Extremwertaufgaben

Gegeben sei eine Funktion f(x, y) auf einer Menge G.

• Ein Punkt $P = (x_0, y_0)$ heißt **lokales Minimum**, wenn es eine Umgebung (Kreisscheibe) D um P gibt, sodass

$$f(x,y) \ge f(x_0,y_0)$$
 für alle $(x,y) \in D$.

- Analog liegt ein **lokales Maximum** vor, wenn $f(x,y) \leq f(x_0,y_0)$ für alle $(x,y) \in D$.
- Ein **globales Minimum** bzw. **globales Maximum** ist ein Punkt, in dem die Funktion ihren größten bzw. kleinsten Wert annimmt.
- Eine Punktemenge G heißt **offen**, wenn mit jedem Punkt P auch eine ganze ε -Umgebung von P (alle Punkte, die höchstens ε von P entfernt sind) in G enthalten ist.
- \bullet Eine Punktemenge G ist **abgeschlossen**, wenn sie alle ihre Randpunkte enthält.
- \bullet Eine Punktemenge G, die sowohl abgeschlossen als auch beschränkt ist, heißt **kompakt**.
- Eine Punktemenge G heißt **zusammenhängend**, wenn je zwei Punkte in G durch einen vollständig in G liegenden Kurvenzug verbunden werden können.

• Eine Punktemenge, die sowohl offen als auch zusammenhängend ist, heißt **Gebiet**.

Satz. Eine Funktion f(x,y), die auf einer kompakten Menge stetig ist, besitzt dort ein Maximum und ein Minimum.

Notwendige Bedingung für ein lokales Extremum:

Hat eine Funktion f(x, y) in einem Punkt (x_0, y_0) ein lokales Extremum, so muss die Tangentialebene horizontal sein und damit

$$f_x(x_0, y_0) = 0$$
 und $f_y(x_0, y_0) = 0$

gelten.

Hinreichende Bedingung für ein lokales Extremum:

Zur Bestimmung, ob ein Maximum oder ein Minimum (oder keines von beiden) vorliegt, kann man das folgende Kriterium verwenden:

- Ist $\Delta = (f_{xx}f_{yy} f_{xy}^2)|_{(x_0,y_0)} > 0$, dann liegt
 - ein lokales Minimum vor, falls $f_{xx} > 0$ $(f_{yy} > 0)$.
 - ein lokales Maximum vor, falls $f_{xx} < 0$ ($f_{yy} < 0$).
- Ist $\Delta < 0$, dann liegt ein Sattelpunkt vor.
- Ist $\Delta = 0$, so ist keine Aussage möglich.

Allgemeiner Fall: Funktionen in n Variablen

Möchte man Extrema einer Funktion $f(x_1, x_2, ..., x_n)$ in n Variablen bestimmen, so geht man wie folgt vor:

- Alle partiellen Ableitungen müssen verschwinden, damit ein Maximum oder Minimum vorliegen kann.
- In einem Punkt P_0 , für den dies gilt, betrachtet man die **Hesse-Matrix**

$$Q = \begin{pmatrix} \frac{\partial^2 f}{\partial^2 x_1}(P_0) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(P_0) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(P_0) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(P_0) & \frac{\partial^2 f}{\partial x_2^2}(P_0) & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(P_0) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(P_0) & \frac{\partial^2 f}{\partial x_n \partial x_2}(P_0) & \cdots & \frac{\partial^2 f}{\partial x_n^2}(P_0) \end{pmatrix},$$

die aus allen partiellen Ableitungen zweiter Ordnung besteht. Ist Q positiv definit, so liegt ein Minimum vor, ist Q negativ definit, so liegt ein lokales Maximum vor. Zur Bestimmung, ob eines von beiden für Q gilt, kann man das **Hauptminorenkriterium** verwenden.

Hauptminorenkriterium:

Die Hauptminoren einer Matrix sind jene quadratischen Teilmatrizen, die dieselbe linke obere Ecke haben. Es gilt:

• Sind alle Hauptminoren positiv, dann ist die Matrix positiv definit.

• Sind die Hauptminoren abwechselnd negativ und positiv (negativ zuerst), dann ist die Matrix negativ definit.