Einführung in die komplexe Analysis

Wintersemester 2015/16

Blatt 2

Aufgaben zum Vorrechnen am 23/10/2015

Aufgabe 2.1. Gegeben seien $z_0 \in \mathbb{C}$ sowie eine Potenzreihe

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n.$$

Beweisen Sie das folgende Konvergenzkriterium: Existiert ein $z_1 \in \mathbb{C} \setminus \{z_0\}$, für welches die Folge $(a_n(z_1-z_0)^n)_{n\in\mathbb{N}}$ beschränkt ist, dann konvergiert die Potenzreihe auf $B_{|z_1-z_0|}(z_0)$ absolut und lokal gleichmäßig.

Aufgabe 2.2. Gegeben seien $z_0 \in \mathbb{C}$ sowie eine Potenzreihe

$$P(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

mit positivem Konvergezradius R (möglicherweise $R = \infty$). Beweisen Sie die folgenden Aussagen aus der Vorlesung.

(a) Die Potenzreihen

$$\sum_{n=1}^{\infty} n a_n (z - z_0)^{n-1} \quad \text{und} \quad \sum_{n=0}^{\infty} \frac{1}{n+1} a_n (z - z_0)^{n+1}$$

haben ebenfalls Konvergezradius R.

(b) Die Grenzfunktion f von P(z) ist auf $B_R(z_0)$ beliebig of komplex differenzierbar mit Ableitungen

$$f^{(k)}(z) = \sum_{n=k}^{\infty} k! \binom{n}{k} a_n (z - z_0)^{n-k}.$$

Aufgabe 2.3. Sei G ein Gebiet, γ ein Integrationsweg in G und $f: G \to \mathbb{C}$ stetig.

(a) Beweisen Sie die Ungleichung

$$\left| \int_{\gamma} f(z) \, \mathrm{d}z \right| \le L(\gamma) \cdot \max_{z \in \operatorname{Sp} \gamma} |f(z)|$$

und finden Sie ein Gegenbeispiel für die Ungleichung

$$\left| \int_{\gamma} f(z) \, \mathrm{d}z \right| \le \int_{\gamma} |f(z)| \, \mathrm{d}z.$$

(b) Sei Sp $\gamma=\{z\in\mathbb{C}\mid |z|=1\}.$ Zeigen Sie, dass

$$\int_{\gamma} f(z) dz = -\int_{\gamma} \overline{f(z)} \cdot \frac{1}{z^2} dz.$$

Aufgabe 2.4. Beschreiben Sie die Ränder von M_1, M_2 durch Integrationswege γ_1, γ_2 (jeweils gegen den Uhrzeigersinn orientiert) und berechnen Sie die Kurvenintegrale $\int_{\gamma_1} \overline{z} \, \mathrm{d}z$ und $\int_{\gamma_2} \overline{z} \, \mathrm{d}z$. Hierbei sei

- (a) M_1 das Parallelogramm mit Eckpunkten 0, $a,b+\mathrm{i}c$ und $a+b+\mathrm{i}c$ für $a,b,c\in\mathbb{R}_{>0}$ und
- (b) $M_2 = \{ z \in \mathbb{C} \mid |z| < 2 \land \operatorname{Im} ((\overline{z} 2)(1 + i)) < 0 \}.$

Problem 2.1. Given $z_0 \in \mathbb{C}$, let

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n$$

be a power series. Prove the following criterion for convergence: if there is a $z_1 \in \mathbb{C} \setminus \{z_0\}$ for which the sequence $(a_n(z_1-z_0)^n)_{n\in\mathbb{N}}$ is bounded, then the power series converges absolutely and locally uniformly on the open ball $B_{|z_1-z_0|}(z_0)$.

Problem 2.2. Given $z_0 \in \mathbb{C}$, let

$$P(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

be a power series with positive radius of convergence R (possibly $R = \infty$). Prove the following statements from the lecture.

(a) The radius of convergence of the power series

$$\sum_{n=1}^{\infty} n a_n (z - z_0)^{n-1} \quad \text{and} \quad \sum_{n=0}^{\infty} \frac{1}{n+1} a_n (z - z_0)^{n+1}$$

is also R.

(b) The limiting function f of P(z) is infinitely differentiable on $B_R(z_0)$ and the k-th derivative is

$$f^{(k)}(z) = \sum_{n=k}^{\infty} k! \binom{n}{k} a_n (z - z_0)^{n-k}.$$

Problem 2.3. Let $G \subseteq \mathbb{C}$ be open and connected, let γ be a curve in G and let $f: G \to \mathbb{C}$ be continuous.

(a) Prove that

$$\left| \int_{\gamma} f(z) \, \mathrm{d}z \right| \le L(\gamma) \cdot \max_{z \in \operatorname{Sp}\gamma} |f(z)|$$

and find a counterexample for the inequality

$$\left| \int_{\gamma} f(z) \, \mathrm{d}z \right| \le \int_{\gamma} |f(z)| \, \mathrm{d}z.$$

(b) Let $\operatorname{tr} \gamma = \{z \in \mathbb{C} \mid |z| = 1\}$. Show that

$$\overline{\int_{\gamma} f(z) dz} = -\int_{\gamma} \overline{f(z)} \cdot \frac{1}{z^2} dz.$$

Problem 2.4. Given the sets $M_1, M_2 \subseteq \mathbb{C}$ defined below, parametrise their boundaries as curves γ_1, γ_2 (oriented counterclockwise) and solve the curve integrals $\int_{\gamma_1} \overline{z} \, dz$ and $\int_{\gamma_2} \overline{z} \, dz$.

- (a) Let M_1 be the parallelogram with vertices 0, a, b + ic, and a + b + ic, where $a, b, c \in \mathbb{R}_{>0}$;
- (b) let $M_2 = \{ z \in \mathbb{C} \mid |z| < 2 \land \operatorname{Im} ((\overline{z} 2)(1 + i)) < 0 \}.$