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Introduction

On July 19, 2006, Professor Walter Philipp passed away guihike in the Aus-
trian Alps as a result of a sudden heart attack. By the timeiofibath, Walter
Philipp had been for almost 40 years on the faculty of the &hsity of lllinois at
Urbana-Champaign, for the last couple of years as professeritus. He is sur-
vived by his wife Ariane and his four children, Petra, Rob&rithony and André.
Walter Philipp is sorely missed by his family, but also byimiany colleagues, coau-
thors and former students all over the world, to whom he wasyal land caring
friend for a long time, in some cases for several decades.

Walter Philipp was born on December 14, 1936 in Vienna, Aaiswhere he
grew up and lived for most of the first 30 years of his life. Heds¢d mathematics
and physics at the University of Vienna, where he obtaine®hiD. in 1960 and his
habilitation in 1967, both in mathematics. From 1961 ur@67 he was scientific
assistant at the University of Vienna. During this periodldt Philipp spent two
years as a postdoc in the US, at the University of Montana issMila and at the
University of lllinois. In the fall of 1967 he joined the fakty of the University of
lllinois at Urbana-Champaign, where he would stay for thet of his life. Initially,
Walter Philipp was on the faculty of the Mathematics Deparitnbut in 1984 he
joined the newly created Department of Statistics at thevé&isity of lllinois. From
1990 until 1995 he was chairman of this Department. While aivbatical leave
from the University of lllinois, Walter spent longer perdt the University of North
Carolina at Chapel Hill, at MIT, at Tufts University, at thaiersity of Gottingen
and at Imperial College, London.

Walter Philipp received numerous recognitions for his wdvost outstanding
of these was his election to membership in the Austrian Acgdef Sciences.

As a student and postdoc at the University of Vienna, Waltglipgp worked
under the guidance of Professor Edmund Hlawka, foundereofamous postwar
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Austrian school of analysis and number theory. Other forshaatents of Professor
Hlawka include Johann Cigler, Harald Niederreiter, WolfgaM. Schmidt, Fritz
Schweiger and Robert Tichy. It was here that Walter Philippig touch with the
classical topics from analysis and number theory that wguide a large part of
his research for the rest of his life. Uniform distributiaiiscrepancy of sequences,
number-theoretic transformations associated with varexpansions of real num-
bers, additive number-theoretic functions, Diophantimgraximation, lacunary se-
ries became recurrentthemes in Walter Philipp’s subsdquemk. He studied these
themes using techniques from probability theory, e.g. foimg processes, martin-
gales and empirical processes. He contributed greatletdelelopment of several
branches of probability theory and solved much investjadéficult problems in
analysis and number theory with the help of the tools he dpesl.

Themes from analysis and number theory

A full understanding and appreciation of Walter Philipgsearch requires the back-
ground of some topics from analysis and number theory. Indilwws we shall
briefly introduce the topics that were recurrent themes itté/®hilipp’s work.

Uniform distribution mod 1. A sequencéx,)n>1 of real numbers is called uni-
formly distributed mod 1 if for alk € [0, 1]

1 :
’\Illm N#{1§|§N:{x;}§x}:x,

where{x} denotes the fractional part af More generally, a sequen¢g,)n>1 of
vectors inR¢ is called uniformly distributed mod 1 if

h|liin‘m%f+¢{1g i <N:{x} €A} =A(A)

for all rectangled\ C [0,1]¢, where denotes Lebesgue measure anddfarR? the
symbol{x} is interpreted coordinatewise. The famous Weyl| criterit®l©) states
that a sequencgn)n>1 in RY is uniformly distributed mod 1 iff

lim = % e?mtkx) —
N n=1

N—o0

for all k€ Z9\ {0}. An immediate consequence is the uniform distribution ef th
sequencéna)n>1 C R for irrationala, but with suitable methods this leads to the
uniform distribution of many other sequences in one and drighmensions, for
example, a large class of sequences of the tymet} for increasing sequences
(n)k>1 of positive integers.
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Discrepancies. Given a sequencé,)n>1 Of real numbers uniformly distributed
mod 1, one can study the discrepancy

Dn:= sup 1#{1§igN:a§{>q}<b}—(b—a)

O<a<b<1

A Glivenko—Cantelli type argument shows thay — 0, and one may then ask for
the exact rate of convergencedf; to 0. In the case of d-dimensional sequence
(%)n>1, one can define the discrepancy with respect to a ¢fadfsubsets ofo0, 1]¢
by
Dn(C) :=sup
AcC
In this case, the additional issue of the choice of suitalslesg” arises. Note that

Dn(C) — 0 does not necessarily hold even if the sequexgi>1 is uniformly
distributed.

%#{1§ i <N: {xi}eA}—?\(A)‘-

6-adic expansion of real numbers. Let 0 > 1, not necessarily an integer. Every
real numbemw € [0,1) can be written as an infinite series

where 0< xp < 6 are integers. Clearly, = [T"w| where the transformatioh :
[0,1] — [0,1] is defined byT w:= {6w} and[x] denotes the integer part rvf Also,
T'w= S ;0 ¥x\. k. The basic asymptotic question here is the distributiorigitsl
in the expansion, for example, one can ask if the limits aitred frequencies

1N
Fei=im, 5 2, Low=to

exist. If 8 is an integer, the transformatidnis ergodic and has Lebesgue measure
as an invariant measure, thus the ergodic theorem impké s limitsk, exist and
are equal td ! for k=0,1,...,86 — 1 and almost every real numbex With the
usual terminology, almost every real number is normal wépect to bas@. This
statement, proved first by Borel in 1909, is a typical resulthie metric theory of
numbers, stating that a certain property holds for almoastyeseal number, without
specifying the exceptional set. In fact, to determine wheth given numbew

is normal is a very hard problem and only very few normal nuralage known
explicitly. We do not know, for example, /2, e or tare normal in any base. Note
that the normality ofo in basea € N is equivalent to the statement that the sequence
(@"w)n>1 is uniformly distributed mod 1.

If 81is not an integer, the transformatidris still ergodic, but Lebesgue measure
is not an invariant measure. It is known from work of Alfré@ryi (1957) that there
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exists a unique invariant measyravhich is equivalent to Lebesgue measure. In
this case, the sequen®'w)n>1 is no longer uniformly distributed, but

l\I‘im %#{1§ N<N: T "w<x} =p([0,x]),

for almost everyw.

Continued fraction expansion. Every real numbew € (0, 1] can be expressed as
an infinite continued fraction

1

1 = [Xl,Xz,...],
1

X3+...

w=
X1+

Xo+

wherex € {1,2,...}. Closely related is the transformatidn: (0,1] — (0, 1], de-
fined by
Tw:={1/w}.

Then-th digit in the continued fraction expansion is givendgy= [T"w]. As in the
case of thé-adic expansionl "w can be written as a function & 1,%n2,... by

T 0= [Xn11,Xn12,- .-

T is an ergodic transformation with invariant measure givwethie Gauss measure

1 b 1
ui(ab]) = o / T

As a consequence, the asymptotic distribution of the semp(@w)n>1 is governed
by the Gauss measure, i.e.

lim 1#{1<n<N'T”m<x}f 1 /X L dt
NooN V7= = =7 log2Jo 1+t

From here, one obtains that the integgemccurs in the continued fraction expan-
sion of a rar_ldom numbeb with relative frequency%2 (Iogwk1 — Iog%), a fact
already conjectured by Gauss.

Additive functions in number theory. A function f : N — R is called additive
if

f(mn) = f(m)+ f(n),
whenevem andn are coprimes. A simple example of an additive functiow(s),
the number of prime divisors af. Hardy and Ramanujan studied this function and
showed thato(n) is of the order loglog. More precisely, ifPy denotes the uniform
distribution on the firsN integers, then

e .
PN(ngN. loglogN 1‘28) 0
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for anye > 0. Turan observed that the Hardy—Ramanujan theorem ispesgonse-
quence of an easily verifiable inequality for the second marogw(n) and Cheby-
chev’s inequality and thus initiated the subject of probstic number theory. The
Hardy—Ramanujan theorem was later strengthened by ErabKac, who proved
a central limit theorem

w(n) —loglogN /‘X \2/2
<N:———————< — A
Py (n <N ToglogN = X 7ooe dy.

Diophantine approximation. Let f be a positive, continuous, nonincreasing func-
tion onR*. By a classical result of Khinchin, for almost all reathe inequality

qa—pl< &

has infinitely many or only finitely many solutions in integqs, q according as
S ka) diverges or converges. Probabilistically, this is the Be@antelli lemma for

certain dependent events; the main difficulty is to deal withdependence in the
casey ka) = oo, Khinchin’s result has been generalized and improved uparany
directions by Cassels, W. M. Schmidt, Erdés, LeVeques3zGallagher, Ennola,
Billingsley and many others. The simplest proof depends eormection of the
problem with continued fraction theory. Call a fractipyiq a best approximation
to a if it minimizes |g'a — p'| over fractionsy’ /g’ with denominator’ not exceed-
ing g. The successive best approximationsitare the convergenis,(a)/gn(a),
n=1,2,... of its continued fraction expansion and thus the valug@f p| for the
n-th in the series of best approximatiordiga) = |gn(a)a — py(a)|. Thus the study
of number of solutions of (1) is equivalent to the study ofwgtto of the sequence
dn(a). Khinchin proved that

1
ﬁ'Oan(O‘) - “log2

for almost eveny.

Lacunary sequences. Probabilistic methods play an important role in harmonic
analysis and there is a profound connection between priilyabeory and trigono-
metric series. From a purely probabilistic point of viewe ttigonometric sys-
tem (cos 2mx, sin 2mx)n>1 is a sequence of orthogonal (i.e. uncorrelated) random
variables overl0, 1], which, however, are strongly dependent. For example, the
r.v.’s sin2mx have the same distribution, but their partial suis.y sin 2mx re-
main bounded for any fixeg, a behavior very different from that of i.i.d. random
variables. However, it has been known for a long time that#pidly increasing
(nk)k>1, the sequencesin 2myx)k>1 and(cos 2mx)k>1 behave like sequences of
independent random variables. For example, Salem and Zygfi947) proved
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that if (nk)k>1 satisfies the Hadamard gap conditimjn1/nc >q>1 (k=1,2,...),
then(sin 2mix)k>1 obeys the central limit theorem, i.e.

lim A{x€ (0,1): Z\‘sianmkx<t\/N/2} = (2m)~1/? /t e¥/2du  (2)

k

Erdés (1962) proved that the CLT (2) remains valid if the bladrd gap condition
is weakened toy,1/ng > 1+ ck/\/R, cx — o and this resultis sharp. Similar results
hold if sinngx is replaced byf (nkx), wheref is a real measurable function satisfying

F(x+1) = (x), '/(;1 f(x)dx = 0, /0'1 £2(x)dx < co.

For example, iff € Lip (a), a > 0 andn;1/nx — o, then the CLT and LIL hold
for f(nkx). (Takahashi (1961, 1963)). If we assume only;/nkx > q > 1, both
the CLT and LIL can fail, a fact discovered by Erdds and Ro@&aposhkin (1970)
showed that the validity of the CLT fdr(ngx) is closely connected with the number
of solutions(k,I) of the Diophantine equation

ang+bn =c, I <kI<N.

Walter Philipp’s work

Given that Walter Philipp published close to 90 researclepapt is impossible to
mention every single result he ever obtained. We will indteg to focus on the
main lines of his research. Philipp’s earliest work, oraging from his Ph.D. thesis,
concerns uniform distribution mod 1. Weyl (1916) had shohat the sequence
(an w)n>1 is uniformly distributed modulo 1 for almost all € [0, 1], if (an)n>1 C R

is a sequence of positive numbers satisfyigs —a, >6>0 (n=1,2,...) for
somed > 0. Walter Philipp studied this question fdrdimensional sequences,
i.e. for the sequencéA,w)n>1 wherew € RY and (An)n>1 is a sequence ofi-
dimensional matrices satisfying some growth condition. aAsorollary, uniform
distribution of the sequend@"w),>1 for aimost allw € RY can be obtained, pro-
vided the matrixA has all eigenvalues strictly larger than 1.

In 1967 Walter Philipp published the first in a series of pager the asymptotic
behavior of weakly dependent stochastic processes. Tiswmould dominate his
research interests for the next 15 years and keep his cltegtian for the rest
of his life. In the second half of the 1960s and during all of t970s Walter
Philipp was internationally recognized as a leader in theeldgment of new limit
theory for weakly dependent processes and their applitatamproblems in analysis
and number theory. In this period the focus of his researemgéd substantially:
instead of an analyst and number theorist using tools frooiadility theory he
became a probabilist applying his results to problems ityaissand number theory.

In all of the topics from analysis and number theory mentibaleove, there are
sequences of random variables in the background, mostmofdieéined on the prob-
ability spac€0, 1], equipped with some measure equivalentto Lebesgue meé&sure
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Weyl's almost sure equidistribution theory, we have thelman variableso — an .

In each of the different expansions of real numhers (0, 1], the n-th digit maps
W — Xn = Xn(W) are random variables, and so are thih iterateso — T"w. With
the notable exception of the digits in the expansion to aegiet base, none of
these random variables are independent. But the depenidemeak, in some sense
yet to be defined. Walter Philipp soon realized that the thedweakly depen-
dent stochastic processes, then only recently created lidicptions of Rosenblatt
(1956), Ibragimov (1962) and Billingsley (1968), providhs right framework for
the problems he wanted to attack.

There is no such thing as a universal definition of weak depecelthat would
imply the validity of all limit theorems known for indepenatgorocesses. There are
many notions, each of them allowing, under additional tezdirassumptions, the
proof of some of the classical limit theorems of probabititgory. The stronger
the notion, the more limit theorems can be established, tilieasame time fewer
examples satisfy the conditions. The earliest and mossicksnotions of weak
dependence are@-mixing (also called strong mixing, but not to be confusethwi
the same notion in ergodic theory) agdnixing (also called uniform mixing). Let
(Xn)n>1 be a stochastic process, and define for integdrsvith k <1 the o-fields
F=0(X,...,X). We then define the mixing coefficients

aky = sup sup |P(ANB)—P(A)P(B)|,

n>1Ac ", BEF

ok) = sup sup [P(ANB) —P(A)P(B)|
n>1Ac P BEFS  P(A)>0 P(A)

The process(Xn)n>1 is called a-mixing if limp_.a(n) = 0 and @-mixing if
limn_ @n) = 0. Rosenblatt (1956) and Ibragimov (1962) established-aklirnit
theorems for- and @-mixing random variables, requiring a combination of mo-
ment conditions and conditions on the speed at which thengisates converge to
zero. Later, several other related mixing concegtsp mixing, absolute regular-
ity, etc.) were introduced and studied in detail. For staiy ¢-mixing processes
(Xn)n>1, Ibragimov conjectured that the central limit theorem lsdltjEXf <
and Var(3_; X) — oo, but until today this conjecture has not been verified. This
conjecture inspired some of Walter Philipp’s deepest tesalthe field of mixing
random variables: his 1986 joint paper with Dehling and ngiving a neces-
sary and sufficient condition for the CLT fermixing sequences without any rate
or moment conditions and his 1998 joint paper with Berkegngia complete char-
acterization of the law of the iterated logarithm and the domof partial attraction

of the Gaussian law fap-mixing sequences, again without any moment or rate con-
ditions.

In his first papers on limit theorems for weakly dependentpsses, culminating
his 1975 AMS memoir with William Stout, Philipp solved thenteal limit problem
(characterizing the limit distributions of arrays with oesponding criteria for con-
vergence to specific limits) in the case of bounded varignmresed Berry—Esseen
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bounds for the speed of convergence in the CLT and obtaivesidé the iterated
logarithm under various weak dependence conditions. litiaddo the mixing
conditions already mentioned, he studied¢hmixing coefficients defined by

3 P(ANB) — P(A)P(B)|
W = el PAP()

n+k

and-mixing processes. The notion gfmixing is stronger than any of the other
mixing conditions andp-mixing processes satisfy most of the classical i.i.d.dimi
theorems. The digits of a random numbet (0, 1] in the continued fraction expan-
sion form ay-mixing process. A second weak dependence condition iigatetl
by Walter Philipp is a correlation condition for mixed prads, requiring that for
allintegers i1 < ... <ir,1<j<r,py>0

‘E()gfl-...-xf") —E(xfl-...-xfj) E()g?ﬁl-....xf’f)
<L(je(ij+a—ij) sup E[X|>P.

1<i<ir

The standard method to prove limit theorems for mixing psses, employed in
the pioneering works of Rosenblatt (1956) and Ibragimoég)9was the Bernstein
blocking technique, giving an approximation of the chagastic function of par-
tial sums of mixing sequences by the characteristic funafcsums of independent
random variables via suitable correlation inequalitiehisTnethod leads to sharp
results in the case of the CLT and LIL, but its applicabiligybnd them is rather
limited: for example, upper-lower class refinements of thiedequire delicate tall
estimates for the considered r.v.s which are beyond thpesod the method. In
his 1975 AMS Memoir with William Stout, Walter Philipp shodi¢hat sufficiently
separated block sums of weakly dependent sequences aresaitable centering,
close to a martingale difference sequence, and thus usioigpBéd embedding and
Strassen’s strong approximation technique, the partiaksof such sequences can
be closely approximated by a Wiener process. This observatit only opens the
way to prove a vast class of refined asymptotic results foingisequences, but
the near martingale property can be easily verified for sdaher types of weak
dependent processes for which the previous theory doesarét e leads to great
difficulties: Markov processes, retarded mixing sequen@Gasissian processes, la-
cunary series, etc. Note that a different type of martingpleroximation was used
earlier by Gordin (1969) in case of stationary sequencestviio methods comple-
ment each other and lead to sharp asymptotic results in nmapgriant situations.
In his 1979 joint paper with Berkes, Philipp made a furthepamant step in the
study of weak dependent behavior, showing that block sunrgeakly dependent
processes can be directly approximated by independenvmandriables, via the
Strassen—Dudley existence theorem. This observatioa freeinvestigations from
moment conditions and works not only for real valued randamables, but for
random variables taking values in abstract spaces. In theexpof Banach space
valued random variables, this method yields new results &wd.i.d. random vari-
ables, as a 1980 joint paper of Philipp and Kuelbs shows. fdyier was the first
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in a long series of papers of Walter Philipp dealing with titieorems of inde-
pendent and weakly depend@atalued random variables and Hilbert space valued
martingales. The infinite dimensional setup also opens the tov study unform
Glivenko—Cantelli type results and uniform limit theorefosrandom variables in-
dexed by sets, a popular and much studied topic in the 197%d'4880's. Walter
Philipp’s contribution in this field is very substantial;ese.g. his profound joint
paper with Dudley (1983). In his last papers, Walter Philipurned again to this
topic, showing that metric entropy can be used to provide d&ermation on pseu-
dorandom behavior and in the theory of uniform distributi®his completes a long
circle in Philipp’s mathematical work and at the same timergga new direction in
the study of weakly dependent behavior.

The importance of Walter Philipp’s contributions to the mgyotic theory for
weakly dependent processes can only be appreciated ingtteoli the many ap-
plications to problems in analysis and number theory. Soanky epplications are
given in two papers entitte8ome metrical theorems in number theuryich are
entirely devoted to such applications. In these paperséW&hilipp investigated
the distribution of the sequend&"w)n>1 for the mapsT : (0,1] — (0,1] associ-
ated with thed-adic expansion and the continued fraction expansiofis Jf>1 is a
sequence of interval, C (0, 1], one can study the quantity

N
A(N,O.)) = z 1{T"00€|n}'
n=1

If 1 denotes the invariant measure associated Witlthen the expected value of
A(N, w) becomes

N
@(N) = ZlP-Un)-

If all the intervals are identical, i.8, = |, we obtain from the ergodic theorem that
A(N,w) = @(N) +o(N) a.s. Walter Philipp sharpened this result considerably by
showing that for ang > 0,

AN, ) = g(N) + O(¢"*(N)log¥ > g(N)), (3)

for almost allw € (0,1]. While the accuracy of this approximation is limited by the
second order method used in the proof, shortly thereaftiépplwvent much further:
he observed that the considered sequefitB®),>1 are@-mixing with exponential
rate and thus using blocking techniques and applying sorhesasymptotic theo-
rems obtained earlier, one can prove a whole series of haghigcting limit theo-
rems for the digits in various expansions and Diophantipe@pmation. These not
only improve several earlier results in the literature,detually provide the precise
asymptotics in a number of important questions of metric bentheory. Let us for-
mulate a few such results here. bet [a;(X),a2(X),...] be the continued fraction
expansion ok € (0,1) and letg(n) — « be a sequence of integers w% = oo,
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Denote byA(N,x) the number of integens < N with a(x) > ¢(n) and put

IogZZu ( ﬁ)

Then
. A(N,X)—(p(N) 1 & 2
A{X- TN } = 7z Lot

and for almost alk AN N
limsup IA(N,x) — @(N)|
Now /2¢(N)loglogp(N)

Also, lettingLn(X) = max <k<n an(x), Philipp proved

loglogN 1
0= fog2

liminf
N—o0

for almost allx, verifying an old conjecture of Erdds. Further, febe a continuous,
positive, nonincreasing function d&™ such that

=25 ¢

and letNqy ¢ (n) denote the number of solutio(p, q) of (1) in integersy < nandp.
Then under mild additional regularity conditions &nWalter Philipp proved

Nt () —@(n) 1 /7 2
)\{G . W < Z} — ﬁ['/imexq—t /2)dt

and for almost albx N
imeup._Na: () = 9(n)

noe ' /29(n) loglogg(n)

A further much studied connection between probability tigemd number the-
ory is the distribution of values of additive functions. \eéalPhilipp’s contribution
in his field can be found in his 1971 AMS Memoir written with thmbitious goal
to unify probabilistic number theory and to deduce at Ielastrhost typical results
as special cases of limit theorems for mixing random vagisbBecause of the very
different type of weak dependence conditions in numberrihe¢loere is little hope
that all applications of probability to number theory cob&lput in a general frame-
work. But at least for applications in Diophantine approatian, continued frac-
tion and related expansions, discrepancies and the distnibof additive functions,
Walter Philipp succeeded in this program to a remarkableegegHe also studied
weak convergence of additive function paths to Brownianiompextending earlier
results of Billingsley.
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The basic motivation for the introduction of mixing conditis was to understand
the asymptotic properties of weakly dependent structuresachastics and driven
by its intrinsic needs, the theory made a tremendous pregtaging from the 60’s
and by now it is a closed, complete and beautiful theoryngi\da nearly complete
answer for the basic asymptotic questions connected witinmitructures. For a
comprehensive treatise of the theory see the recent mgulogf&. Bradley (2007).

While questions on weak dependence kept Walter Philipgestion in his whole
career, this did not prevent him from making fundamentaltigoutions in other
areas of probability theory, e.g. in the classical theorindépendent random vari-
ables. In a short paper with M. Lacey in 1990 he proved th@¢ifn>1 is a sequence
of i.i.d. random variables with mean 0 and variance 1 thamlp&, = S_; Xk we
have N

. 1 1 [ & 1 ep
l\lllinoologN kzlkl{\/Rgx}_ \/ﬁ/me dt

with probability 1 for allx € R. This remarkable ‘pathwise’ form of the central
limit theorem was already stated (without proof and withepecifying conditions)
by Lévy in 1937 and was proved independently by Brosami@88), Fisher (1987)
and Schatte (1988) under the assumption of higher momenis tdthese papers,
almost sure central limit theory became extremely popularmight and has not lost
its attraction until today. The paper of Philipp and Lacey oy yields the final,
optimal form of this theorem, but the method they used bedambasic method in
this field.

In a series of three papers, published in the mid 1980s joinith Dehling
and Denker, Walter Philipp investigated the asymptoticavedr of degeneratd -
statistics. Given a symmetric functibn R™ — R and an i.i.d. processén)n>1, the
m-variateU -statistic with kerneh is defined as

U= 5 (X Xin):

1<i)<..<im<n

The kernel is called degeneratebth(X,xz, . ..,Xm)) = 0 for almost allxz, . .. ,Xm.
Dehling, Denker and Philipp proved a strong approximatibtgh) by m-fold
Wiener-Itd integrals

In(h):/...'/h(xl,...,xm)dW(xl)...dW(xm),

whereW(t) is a mean-zero Gaussian process. The results of this resesabled
Dehling in a subsequent paper to establish the functiomabliathe iterated log-
arithm for degeneratb) -statistics and for multiple Wiener—Ito integrals. In the
course of their work, Dehling, Denker and Philipp also itigegted the empirical
U-process, defined by

1 ) .
Vs (Hl<ii< ... <im<n:h(Xy,...,%,) <t}—P(h(Xy,...,Xm) gt))teR,

(m)
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and established an almost sure invariance principle fergiocess.

The investigations on the asymptotic behavior of degeadsastatistics lead
directly to questions concerning the asymptotic behaviarestain Hilbert space
valued martingales. For thé-statistic applications, a bounded law of the iterated
logarithm was sufficient. In later work, carried out jointhith Monrad, Walter
Philipp established a Skorohod embedding of Hilbert spatwed martingales.

Another favorite topic of Walter Philipp’s research wasiaary series: he inves-
tigated such series already in his early papers in the 1@6@lsn his very last pa-
pers in 2006 he returned once more to this topic. By Weyl'd 6)%heorem quoted
above, given any sequen¢y)k>1 Of positive numbers withn 1 —nge >0 >0
(k=1,2,...), the sequencénw} is uniformly distributed mod 1 for almost aib.

In contrast to the simplicity of this result, proving shaquinds for the discrepancy
of {nkw} is very difficult, and the only precise results known befo#&Q were the
results of Khinchin (1924) and Kesten’s (1964) for the aase k. Kesten’s result
states that the discrepanby;(w) of the sequencékw} satisfies

,\Iliinm WDN((») = % in probability.
In 1975 Walter Philipp proved that i{fnc)k>1 is a sequence of integers satisfying
the Hadamard gap condition;1/nk > q> 1 (k=1,2,...), then the discrepancy
Dn(w) of the sequencényw} satisfies the law of the iterated logarithm, i.e.

1 N
L1 Climsup, [~ Dy(w) <C 4
a3 = MSUP) | {oaTogn DN (@) < @

for almost allw, whereC = C(q) = 166+ 664(q*/?— 1)~1. This remarkable result
verified a long standing conjecture of Erdés and Gal, amaveld that, as far as its
discrepancies are concerndayw} behaves like a sequence of independent ran-
dom variables. For the partial sums of st such phenomena have already been
observed by Salem and Zygmund in 1947, but the discrepatgstisin is much
more delicate: as in a later paper Philipp (1994) showedafsuitable sequence
(nk)k>1 the limsup in (4) is greater tha(hloglog%1 with an absolute consta@tand
thus forg close to 1 the limsup can be as large as we wish. Very recéntkyyama
(2008) succeeded in computing the limsup for the sequemce$®, 8 > 1.

For sequence&)k>1 growing slower than exponentially, the LIL (4) is gen-
erally false, and the behavior of the discrepancy mfw} becomes very compli-
cated. R. C. Baker (1981) proved that for amy NDy(w) = O((logN)3/2+¢) for
almost allw and Philipp and Berkes (1994) showed that the constéhh@re can-
not be replaced by any number less than 1/2. Despite theefdegcise results on
the extremal behavior of discrepancies, the exact orderagfnitude oDy (w) for
“concrete”ng remains open. In one of his last papers, written jointly vBérkes
and Tichy, Walter Philipp made a substantial step in clepdp this phenomenon
as well: he showed that the asymptotic behavior of the disarey of{nxw} is in-
timately connected with the number of solutions of Dioplremequations of the
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type aing, + -+ +aphk, = b. The discovery of this remarkable arithmetical con-
nection is again a characteristic achievement of Waltdigghiinking probabilistic
phenomena with asymptotic results in analysis and numieeryh

In conclusion we mention an interesting result of Philipptosmextremal behav-
ior of exponential sums. From the Carleson convergenceédnefor Fourier series
in L2 it follows that if f is a nondecreasing positive function B satisfying

8
[N

< (5)
then for any increasing sequener)x>1 of positive integers we have

=O(NY2f(N))  ae. (6)

S e2le NgX
§ 3
k=1

In particular, we have for anfny)ik>1

= O(NY?(logN)¥2*¢)  ace.

M eZTu'n X
§ k
k=1

for anye > 0. As early as 1930, Walfisz proved that fgr= k? the left hand side of
(6) exceedN/2(logN)¥/* for infinitely manyN, but this does not reach Carleson’s
upper bound. Walter Philipp proved thatfifis a nondecreasing positive function
onR™ satisfying mild regularity conditions such that the sum5j diverges, then
the exponential sum in (6) exceel%/2f(N) a.e. for infinitely manyN. This pro-
vides a complete solution of the problem of extremal speeexpbnential sums
and provides yet another example for the power of weak depergdtechniques in
problems of classical analysis.

Physics

In the last years of his life, Walter Philipp became intezdsin certain problems
concerning the foundation of physics. Nearly 100 years dffte birth of quantum
mechanics, the problem of existence of “hidden parameterie theory (a ques-
tion first investigated in depth by John von Neumann in 1988}iil not settled, due
to unsatisfactory probabilistic models traditionally d$e disprove the existence of
such parameters. In a series of papers written jointly wah Kless, Walter Philipp
provided refreshing new ideas in this field, inevitably éaggyreat controversy in
physics circles. It is a great loss to science that Walteligt's death in 2006 put
an end to these investigations, leaving the solution ofithfgrtant problem to the
future.
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