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Abstract

I will introduce the concept of ‘visibility’ in the context of fractal sets,
with emphasis on subsets of R?. I will describe the so called ‘Visibility
Conjecture’ and survey some recent work on the subject, sketch a couple
of basic proofs and finish by briefly discussing my own research.



Definition: For an angle 6 € [0,27) we define
the line [y C R? to be the half space given by

lo={x = (rcosf,rsinf):r > 0}

and for a compact set K C R? we define the visible
part of K at 6 to be

ViK={zeK:(x+1l)NK={z}}.

Theorem: Let K C R? be a Borel set.

i) If dimy K < 1 we have dimy projy K = dimy K
for Lebesgue almost all 8 € [0, 27).

ii) If dimy K > 1 we have dimy proj, K = 1 for
Lebesgue almost all 8 € [0, 27).

The Visibility Conjecture: For K C R? such
that dimyg K > 1 we have

for Lebesgue almost all 8 € [0, 27).
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Figure 1: A self-similar Sierpinski carpet and the visibility set corresponding to
6 = arctan(3) + 37/2. 3



Figure 2: A fractal graph showing the visibility set corresponding to two different
angles.



Figure 3: A Julia set corresponding to the mapping f(z) = 22 +i/4.

Figure 4: An example of fractal percolation.



Theorem: If K C R? is a connected compact
set then for (Lebesgue) almost all points x € R?
we have

1
dimyy Ky < 5+ dimy K — 3 < dimyg K

where K, denotes the visible part of K from the
point x (O’Neil [1]).

Definition: The upper box dimension of a non-
empty bounded set K C R? is defined as

— log Ns(F
dimpgF' = lim sup Og—5<)
5—0 —logd

where Nj(F') is the smallest number of sets possi-
ble in a 0 cover of F.
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