Tutorium Mathematik II, M 5. Juni 2015

*Aufgabe 1. Bestimmen Sie alle Extremstellen der Funktion

$$f(x,y) = x^2 - 6x + y^2 - 6y + 18$$

auf dem Gebiet

$$B = \{(x, y) \in \mathbb{R} \mid |x| + |y| \le 2\}.$$

Aufgabe 2. Bestimmen Sie alle Extremstellen der Funktionen

$$f(x,y) = (x-1)^2 + y^2$$
 und $g(x,y) = x(x^2 + y^2 - 7)$

auf den Gebieten

$$B_1 = \left\{ (x, y) \in \mathbb{R} \mid x^2 + y^2 \le 4 \right\}$$
 und

$$B_2 = \{(x, y) \in \mathbb{R} \mid x + y \le 1\}.$$

Die mit * markierten Aufgaben werden vom Vortragenden präsentiert, die restlichen Aufgaben sind von den Studierenden zu bearbeiten.

Lösung von Aufgabe 2

Die Funktion f besitzt auf B_1 ein lokales (sogar globales) Minimum im Punkt (1,0) und ein lokales (sogar globales) Maximum im Punkt (-2,0). Dies sind die einzigen Extremstellen: Der Punkt (2,0) ist zwar auf dem Rand von B_1 ein Minimum, aber nicht auf ganz B_1 , weil der Gradient dort aus B_1 heraus gerichtet ist.

Auf B_2 besitzt f keine inneren Extremstellen. Der Punkt (1,0) liegt auf dem Rand von B_2 und ist weiterhin ein Minimum (sogar ein globales Minimum). Weitere Extremstellen gibt es nicht.

Die Funktion g hat auf B_1 ein lokales Minimum in $(\sqrt{7/3}, 0)$ und ein lokales Maximum in $(-\sqrt{7/3}, 0)$. Weitere Kandidaten für innere Extremstellen gibt es nicht. Auf dem Rand von B_1 liegt in (2,0) ein Minimum und in (-2,0) ein Maximum, beides sind aber keine Extremstellen auf B_1 , weil der Gradient am Punkt (2,0) aus B_1 heraus und am Punkt (-2,0) nach B_1 hinein gerichtet ist.

Auf B_2 besitzt g ein lokales Maximum in $(-\sqrt{7/3},0)$. Der einzige weitere Kandidat für eine innere Extremstelle ist $(0,-\sqrt{7})$ – dort liegt ein Sattelpunkt vor. Auf dem Rand von B_2 liegt in $\left(\frac{1+\sqrt{10}}{3},\frac{2-\sqrt{10}}{3}\right)$ ein lokales Minimum und in $\left(\frac{1-\sqrt{10}}{3},\frac{2+\sqrt{10}}{3}\right)$ ein lokales Maximum. An beiden Punkten ist der Gradient nach B_2 hinein gerichtet, also liegt in $\left(\frac{1+\sqrt{10}}{3},\frac{2-\sqrt{10}}{3}\right)$ tatsächlich ein lokales Minimum auf B_2 vor, in $\left(\frac{1-\sqrt{10}}{3},\frac{2+\sqrt{10}}{3}\right)$ allerdings keine Extremstelle.