

5

])
≈ 0.8121 . . . (note that 1√

10
≈ 1

3.16... .)
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2. dimH

(
L ∩

[
8√
689

, 1√
5

])
≈ 0.9716 . . . (note that 8√

689
≈ 1

3.28... .)

This should not be confused with the following result.

Theorem 2.20 We have that the Hausdorff dimension of the set of irrational numbers
whose continued fraction expansion uses only 1’s and 2’s is lies between 0.44 and 0.66 .
Therefore,

dimH

({
x ∈ [0, 1) : ν(x) ∈ L ∩

[
1√
12
,

1√
5

]})
∈ (0.44, 0.66).

2.3 Badly Approximable Numbers

Definition 2.21 For N ∈ N define

BN := {ξ = [a0; a1, a2, . . .] irrational : ∃n0 > 0 such that an < N ∀ n ≥ n0}.

The set of badly approximable numbers B is then defined as

B :=
⋃
N>0

BN = {ξ irrational : ∃N > 0 such that ξ ∈ BN}.

With other words, ξ ∈ BN if and only if ξ ∼ η , for some η = [b0; b1, . . .] with bi < N for
all i ∈ N . Furthermore, ξ ∈ B if and only if there exists M ∈ N such that ξ ∈ BM .
The following corollary clarifies why the elements in B are called ‘badly approximable’.

Lemma 2.22 • If ξ is an irrational number such that ξ /∈ BN for some
N ∈ N , then ∣∣∣∣ξ − pn

qn

∣∣∣∣ ≤ 1
q2n
√
N2 + 4

is fulfilled for infinitely many reduced pn/qn (i.e. ν(ξ) ≤ 1/
√
N2 + 4 ).

• For each ξ ∈ B there exists a constant C > 0 such that for all n ∈ N we have∣∣∣∣ξ − pn
qn

∣∣∣∣ > C

q2n
.

Proof: The first part is an immediate consequence of theorem 2.9. For the second part,
consider ξ = [a0; a1, . . .] ∈ B . Then there exist numbers M and m0 such that an < M
for all n ≥ m0 . Using this, we derive rn+1 + sn < M + 1 + 1 = M + 2 , and hence∣∣∣∣ξ − pn

qn

∣∣∣∣ > 1
(M + 2) q2n

for all n ≥ m0.

For n < m0 we have that there exists a number cn > 0 such that∣∣∣∣ξ − pn
qn

∣∣∣∣ > cn
q2n
.

If we define C := min{1/(M + 2), c0, c1, . . . , cm0−1} (i.e. C is the smallest number in this
finite set of numbers), then the result follows. 2

3 Metrical Diophantine Approximations

In this section we restrict the investigations to the unit interval I := [0, 1) .
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3.1 The Borel-Cantelli Lemma

Definition 3.1 A set Σ of subsets of I is called a σ -algebra of I if the following con-
ditions are satisfied.

• I ∈ Σ;

• If A ∈ Σ , then Ac ∈ Σ (where Ac := I \A denotes the complement of A in I );

•
⋃
n∈N An ∈ Σ for all sequences (An) with An ∈ Σ (for all n ∈ N ).

Definition 3.2 The Borel- σ -algebra Σ0 of I is the smallest σ -algebra of I which con-
tains all possible intervals of I of the form [x, y) (for 0 ≤ x < y < 1 ).
The elements of Σ0 are called Borel sets.

Definition 3.3 Each element in Σ0 can be measured by the Lebesgue measure λ in I .
In particular, if A is an interval (i.e. A = [x, y) for some 0 ≤ x < y < 1 ), then λ(A) is
just the ‘length’ of that interval (i.e. λ(A) = λ([x, y)) = y − x ).

Properties:

• λ(I) = 1;

• λ(A) ≥ 0 for all A ∈ Σ0 ;

• λ
(⋃

n∈N An
)

=
∑
n∈N λ(An) for every sequence (An) of pairwise disjoint elements

An ∈ Σ0 (i.e. Ai ∩Aj = ∅ ∀ i 6= j ).

• For A ∈ Σ0 we have:
λ(A) = 0 if and only if for all ε > 0 there exists a sequence (An) of elements An ∈ Σ0

such that
A ⊂

⋃
n∈N

An and
∑
n∈N

λ(An) < ε.

Note, every countable set in I is of zero λ -measure.
More general, in order to find out if a given Borel set is of zero λ -measure, the following
theorem is often helpful.

Theorem 3.4 (Borel-Cantelli lemma)
If (An) is a sequence of elements An ∈ Σ0 such that

∑
n∈N λ(An) <∞ , then we have

λ(A∞) = 0,

where the lim sup -set A∞ is defined by

A∞ := {ξ ∈ I : ξ ∈ An for infinitely many n}.

Proof: The convergence of
∑
n∈N λ(An) implies that for each ε > 0 there exists an integer

n0 such that ∑
n≥n0

λ(An) < ε.

Now note that by definition of A∞ , we have that

A∞ ⊂
⋃
n≥n0

An.
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Hence, it follows that

λ(A∞) ≤ λ

 ⋃
n≥n0

An

 ≤ ∑
n≥n0

λ(An) < ε.

2

3.2 Metrical Diophantine Approximations

Definition 3.5 Let a1, . . . , an ∈ N \ {0} be given. The n -cylinder I(a1, . . . , an) (also
called ‘fundamental interval of order n ’) is defined by (here we use the common notation
[x1, x2, . . .] := [0;x1, x2, . . .] )

I(a1, . . . , an) := {ξ = [x1, x2, x3, . . .] ∈ I irrational : xi = ai for all 1 ≤ i ≤ n}.

Properties:

• For every ξ ∈ I(a1, . . . , an) we have

ξ =
pnrn+1(ξ) + pn−1

qnrn+1(ξ) + qn−1
,

where pn, pn−1, qn, qn−1 are fixed (depending only on a1, . . . , an ).
•

I(a1, . . . , an) =


(
pn
qn
, pn+pn−1
qn+qn−1

)
for n even(

pn+pn−1
qn+qn−1

, pnqn

)
for n odd.

•

λ(I(a1, . . . , an)) =
1

q2n(1 + sn)
.

Proof: These properties are immediate consequences of the following.
By Theorem 1.2, we have

ξ =
pnrn+1(ξ) + pn−1

qnrn+1(ξ) + qn−1
=
pn + pn−1/rn+1(ξ)
qn + qn−1/rn+1(ξ)

.

Since 1 ≤ rn+1(ξ) and since rn+1(ξ) can get arbitrary large if ξ varies, we see that

λ(I(a1, . . . , an)) =
∣∣∣∣pn + pn−1

qn + qn−1
− pn
qn

∣∣∣∣ =
∣∣∣∣pnqn + pn−1qn − pnqn − qn−1pn

q2n(1 + sn)

∣∣∣∣
=
∣∣∣∣pn−1qn − qn−1pn

q2n(1 + sn)

∣∣∣∣ =
1

q2n(1 + sn)
.

Furthermore, observe that

pn
qn

<
pn + pn−1

qn + qn−1
if and only if pnqn−1 − qnpn−1 < 0.

But we know (since qnpn−1−pnqn−1 = (−1)n ) that the left hand side of the latter inequality
is equal to (−1) if and only if n is even. 2

For the next theorem, recall the definition of the set of badly approximable irrational num-
bers (Definition 2.21).
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Theorem 3.6 For B′ := B ∩ I we have

λ(B′) = 0.

Proof: For n,N ∈ N we define the sets

AN := {ξ = [a1, a2, . . .] ∈ I irrational : ai < N ∀ i ∈ N}, A :=
⋃
N∈N
AN ,

A(n)
N := {ξ = [a1, a2, . . .] ∈ I irrational : ai < N ∀ i ∈ {1, . . . , n}}.

We want to show that λ(A) = 0 . For this, since AN ⊂ A(n)
N , it is sufficient to show that

limn→∞ λ(A(n)
N ) = 0 , and this is what we are now going to prove.

Note that A(n+1)
N ⊂ A(n)

N , and that each A(n+1)
N can be written as a union of disjoint

fundamental intervals as follows

A(n+1)
N =

⋃
(a1,...,an+1):

ai<N,i=1,...,n+1

I(a1, . . . , an, an+1) =
⋃

(a1,...,an)
ai<N,i=1,...,n

⋃
k:

k<N

I(a1, . . . , an, k).

For fixed (a1, . . . , an) , we now calculate the Lebesgue measure of
⋃
k:k<N I(a1, . . . , an, k)

as follows.

λ

 ⋃
1≤k<N

I(a1, . . . , an, k)

 =
∣∣∣∣pn + pn−1

qn + qn−1
− pnN + pn−1

qnN + qn−1

∣∣∣∣ = . . .

=
N − 1

q2n(1 + sn)(N + sn)
<

N − 1
q2nN(1 + sn)

=
(

1− 1
N

)
λ(I(a1, . . . , an)).

Using the latter estimate, we get

λ(A(n+1)
N ) = λ

 ⋃
(a1,...,an):

ai<N,i=1,...,n

⋃
k:

k<N

I(a1, . . . , an, k)

 =
∑

(a1,...,an):
ai<N,i=1,...,n

λ

 ⋃
k:

k<N

I(a1, . . . , an, k)


≤

∑
(a1,...,an):

ai<N,i=1,...,n

λ(I(a1, . . . , an))
(

1− 1
N

)
=
(

1− 1
N

)
λ(A(n)

N ).

Applying this estimate n times, we derive

λ(A(n+1)
N ) ≤

(
1− 1

N

)
λ(A(n)

N ) ≤
(

1− 1
N

)2

λ(A(n−1)
N ) ≤ . . . ≤

(
1− 1

N

)n
λ(A(1)

N ),

which then implies
λ(A(n+1)

N )→ 0 for n→∞.

From this we obtain that (since AN ⊂ A(n+1)
N )

λ(AN ) = 0 for all N ∈ N,

and hence, since

λ(A) = λ

( ⋃
N∈N
AN

)
≤
∑
N∈N

λ(AN ) = 0,
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we obtain the desired result
λ(A) = 0.

Finally, observe that ξ ∈ B′ if and only if ξ ∈ A , from which we derive

λ(B′) = 0.

2

By inspection of the proof of the previous theorem, we find that in there we in fact proved
slightly more than we actually formulated in the theorem. Namely, we have seen that the
following is true.

Corollary 3.7 For B′N := BN ∩ I we have

λ(B′N ) = 0 for all N ∈ N.

Also, combining the previous theorem and Corollary 2.22, we immediately obtain the fol-
lowing result.

Corollary 3.8

λ

({
ξ ∈ I irrational : ∃C > 0 such that

∣∣∣∣ξ − p

q

∣∣∣∣ > C

q2
for all

p

q

})
= 0.

We have now seen that the set of badly approximable numbers does not contribute to sets
of irrational numbers of positive Lebesgue measure. Hence, if we want to investigate sets of
positive measure, then we have to look for irrationals which are more rapidly approximated
by their approximants than it is the case for badly approximable irrationals. The contra-
positive of the following theorem gives a first indication of how an irrational number has to
look like in order to have a chance to contribute to positive Lebesgue measure. In particular,
the theorem specifies how fast the an(ξ) have to increase at least such that ξ has a chance
to contribute to positive Lebesgue measure.

Theorem 3.9 If φ : N→ R+ is a function such that
∑∞
n=1 1/φ(n) diverges, then

λ(Bφ) = 0,

where Bφ := {ξ = [a1, a2, . . .] ∈ I irrational : an < φ(n) ∀ n ∈ N}.

Note: A good choice for φ would be φ(n) = n log(n) (recall that
∑∞
n=1

1
n log(n) diverges).

Proof: The proof is basically the same as the proof of the previous theorem. As before, we
obtain that

λ

 ⋃
k:

k<φ(n+1)

I(a1, . . . , an, k)

 <

(
1− 1

φ(n+ 1)

)
λ(I(a1, . . . , an)).

Hence, with B(n)
φ := {ξ = [a1, a2, . . .] ∈ I irrational : ai < φ(i) ∀ i ∈ {1, . . . , n}} , we get

λ(B(n+1)
φ ) <

(
1− 1

φ(n+ 1)

)
λ(B(n)

φ ) < . . . <

n∏
k=1

(
1− 1

φ(k + 1)

)
λ(B(1)

φ ).
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Using the fact that 1− x < e−x for each 0 < x < 1 , we can continue as follows.

λ(B(n+1)
φ ) < e−

∑n

k=1
1

φ(k+1) λ(B(1)
φ ),

which implies (since
∑n
k=1 1/φ(k+ 1) gets arbitrary large, due to the divergence condition

in the theorem)
λ(B(n+1)

φ )→ 0 for n→∞,

and hence (since Bφ ⊂ B(n+1)
φ for all n ),

λ(Bφ) = 0.

2

Note that with the special choice of φ , that is φ(n) = n log(n) , an immediate consequence
of the previous theorem is (for this essentially consider the complement of Bφ in I )

λ ({ξ = [a1, a2, . . .] ∈ I irrational : an ≥ n log(n) for infinitely many n ∈ N}) = 1.

In contrast to the previous theorem, we now investigate how fast the an(ξ) can increase at
most such that ξ has a chance to contribute to positive Lebesgue measure.

Theorem 3.10 If ϕ : N→ R+ is a function such that
∑∞
n=1 1/ϕ(n) converges, then

λ(Wϕ) = 0,

where Wϕ := {ξ = [a1, a2, . . .] ∈ I irrational : an > ϕ(n) for infinitely many n}.

Note: A good choice for φ would be φ(n) = n (log(n))1+ε , for any fixed ε > 0 (recall that∑∞
n=1

1
n(log(n))1+ε

converges, for every ε > 0 ).

Proof: We have that

λ

 ⋃
k:

k≥ϕ(n+1)

I(a1, . . . , an, k)

 =
∣∣∣∣pnϕ(n+ 1) + pn−1

qnϕ(n+ 1) + qn−1
− pn
qn

∣∣∣∣ = . . .

=
1

q2n(1 + sn)
1 + sn

ϕ(n+ 1) + sn
<

2
ϕ(n+ 1)

λ(I(a1, . . . , an)).

Hence, with W(n)
ϕ := {ξ = [a1, a2, . . .] ∈ I irrational : an > ϕ(n)} , we get

λ(W(n+1)
ϕ ) = λ

 ⋃
(a1,...,an)

⋃
k:

k≥ϕ(n+1)

I(a1, . . . , an, k)


<

2
ϕ(n+ 1)

∑
(a1,...,an)

λ(I(a1, . . . , an)) ≤ 2
ϕ(n+ 1)

.

Now, an application of the Borel-Cantelli lemma (Theorem 3.4) finishes the proof. 2

Note that with the special choice of ϕ , that is ϕ(n) = n (log(n))1+ε , an immediate conse-
quence of the previous theorem is (for this essentially consider the complement of Wϕ in
I ) that for each ε > 0 ,
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λ
(
{ξ = [a1, a2, . . .] ∈ I irrational : ∃n0 such that an < n (log(n))1+ε ∀n ≥ n0}

)
= 1.

Combining this with the remark after Theorem 3.9, we hence have that the continued fraction
expansion of an irrational number ξ = [a1, a2, . . .] which contributes to a set of full Lebesgue
measure has the property that for each ε > 0 we have

an > n log(n) for infinitely many n, whereas an < n (log(n))1+ε eventually.

By taking log ’s and dividing by log n , we can therefore summarise this result as follows.
For λ -almost all [a1, a2, . . .] ∈ I we have

lim sup
n→∞

log an
log n

= 1.

Finally, we mention the following important theorem (without proof). In this theorem we
use the notion of a (α, β) -Khintchine function, by which we mean the following.

• A (α, β) -Khintchine function ψ : R+ → R+ is a non-increasing function which is not
‘decreasing too rapidly’, in the sense that there exist positive numbers α < 1 and
β ≤ 1 such that for all x ∈ R+ we have that ψ(x) ≥ βψ(αx) .

Theorem 3.11 (Khintchine’s theorem)
For ψ a (α, β) -Khintchine function let

Kψ := {ξ ∈ I :
∣∣∣∣ξ − pn

qn

∣∣∣∣ < ψ(qn)
q2n

is fulfilled for infinitely many n}.

Then the following holds.

(i) λ(Kψ) = 0 if and only if
∑
n∈N ψ(αn) converges.

(ii) λ(Kψ) = 1 if and only if
∑
n∈N ψ(αn) diverges.

Remark: In case (i), a good choice for the function ψ would be ψ(x) = (log(x))−(1+ε) (for
any ε > 0 ). And in case (ii), a good choice for the function ψ would be ψ(x) = (log(x))−1 .
With these choices, we then obtain that for ξ from a set of full λ -measure we have that
the two inequalities

1
q2n(log(qn))1+ε

<

∣∣∣∣ξ − pn
qn

∣∣∣∣ < 1
q2n log(qn)

,

are fulfilled simultaneously for infinitely many pn/qn (more precisely, the left-hand inequal-
ity is fulfilled even for all pn/qn apart from finitely many exceptions).

3.3 Further fractal Diophantine approximations

MYRBERG DENSITY THEOREM:
Consider the set
M := {ξ = [x1, x2, x3, . . .] ∈ (0, 1) : the infinite sequence x1, x2, x3, . . . contains
EVERY FINITE BLOCK of positive integers INFINITELY MANY TIMES }
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Theorem. (Myrberg)
The set M is of full 1 -dimensional Lebesgue measure.

NAKADA’s THEOREM:
For each N ∈ N consider the set

N
N

:=
{

[x1, x2, ...] ∈ (0, 1) : lim
n→∞

]{m : xm ≥ N for 1 ≤ m ≤ n}
n+

∑n
i=1 log xi

= c0 log
(

1 +
1
N

)}
where c−1

0 := log 2 +
∑∞
n=1

logn
log(1+ 1

n(n+2) )
≈ log 5.2 . . .

Theorem. (Nakada)
The set N

N
is of full 1 -dimensional Lebesgue measure, for all N ∈ N .

JARNIK’s THEOREM:
Consider the set of Badly Approximable Irrational Numbers

B :=
{
ξ ∈ (0, 1) : ∃c(ξ) > 0 such that

∣∣∣∣ξ − p

q

∣∣∣∣ > c(ξ)
q2

for all (p, q) = 1
}

One easily verifies that

B := {ξ = [x1, x2, x3, . . .] ∈ (0, 1) : ∃N(ξ) ∈ N such that xi ≤ N(ξ)∀i ∈ N}

(By Myrberg’s Theorem, the 1 -dimensional Lebesgue measure of B vanishes).
For dimH B , the Hausdorff dimension of B , we have

Theorem. (Jarńık)
dimH B = 1.

THEOREM of JARNIK and BESICOVITCH:
For σ ≥ 0 , consider the set of σ -Well-Approximable Irrational Numbers

Jσ :=
{
ξ ∈ (0, 1) :

∣∣∣∣ξ − p

q

∣∣∣∣ < 1
q2(1+σ)

for infinitely many (p, q) = 1
}

For dimH Jσ , the Hausdorff dimension of Jσ , we have
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Theorem. (Jarńık, Besicovitch)

dimH Jσ =
1

1 + σ
.

MULTIFRACTAL DIOPHANTINE APPROXIMATIONS:

T0 =
{

[ 01 ,
1
1 )
}

T1 =
{

[ 01 ,
1
2 ), [ 12 ,

1
1 )
}

T2 =
{

[ 01 ,
1
3 ), [ 13 ,

1
2 ), [ 12 ,

2
3 ), [ 23 ,

1
1 )
}

T3 =
{

[ 01 ,
1
4 ), [ 14 ,

1
3 ), [ 13 ,

2
5 ), [ 25 ,

1
2 ), [ 12 ,

3
5 ), [ 35 ,

2
3 ), [ 23 ,

3
4 ), [ 34 ,

1
1 )
}

...
Tn =

{
T
n,1 . . . . . . . . . . . . . . . . . . . . . Tn,k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tn,2n

}
...

Stern-Brocot intervals

Note

• For each ξ ∈ [0, 1) and n ∈ N ,
there exists a unique Tn(ξ) ∈ Tn such that x ∈ Tn(ξ) .

Consider STERN-BROCOT PRESSURE

P(t) := lim
n→∞

1
n

log
2n∑
k=1

(diam(Tn,k))t

and LEVEL SETS

L(s) :=
{
x ∈ [0, 1) : lim

n→∞

| log diam(Tn(x))|
n

= s

}

Theorem. (Kesseböhmer/Stratmann)

(i) The Stern-Brocot pressure P is differentiable throughout R ,
real-analytic on (−∞, 1) and vanishes on [1,∞) .
Furthermore, P is real-analytic on (−∞, 1) and vanishes on [1,∞) .

(ii) For each s ∈ [0, 2 log
√

5+1
2 ] we have, with the convention dimH(L(0)) := 1 ,

dimH(L(s)) =
inft∈R{P(t) + st}

s
.
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Further MULTIFRACTAL DIOPHANTINE APPROXIMATIONS:

Classical Results of Levy and Khintchine:
With pn(x)

qn(ξ) := [x1, x2, . . . , xn] referring to the n -th approximant of ξ ∈ (0, 1) , we have on
a set of FULL LEBESGUE MEASURE

(Levy)

`1(ξ) := lim
n→∞

2 log qn(ξ)∑n
i=1 xi

= 0

Furthermore, on a set of FULL LEBESGUE MEASURE

(Khintchine) (Levy)

`2(ξ) := lim
n→∞

n∑n
i=1 xi

= 0 and `3(ξ) := lim
n→∞

2 log qn(x)
n

=
π2

6 log 2

In particular

dimH({`1(ξ) = 0}) = dimH({`2(ξ) = 0 and `3(ξ) =
π2

6 log 2
}) = 1.

QUESTION:

dimH({`1(ξ) = ?}) = dimH({`2(ξ) = ? and `3(ξ) = ?}) = ?

ANSWER:
Consider LEVEL SETS

Li(s) := {ξ ∈ [0, 1) : `i(ξ) = s} for i = 1, 2, 3

We then have

Theorem. (Kesseböhmer/Stratmann)
For each a ∈ [0, 2 log 1+

√
5

2 ]
there exist numbers a∗ and a] related to a by a = a∗ · a] , such that

dimH(L1(a)) = dimH(L2(a]) ∩ L3(a∗)) =
inft∈R{P(t) + at}

a
.
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