DIOPHANTINE APPROXIMATIONS AND FRACTALS

PART 1

1. FRACTAL SETS AND DIMENSIONS

1.1. Definition of fractal dimensions. Problem: How can we best define the
dimension of a closed bounded set X C R"?7

Ideally, we might want a definition which includes the following situations.

(i) If X is a manifold, then the value of the dimension is an integer which coincides
with the usual notion of dimension,;

(ii) If X is a more general set, then its dimension can be fractional;
(iii) If X is a countable union of points, then its dimension should be equal to zero.

Definition 1: The topological dimension of a topological space X is defined to be
the minimum value of n, such that every open cover of X has an open refinement
in which no point is included in more than n + 1 elements. If no such minimal n
exists, the space is said to be of infinite covering dimension.

The idea of topological dimension became a topic of considerable interest in the
early 20th century. The core ideas were independently derived by Karl Menger, L.
E. J. Brouwer, Pavel Urysohn and Henri Lebesgue.

Clearly, the topological dimension is always a non-negative integer. (For exam-
ple, the topological dimension of the Cantor set C' is zero). Unfortunately, this
definition does not capture the requirement in (ii) above.

Definition 2: For € > 0, let N(e) be the smallest number of e-balls needed to
cover X . The box dimension dimp(X) of X is then defined by

) . log N(e)
dimp (X) = lim 2\9
s () = I fog(1/0)

Clearly, this definition is in line with the usual notion of dimensions for manifolds.

However, the box dimension can be fractional (e.g., the box dimension of the Cantor
set X is log2/log3 (Exercise!)). Unfortunately, this definition does not capture
the requirement in (iii) above.

Lemma 1.1. There exist countable sets such that the box dimension 1is strictly
postlive.

Proof. Consider the countable infinite set

1111
X—{I’§’§’Z’...}.

For ¢ = 1/n?, consider an e-cover of X . Since 1/k—1/(k+1) = 1/(k+k?) ~ 1/k%,
one then immediately verifies that one requires roughly 2n intervals of size ¢ = 1/n?
to cover X . Therefore
log N(1/n? log 2 1
dimp(X) = lim 08N/ doe2n 1
1/n=0 —log(1/n?)  1/n—o0log(n?) 2
1
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Definition 3: The Hausdorff dimension dimg(X) of X is defined as follows. For
€ > 0, consider open e-covers

U. = {U; - X C U Us;,diam(U;) < €, U; is open, for all i € N}
1EN
of X. For s > 0 we then define #!(X) :=inf{}",  (diam(U;))*}, where the infi-
mum is taken over all open e-covers U, . Moreover, define H*(X) := lime_,0 H2(X).
Finally, we then define

dimg (X) :=inf{s : H*(X) < oco}(=sup{s : H*(X) = o0}).
Note that in here H*(X) is also called the s-dimensional Hausdorff measure of X .

As for the previous two definitions this coincides with the usual notion of dimen-
sions for manifolds. Furthermore, the Hausdorff dimension can be fractional (e.g.,
the Hausdorff dimension of the Cantor set X is again log2/log3 (Exercise!)). The
advantage of this third definition is that this time the property (iii) also holds. This
is the essence of the following proposition.

Proposition 1.2. If X s countable then dimpg(X) = 0.

Proof. Let X = {x, : n € N}. Given any ¢,s > 0, fix some sequence (€p)nen
of positive real numbers such that > 7, €5 < e. Then consider the open e-cover
U. of X given by the balls B(x,,€,/2) centred at z,, and of diameter ¢,. We
then immediately obtain that H:(X) < €. Since this can be done for every ¢ > 0,
it follows that H*(X) < limeo HZ(X) = 0. The latter estimate holds for every

s > 0, and therefore we obtain that dimg(X) = 0. O

EXAMPLES:

(1) %-Cantor set: Let C' denote the middle third Cantor set. This is the closed
set of points in the unit interval whose triadic expansion does not contain any
occurrences of the the digit 1, that is

C:{Zg—Z:ane{O,Q},neN}.
n=1

Claim:
_log2

dimg (C) = dimp(C) (= 0.690...).

~ log3

Proof. Let us here only give the calculation of the box dimension. The calculation
of dimg (C') will be given later as an application of the mass distribution principle.
For dimp(C') note that in the geometric construction of C' we have that the n-th
layer of the construction consists of 2 well separated intervals of diameter 37" . In
fact, two such intervals are separated by an interval of diameter at least 37" . Now
let {U;}icn be some covering of C' by pairwise disjoint intervals of diameter ¢ > 0
(sufficiently small). Without loss of generality we can assume that U; N C # Q.
Then there exists n € N such that 37(**1) < ¢ < 377 Clearly, each of these
intervals intersect at most 2 covering intervals of the n-th or of the (n + 1)-th
layer. Therefore, we have N(e) € [2"~1 27*1]. Using this, it now follows that
log N (¢) . log2"  log2

di =lim——< =1 = )
imp (C) es0 log(1/¢) oo log3®  log3
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(2) von Koch curve: The von Koch curve K is obtained by induction as follows.
Start from the unit interval Ky := [0, 1] and then assume that the curve K,,_; has
been constructed such that it consists of 47 straight segments each of length 377.
In order to obtain K, from K, _1, replace each middle third of each of the straight
segments in K,,_; by the two sides of the equilateral triangle which is based at
this middle third of the segment. The von Koch curve K is then the limit of this
construction, for n tending to infinity. Employing a very similar argument as for
the %—Cantor set above, one then finds the following. (Note that in the geometric
construction of K we have that the n-th step of the construction consists of 47
intervals of length 37".)

log4

o

(3) Sierpinski carpet: The Sierpinski carpet S is given by

5= { (Z-:l ;‘_Zz_:lg_g) an, bo) € {(i,]) 1 i,j € {0,1,2}}\{(1,1)}}.

Note that S is a connected set without interior. Again very similar to the argu-
ment for the %—Cantor set, one obtains the following. (Note that in the geometric
construction of S we have that the n-th step of the construction consists of 8”
boxes of diameter 377 .)

_log8

di Sy =di Sy = .

imy (5) = dimp(S5) log 3
1.2. Some properties of fractal dimensions. A very simple, but nevertheless
rather useful point of view is to think of Hausdorff (and/or box) dimension as being
a way to distinguish between sets of zero Lebegue measure.

Lemma 1.3. Let X CR” and let A\, denote the n-dimensional Lebesgue measure.

If dimg(X) < n then Ap(X)=0.

Next note that in many examples one has dimg (X) = dimp(X). But in general
this is not true.

Proposition 1.4. The Hausdorff dimension and the boxr counting dimension of a
set X are related by

Proof. Let & > 0 be fixed. By definition of dimp(X), we have that for each

¢ > 0 sufficiently small we can cover X by N(e) < ¢~ (dimp(X)+0) halls of ra-

dius e¢. Taking this as an open e-cover U., it follows that "HgimB(XHZé (X) <

¢~ (dimp(X)+9) (dimp(X)+26 — 0 Therefore, B

/HdimB(X)+26 (X) < hm/HdimB(X)+26 (X) -0
—es0 €

bl

and hence dimpg(X) < dimp(X) + 24. a
Note that for the set X = %, %, %, %, } we already saw that dimp(X) = %

On the other hand, by the above we have that dimg(X) = 0. This is a trivial
example for that we can indeed have that Hausdorff dimension is strictly less than
box dimension.

Lemma 1.5. The boxr counting dimension is invariant under ‘taking the closure’.
That 1is,
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Clearly, this indicates once more that the box dimension is not the ultimate tool
for measuring the complexity of a fractal set in general. For instance, if X is the
set of rational numbers in the unit interval then X = X and hence, dimp(X) =1.
A further useful property is that sets which are the same up to bi-Lipschitz maps
have the same Hausdorff dimension. Recall that a surjective map F : X — Y 1is
called Lipschitz if there exists a constant C' > 0 such that

|F(z) = F(y) < Cle—y|, forall z,y € X.

Similarly, a bijection G : X — Y is called bi-Lipschitz if there exists a constant
K > 0 such that

ke —y| < |G(x) = G(y) < K|r —yl, forall z,y € X.
Proposition 1.6.

(1) If F: X =Y s a surjective Lipschitz map, then dimg(Y) < dimg (X).
(2) If G: X =Y s a bijective bi-Lipschitz map, then dimg (X) = dimg (V).

Proof. (1) Let Ue = {U; }ien be an open e-cover of X . Then U! := {F(U;) }iew is
an open (e - C)-cover of Y. Therefore, it follows that H:.(Y) < HZ(X). Hence,
by taking the limit for ¢ tending to zero, we obtain H*(Y) < #*(X). By definition
of Hausdorff dimension, it then follows that dimg(X) > dimg (V).

(2) Consider the map G=!:Y — X, which is a surjective Lipschitz map. Hence
we can apply (1), which gives dimg (X) < dimg(Y"). Now, by applying (1) also to
G, we also have that dimg(Y) < dimg(X). d

Note that the proof of (1) can easily be generalised to show that if for some o > 0
we have that F': X = Y is a-Hdélder continuous (that is, |F'(z) — F(y) < Clz —
y|®, for all z,y € X), then dimyg(X) > o - dimg(F(X)).

The next result considers Hausdorft dimensions of sums and products of sets. For
this recall that for A, B C R one defines

Ax B:={(x,y) ER?*: 2 € A,y € B}

and
A+ B:={z+y:2€ A ye B}.

Proposition 1.7. For A, B C R we have
(1) dimg (Ax B) > dimg (A)+dimg (B) and (2) dimg (A+B) < dimg(A)+dimg (B).

As an example consider the sum C' + C of the middle third Cantor set. By con-
sidering the representation of C' in terms of triadic expansions one immediately
sees that '+ C' is an interval and hence has Hausdorff dimension equal to 1. On
the other hand, the sum of the Hausdorf dimensions is equal to log4/log3. In
particular, this example shows that the inequality in (2) can not be expected to
be strict in general. Note that the same holds for the inequality in (1) (see e.g.
Example 7.8 in the book of Falconer).

1.3. Techniques for calculating fractal dimensions. One of the most useful
technique for calculating Hausdorff dimensions is provided by the so called mass
distribution principle. Historically, one of the preliminary versions of this principle
is the following lemma due to Frostman.
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Proposition 1.8 (Frostman’s Lemma). Let F' be a bounded subset of R™. Assume
that there exists a measure g on F such that 0 < u(F) < oo and that there exists
s > 0 so that there exists constants ro,C' > 0 such that

w(B(x,r)) <Cr®, foral z € F,0<r <ry.
We then have that p(F) < CH*(F) and hence
dimg (F) > s.

Proof. Let {U;}iew be some arbitrary e-cover of F'. We then have

0< pu(F)= ﬂ(U U;) < Zﬂ(Ui) < CZ (diaH;(Ui))s .

By taking the infimum over all e-coverings, we obtain p(F) < CH:I(F). The result
now follows by letting € tend to zero. d

Proposition 1.9 (Mass distribution principle). Let F' be a bounded Borel set in
R™, and assume that there exists a finite measure p on F such that p(F) = p(R").
Then the following hold, where s > 0 denotes some constant.

B
(1) limsupw L1VeeF = u(F) <M (F) = dimy(F) > s;
r—0
B
(2) limsup M > 1V € F = u(F) < H*(F) = dimy (F) < s.
r—0

Proof. (1) This follows by a slight improvement of the arguments in the proof of
Frostman’s Lemma.

(2) Fix € > 0 and consider the family of balls
B:={B(z,r):x € F,0<r <epu(Bx,r)) > Cr}.

Then we have F' C |Jges B. (Note that if {B(x,r;) : # € F,r, > 0} is any
collection of balls covering F' (not necessarily countable), then we can always find
a countable family {B(x;,4ry,) : ; € FVi € N} of balls covering F' such that the
B(x;,ry,) are pairwise disjoint (this is a standard covering lemma)). Hence, there
exists a countable family {B(x;,r;) : #; € FVi € N} contained in B such that the
B(x;,r;) are pairwise disjoint and I C [J;ey B(®i,4rz,). It then follows that

HE(F) < (diam(B(x;,4r,,)))° < Y (diam(B(x;,7,,)))" < 1.
iEN iEN
By letting € tend to zero, we obtain that #?®(F') is finite, and hence dimg(F) < s.
O
2. ITERATED FUNCTION SYSTEMS

Here we introduce the basic constructions of an iterated function systems. These
systems appear in a surprisingly large number of applications, including several
that we have already described in the previous section. Moreover, sets X for which
we have the most chance to compute fractal dimensions are those which are self-
similar, that 1s if you magnify a piece of the set enough then the magnification
looks roughly the same as the piece you are started of with. Often, if we have a
local distance expanding map on a compact set we can view the natural associated
invariant set as the limit set of an iterated function system of the inverse branches
of this map. In the case of many linear maps, the dimension can be found implicitly
in terms of an expression involving only the rates of contraction. In the non-linear
case, the corresponding expression involves the so called pressure function.
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2.1. Iterated Function Systems: Definition and Basic Properties.

Definition. Let M C R™ be an open set. A map F': M — M is a contraction if
there exists 0 < r < 1 (r is called the contraction rate) such that for all z,y € M
we have

1F'(z) = F(W)l < rllz =yl
(Here || - || denotes the usual Euclidean norm on R™.)

The following definition is fundamental to what follows.

Definition. An iterated function scheme on an open set M C R™ consists of a
family of contractions Fy, Fy, ..., Fi : M — M (with contraction rates ry, ...,73).

Proposition 2.1. Let Iy, Fy, ..., Fy : M — M be a finite family of contractions.
There exists a unique closed tnvariant set L such that £ = Ule Fi(L).

The set £ is usually called the attractor or limit set of the system.
There is an alternative approach to constructing the limit set is as follows.

Definition. Let M C R™ be an open set, and let Fy, Iy, ..., Fy : M — M be an
iterated function system with contraction rates rq,...,7x. Fix any point z € M
and let the limit set £, be the set of all limit points of the iterates of z under the
iterated function system. That is,

L;:={lim Fy,0F; 0..0F, (z):(xg,21,22,..) € {1, kY
n—r 00

Clearly, each of these limits exists, since it arises from a nested sequence of compact
sets. Moreover, since all of the maps are contractions it follows that each of these
limits is a singleton.

Lemma 2.2. The limit set L, cowncides with the attractor L defined above. In
particular, L, does not depend on the choice of z.

Proof. Let F be the map of the set of compact subsets of M into the set of
compact subsets of M, given by F(A) := [Ji_, Fi(4). One immediately verify
that F'(£,) = £,. Moreover, the contraction mapping theorem guarantees that £,
is the unique fixed point of F', and hence it must be equal to L. |

This second way of interpreting £ has the advantage that every point is coded by
some infinite sequence. That is, we can define a metric d on the space of infinite
sequences
{1, .., k"
by setting, for distinct elements z = (%1, z2,...) and y = (y1, ¥, ...),
d(z,y) = 9-n(zy)

Here, n(z,y) := min{n > 0 : ; = y; for ¢ = 1,2,...,n}. For &z = y we let
d(z,y) := 0. This naturally leads to the coding map 7 : {1,....k}}¥ = L, given by

m((z1,22,...)) := lim Fy, o...0 Fy (2).

n—00
Also, the action of the map F on £ is represented on this symbolical level by the
left shift ¢ which is given by

F(r((x1, 22, ...)) = n(o(x1, 22, ...)) = 7((®2, 23, ...)).

Lemma 2.3. The map w is Holder continuous. That s, there exist K, 3 > 0 such
that ||m(z) — 7(y)|| < K ||z —y||?, for all =,y € {1,... k}".
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Proof. Let w(x), m(y) € Fy, 0 ...0 Fy (L) be fixed. We then have

I () — 7(y)|| < diam(Fy, 0 ...0 Fy (L)) < (maxr;)™ diam(£) < diam(L)d(x, y)?,
where §:= —log,(maxr;). O
If the maps in an IFS are conformal contractions then it is called conformal IFS (or
CIFS). In the one dimensional setting these systems are also called cookie cutters.

Examples: (1) Schottky groups; (2) Julia sets.

Definition. An IFS is said to satisfy the open set condition if there exists an
open set U C R" such that F;(U) C U and F;(U) N E;(U) = O, for all i,j €
{1, kY # ).

Proposition 2.4. For the limit set £ of a CIFS with open set condition, we have
dimg (£) = dimp(L).

Proof. postponed. a

In particular, this applies to two of our favorite examples Julia sets and Schottky
groups.

Corollary 2.5. For limit sets of hyperbolic Julia sets and Schottky groups, Haus-
dorff dimension and box dimension are equal.

2.2. Self-similar IFS’s. Let us consider the very special class of contractions:
similarities. A map F : R” — R” is called similarity if there exists r > 0 such
that ||F(x) — F(y)|| = rlJz — y||, for all z,y € R. This condition is of course much
stronger than asking that F' is conformal.However, for this class of iterated function
schemes 1t is easiest to find an expression for the dimension.

Definition. Let £ be the limit set of an IFS for which the contractions are simi-
larities. Then £ is called a self-similar set.

Examples: (1) The middle third Cantor set: Here, the similarities are given by

2
Flsz—>£ and Fzszﬁi.
3 3
(2) The Sierpinski Carpet: Here, the similarities are given by

Fijo(a,y) — (xg_l,x;_j),fori,jE{O,l,?},(i,j);ﬁ(l,l).

(3) von Koch Curve: Here, the similarities are given by

x x4+ 2
Fl:($ay)'_>(§a%)aF2:($ay)'_>( 6 a%)a

r+3 1—y r+2 vy
Fs: — |, Fy: =].
3 ($ay)'_>< 6 a2\/§)a 4 ($ay)'_>< 3 a3)

We now have the following crucial result. Note that our proof here is inspired by
arguments given by Sullivan in order to show that the Hausdorfl dimension of the
limit set of a convex cocompact Kleinian group is equal to the Poincaré exponent
of the Kleinian group.



DIOPHANTINE APPROXIMATIONS AND FRACTALS 8

Theorem 2.6 (Hutchinson, Moran). The Hausdorff dimension § of the limit set

L of an IFS (with open set condition) whose contractions Fy, ..., Fy, are similarities
(with contraction rates ry, ...,y ) is given by
k
Z 7“? =1.
i=1

Proof. For ease of exposition, let us only consider the special 1-dimensional case
M = Iy :=(0,1). With F;(M) =: I,, we then have that {I, : i = 1,..,k} is a
family of pairwise disjoint intervals contained in Iy. Let Qg C R? be the open unit
square based at Iy, and for each (i1,...,4m) € {1,..,k}™ let Q;, . denote the
interior of the square based at the interval [, ; = Fi o ..o F; (Iy) (clearly,
diam(l;, i) = iy + o1, ). Also, let fil...im denote the top side of the square
Qi,. 5, , that is the side of @, ;.. opposite to I;, ; . Moreover, for x € Iy we
let s, denote the horizontal straight line segment which starts at the top side of
Qo and ends at x € Iy. We can then visualise the limit set £ as follows:

L={z€ly:s,N fil...im # (O for infinitely many iy, ..., 4, }.

Alternatively, we can think of £ as being the set of accumulation points of the set
of top sides {I;, 5, : ({1,...,im) € {1,..,k}™, m € N}. Then, the Poincaré series
associated with the TFS is given for s € R by
¥, = Z Z (riy o)
MEN i1,

and we let & denote the exponent of convergence of this series. Now, let us first
show that & has the property that Zle rf = 1. Indeed, this follows since for s > ¢
we have

k m k s
s s _ Zi:l ri
(riy o) = 7 =
MEN 1.5 meN \i=1 1=3 7

and hence, ¥ converges if and only if s > §, where J is given by Zle i =1.
Note that the TFS is of (what one calls) §-divergence type, meaning that for s = J
we have that X, 1s a divergent series. It now remains to show that

dimy (L) = 4.

The upper bound: For this note that for each € > 0 there exists n(e¢) € N such that
Um>n(6) Uil...im I;, 4, is an e-covering of £ (to see this, choose n(e) such that
Piy . ..1,, < €, for all k> n(e)). Therefore, for each ¢, p > 0 we have that

HIP(L) < D0 Y0 (diam(Fy0,))

m>n(e) i1 im
Since Y54, converges, we have that the latter sum tends to zero for ¢ tending to
zero. This gives that for the (§ 4 p)-dimensional Hausdorff measure #°+7 (L) we
have for each p > 0 that
HT(L) =0,
and this clearly finishes the proof of the assertion.

The lower bound: For the lower bound we construct a probability measure on
L, which we call Cantor-Patterson measure, and then use the mass distribution
principle to finish the proof.

Let (en)nen be some fixed sequence of positive numbers such that limy, e €, = 0.



DIOPHANTINE APPROXIMATIONS AND FRACTALS 9

For each n € N | let the probability measure p, be defined for arbitrary Borel sets

ACQuUly by
Z Z (7“2'1 et Tim)é-l—ﬁn .

meN ‘1

Izl...z

fin (A) :

E<5+en
CA

Note that p,(Ip) =0, for each n € N. However, if n increases the region where we
find the measure p, concentrated on gets pushed down further and further towards
the bottom line of ()g. More precisely, if for example lezn is one of the top sides
in the construction, the we have

~ r6+6k

(L, 4,) = === — 0, for k tending to infinity.
26+6k

Clearly, limy, oo ptn(E) = 0, for each E C Qg (recall that Qo C R? was chosen
to be the open unit square based at Iy). Then let g be a weak limit measure
of the the sequence (pn)new. (Recall that if v is a weak limit of a sequence
of probability measures (vg)g, then v(O) < liminfy v4(O) for all O open, and
limsupy, v4(C) < v(C) for all €' compact). One immediately verifies that g is
supported on the limit set £. Indeed, if this would not be the case, then there
would exist an open connected set D in the complement of £ such that p(D) > 0
and such that the open square D based at D has empty Intersection with the set
of top sides {lezm S(i1, ey tm) € {1, ..., k}™, m € N}. Since obviously puy(D ) 0
for each k € N, this would then immediately lead to the contradiction

0 < p(D) < liminf (D U D)= lirrkinfuk(ﬁ) =0.

Next observe that for each Q;, 5, we have
E E d+e § : z : S+e
(7“]'1 ~...~7°jm) k = (7“2'1 ""'rinrh'"rlm) k
meN J1- meNIy ..y
Ij Jm—Qll i

= (7“2'1 et Tin)é-l—ﬁk Z Z (Tll...rlm)é-I—Ek

meNI..Ip
= (rgy e rin)é-l_ﬁk Yte-
By dividing the latter by Y5, , it follows for each & € N that
1 (Qiy i) = (riy - e, )R
Since Q;, i, Ul ;. 1s open in Qo U Iy, similar as above it follows that
/J(Il'lmin) = (@i 5, Ul 4,) < hmmfuk(Q“ LU 5)

= hn}cinfﬂk(Qil...in) = hn}cmf(ril N rin)é-l_ﬁk

< (i) = (diam(l, )’

From here it is now straight forward, by using the bounded geometry of the IFS,
to deduce that for each z € £ and each sufficiently small radius r > 0 we have

w(Blx,r)) < 1°.
By applying the mass distribution principle, it follows that dimg (L) > 4.
O

The previous theorem allows us to determine the Hausdorff dimensions of the var-
ious examples which we already considered before.
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Examples:

(1) %-Cantor Set C': Here we have

1\ 565 /1 e
)G -
and hence dimg (C) = log2/log3.
(2) Sierpinski Carpet S: Here we have

1 log

Tog 3
8. (= =1
(3) ’
and hence dimg(S) = 3log2/log3.

(3) von Koch Curve K : Here we have that each of the contractions Fy, ..., Fy has
the contraction rate 1/3, and hence

1 log 4

Tog 3

R =1.
(3)

This gives dimg (K) = 2log2/log3.

2.3. The Bowen formula. In order to associate an iterated function scheme to
an expanding map F : X — X, for X compact, we need to introduce the concept
of a Markov Partition (we will always assume that F' is a conformal expanding
C'*¢ map, that F’ is e-Holder continuous, F’ is the same in all directions and
|F'(2)| > o > 1). The contractions in the associated iterated function system will
then essentially be the inverse branches to the expanding maps. Let

Definition. A finite collection M = {M;}i=1, r of closed subsets of X is called
Markov partition if the following hold.

(1) X =U; M;.

(2) Each of the M; is the closure of the interior of M; (relative to X).

(3) For each ¢ € {1,....,k} there exists {1(¢),....,Im(7) € {1,...,k} such that
F(M;) = U;'n:1 Mi; iy -

(4) F|m, is a local homeomorphism, for each ¢ € {1, ..., k}.

Note that in many examples we actually have that F(M;) = X | for all ¢ €
{1,...,k}. We now state the following standard result (without proof).

Lemma 2.7. For each conformal expanding C'T¢ map there exists a Markov Par-
tition.

This result is very useful, since it allows us to consider the family of the local
inverses I : F(M;) — M; (extended to suitable open neigh- bourhoods) as an
iterated function system.

Example: Limit sets for Schottky groups G : In this case, we have k pairs of
disjoint disks (Dgl), Dg_l)), whose boundaries are the isometric circles associated
with the set of generators {gi,...,g5} (and there inverses). We then have that g¢;
(-1)

maps the interior of Dgl) onto the exterior of D; "/, and gi—1 maps the interior of

Dl(_l) onto the exterior of Dgl). With L(G) denoting the limit set of GG, we then
define the map F': L(G) = L(G) for each i =1,... k by:

If z ¢ Dl(_l) for j € {=1,1}, then F(z) := gf(z)
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We then have that F' is an expanding map.

In order to state Bowen’s Formula, we require to introduce the pressure function P
associated with in IFS. This function is given for a a continuous function ¢ : £ — R

by

P(g) = lim ~log 3 (5P aele o) (P(T(@) T (o @)+ A(r (o™ (2)))

n—oo N ’
(1,..,¢n)e{l,...,d}"™

where as usual [x1,...,25] = {(y1,¥2,...) 1 4i = x5, forall i =1,...,n} denotes an
n-cylinder. Tt can be shown that the limit in this definition does always exist (at
least for the cases which we consider here). In the situation of an expanding map 7',
one very often considers the family of special potential functions {—slog |F”(x)] :
s € [0,n]} and for these the pressure function can then be written as

1

P(—slog|F'|) := lim —1 ST OEY ()]

(=slog|F]) := lim —log 2 [(F7) ()]
Fo(z)=x

Theorem 2.8 (Bowen’s Formula). Let F' be a conformal expanding C*+¢ map. We
then have that in s € [0,n] there exisls a unique solution of the pressure equation

P(=slog |F']) = 0,

and this occurs precisely at s = § = dimg (L) .

Proof. In the linear situation where F' is given such that the inverse branches of F'

are linear maps F1, ..., I with contraction rates ry, ..., 75, we have that
1
_ / — : _ ny/ -8
P(=slog|F'|) Jim —log EEL |(F™) ()]

F7(z)=x

.1 s
= lim —log > (CAEH)
(F1,..,in)E{1,. .k}

n

1 s
= nli}n;o glog Z 7]
i€{l,... .k}

Since in this situation we have that Zie{l s ;)% = 1, it follows that
1
P(=dlog|F']) = lim —logl = 0.
n—o00 N

For the more general case in which F is a conformal expanding C''*¢ map, one
uses the conformality and the e-Holder continuity of F’ in order to show that for
each (i1,...,in) € {1,..., k}" and for all #,y € £ we have

1F o @)= F, i, ()] = diam(M;, ),

and for each s > 0 we have
SoOF, @ = D (dam(Ui, )0
(1,0 msin) (i1, in)
Here, F;, i, = F;, 0.0 F;, . Also {M;,...,M,,} denotes some Markov partition

and the U, ;, refer to neighborhoods of F; o...0Fj,(M;,). Using these estimates,
one then uses the Ruelle-Perron-Frobenius Theorem to obtain Bowen’s Formula. O
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2.4. Multifractal /thermodynamic formalism in a nutshell. We only give a
sketch of the ideas of the multifractal (or more general, the thermodynamic) for-
malism by demonstrating it along the example of the measure of maximal entropy.
The proofs are omitted. Also, we restrict ourself to the simplest of all cases: an
expanding linear map F : [0,1] — [0, 1] such that F has two inverse branches Fj
and F5 which are linear with contraction rates r; and rs. In this situation we have
a priori two ‘canonical’ measures associated with the system: the Cantor-Patterson
measure js (which is equivalent to the §-dimensional Hausdorff measure; here, §
denotes the Hausdorff dimension of the limit set £) and the measure of maximal
entropy o (sometimes also referred to as the harmonic measure). That is, for
each cylinder set [x;...2,] we have (for ease of exposition, we make no distinction
between {1,2}" and the limit set £)

po([er..en]) < (rgy - e rxn)é and po([ey...2p]) <277

Let us assume that these two measures are not equivalent (that is, they measure
on different sets). Then introduce the following notation. Let ¢((z1,22,...)) :=
log FF] ((x2,23,...))(=logrs, ), ¥o((x1, 22, ...)) := —log2, and let S, f(x) := f(zx)+
flo(x)) + ...+ f(e""1(x)). With these notations the above can be written for
z € [#...2,] as follows

ps([1...xp]) =< 0108(rey e ) — o8Sne(x)

bl

and
po([1...2n]) < enlog2 — Sndo(r)

It turns out that these two measures do in fact represent two points in a continuous
spectrum of probability measures {u; : s € I'}, for some suitable interval 7 C R.
More precisely, for s € I we have (measures with this property are called Gibbs
measures)

bl

ps([xr...ep]) =< ¢*Sne(@)ta(s)Sndo(r)
where the function « is given by the pressure equation
P(sp + a(s)yg) = 0.

Let us remark that in the literature the multifractal formalism proceeds sometimes
slightly differently at this stage. Namely, one could alternatively consider a function
§ which is defined on some suitable interval J and which is given by the pressure
equation P(8(¢)¢ + qo) = 0. One then shows that there exists a family {v, :
g € J} of probability measures, such that for each v, we have vg([x1...2,]) <
ePD)Sne(@)+a5n90(#)  Clearly, this approach is completely analogous to the one
which we have chosen here. Coming back to our approach, let us remark that the
existence of the function « and the existence of the family {us; : s € I} are the
first two corner stones of the formalism(s). Moreover, in our special situation where
we have the measure of maximal entropy on board, one immediately finds that the
function o« can be expressed in terms of the pressure function as follows

a(s) = P(sp)/log?2.
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Indeed, we have that

P 1 o
P<5§p+ (580)1/)0) = lim =log Z (Txl...%n)se%ﬁlw””

log 2 n—oo 1
8 (1,...,@5)

1 P(sy)
_ : - 3 Yon s
= nlgr;o " log | e s> E (rpy . z,)
(1, 2n)

1 (s¢) 1
= lim —log (eig2 w”n) + lim — log Z (rpy.rp,)’

n—o00 N n—00 N
(xh'“yxn)

= —P(sp)+ P(sp) =0.
Summarising this, we now have
P(sp+ a(s)g) =0 and pg([x1...2,]) < eSS"w(x)'i'o‘(s)S"%(x),

for s € I and where the latter holds for each « € [1...2,].
The next step is to determine the sets on which the measures u; are concentrated
on. It turns out that these sets are given by level sets of the form

i Satole)
L= {xnlgrgo Snp(@) =t,.
Note that

L= {(;pl,xz,...) : Jim (28 #0(2120]) :t} = {(;pl,xz,...) i 08 #0(B@,7)) :t}.

n—oo  logry, .1y r—0 logr

More precisely, for each s € I there exists a smallest number 7(s) € R (usually
expressed in terms of a Legendre transformation) such that

lim 75711/}0(36) =7(s),

n—oo Spo(x)
and such that the set of points which have this property has full p;-measure, mean-
ing that p(L-(s)) = 1. This represents the third corner stone of the formalism(s).
We can now determine the Hausdorfl'dimension of the set £, () as follows. For this
we look at the power law of the the measure s, and observe that for » € L,y
and for each € > 0 we have for n sufficiently large

Snig(x)
eSnw(x)(5+a(5) T o) )

o5 Sup (@) +a(s) o)

— (rxl Ty )s+oc(s)7'(s):|:e
Therefore, we now have for each x € L;(5y,¢ > 0 and for r > 0 sufficiently small

rs+oc(s)7'(s)+e & /JS(B(l’, 7“)) < rs-I-Oc(S)T(S)—e’
and hence the mass distribution principle implies

dimpg (Lr(s)) = s+ a(s)7(s).

Note: Let us remark that in the multifractal analysis for self-similar measures,
instead of starting with the measure of maximal entropy, one starts with a self-
similar measure v, , given by a probability vector p = (p1,p2) (where pi,pa > 0
and p; + p2 = 1) such that

2
vp(E) = Zpiyg(Fi_l(E)), for all A C [0, 1] Borel.
i=1

Clearly, the above arguments can then be adapted in a straight forward way to this
situation.



