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Definitions:

a. Amenability of a graph:([4], see [1] for group-amenability)

The graph G = 〈V,E〉 is amenable, if there is a (Følner-)sequence {Qn} of
finite subsets Qn ⊂ V , such that the isoperimetric ratios converge to zero, i.e.

|∂Qn|

|Qn|
→ 0, as n → ∞,

where ∂Qn = { {x, y} ∈ E | x ∈ Qn, y ∈ V \Qn } is the edge-boundary of Qn.

b. Horocyclic Products:([8], see [2] for interpretation as Lamplighter-group)

Let τ ′ = 〈V ′, E ′〉 and τ = 〈V,E〉 be two infinite, locally finite, simple, rooted
trees, pointed at infinity with Busemannfunctions h′ and h, respectively. Then
the horocyclic product τ ′ ◦ τ is defined by the graph Ḡ = 〈V̄ , Ē〉 with

V̄ = { 〈v′, v〉 ∈ V ′ × V | h′(v′) + h(v) = 0 },

Ē = { {〈v′, v〉, 〈w′, w〉} ⊂ V ′ × V | v′ ∼τ
′ w′, v ∼τ w }.
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Question: For which type of trees is τ ′ ◦ τ amenable?
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