
On the average Wiener index of degree-restricted

trees. ∗

Stephan G. Wagner

Department of Mathematics

Graz University of Technology

Steyrergasse 30, A-8010 Graz, Austria

wagner@finanz.math.tu-graz.ac.at

Abstract

The Wiener index, defined as the total sum of distances in a graph, is one of the

most popular graph-theoretical indices. Its average value has been determined for

several classes of trees, giving an asymptotics of the form Kn
5/2 for some K. In this

note, it is shown how the method can be extended to trees with restricted degrees.

Particular emphasis is placed on chemical trees – trees with maximal degree ≤ 4 –

since the Wiener index is of interest in theoretical chemistry.

1 Introduction

The Wiener index of a graph G, named after the chemist Harold Wiener [17], who con-
sidered it in connection with paraffin boiling points, is given by

∑

{v,w}⊆V (G)

dG(v, w), (1)

where dG denotes the distance in G. Besides its purely graph-theoretic value, the Wiener
index has interesting applications in chemistry. We quote [2], which gives an extensive
summary on the various works, and refer to [16] for further information on the chemical
applications.
The average behaviour of the Wiener index was first studied by Entringer et al. [5], who
considered so-called simply generated families of trees (introduced by Meir and Moon,
cf. [9]). They were able to prove that the average Wiener index is asymptotically Kn5/2,
where the constant K depends on the specific family of trees. Thus, the average value of
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the Wiener index is, apart from a constant factor, the geometric mean of the extremal
values, which are given for the star Sn and the path Pn respectively:

(n − 1)2 = W (Sn) ≤ W (T ) ≤ W (Pn) =

(

n + 1

3

)

(2)

for all trees T with n vertices (s. [4]). In more recent articles, Neininger [11] studied
recursive and binary search trees, and Janson [7] determined moments of the Wiener
index of random rooted trees.
Dobrynin and Gutman [3] calculated numerical values for the average Wiener index of
trees and chemical trees of small order by direct computer calculation.
The average Wiener index of a tree (taking isomorphies into account) has been determined,
in a different context, in a paper of Moon [10] – it is given asymptotically by 0.56828n5/2.
The aim of this note is to extend the cited result to trees with restricted degree, especially
chemical trees. In fact, the enumeration method for chemical trees is older than the result
of Otter and goes back to Cayley (cf. [1]) and Pólya [13].
Let Z(A) denote the cycle index of a permutation group A, and write Z(A, f(z)) for the
cycle index Z(A) with f(zl) substituted for the variable sl belonging to an l-cycle. If
TG(z) and TGk

(z) are the counting series for two classes G, Gk of rooted trees, where Gk

is constructed by attaching a collection of k trees from the family G to a common root
(ignoring the order), we have (cf. [6])

TGk
(z) = z · Z(Sk, TG(z)), (3)

where Sk denotes the symmetric group. Additionally, we define Z(S0, f(z)) = 1 and
Z(Sk, f(z)) = 0 for k < 0. This gives us, for example, the functional equation for the
counting series T3(z) of rooted trees with maximal outdegree ≤ 3:

T3(z) = z ·
3
∑

k=0

Z(Sk, T3(z)).

2 Functional equations for the total height and Wiener

index

Our method will be the same one as in Entringer et al. [5]. First, we consider an auxiliary
value, D(T ), denoting the sum of the distances of all vertices from the root. This is also
known as the total height of the tree T , cf. [14].
The value D(T ) can be calculated recursively from the branches T1, . . . , Tk of T , viz.

D(T ) =

k
∑

i=1

D(Ti) + |T | − 1, (4)

where |T | is the size (number of vertices) of T . Now we have to translate this recursive
property into a functional equation. Again, we suppose that the branches come from a
certain family G, and denote the corresponding generating function for D(T ) by

DG(z) =
∑

T∈G

D(T )z|T |.
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Let Gk be defined as before and define DGk
(z) analogously. There is an obvious bijection

between the elements of Gk−j and the elements of Gk which contain a certain tree T ∈ G
at least j times as a branch. Therefore, if gk,n denotes the number of trees of size n in Gk,
the branch B appears

k
∑

j=1

gk−j,n−j|B|

times in all rooted trees of size n belonging to Gk. Together with (4), this gives us

DGk
(z) =

∑

B∈G

D(B)

k
∑

j=1

∑

n≥1

gk−j,n−j|B|z
n + zT ′

Gk
(z) − TGk

(z)

= z

k
∑

j=1

DG(zj)Z(Sk−j, TG(z)) + zT ′
Gk

(z) − TGk
(z).

(5)

Similarly, we introduce generating functions for the Wiener index:

WG(z) =
∑

T∈G

W (T )z|T |,

and WGk
(z) is defined analogously. Now, we use the following recursive relation from [5],

which relates the Wiener index of a rooted tree T with the Wiener indices of its branches
T1, . . . , Tk:

W (T ) = D(T ) +
k
∑

i=1

W (Ti) +
∑

i6=j

(

D(Ti) + |Ti|
)

|Tj|, (6)

where the last sum goes over all k(k − 1) pairs of different branches. Now, we have to
determine the number of times the pair (B1, B2) ∈ G2 appears in trees with n vertices
belonging to Gk. By the same argument that was applied before, this number is given by

k−1
∑

j=1

k−j
∑

i=1

gk−j−i,n−j|B1|−i|B2|

if B1 and B2 are distinct elements from G. If, on the other hand, B1 = B2 = B are equal,
the number is

k
∑

j=1

j(j − 1)
(

gk−j,n−j|B| − gk−j−1,n−(j+1)|B|

)

=

k
∑

j=1

2(j − 1)gk−j,n−j|B|.

Together with (6), this yields

WGk
(z) = DGk

(z) +
∑

B∈G

W (B)

k
∑

j=1

∑

n≥1

gk−j,n−j|B|z
n

+
∑

B1∈G

∑

B2∈G

(

D(B1) + |B1|
)

|B2|
k−1
∑

j=1

k−j
∑

i=1

∑

n≥1

gk−j−i,n−j|B1|−i|B2|z
n

+
∑

B∈G

(

D(B) + |B|
)

|B|
k
∑

j=1

∑

n≥1

(j − 1)gk−j,n−j|B|z
n
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or

WGk
(z) = DGk

(z) + z

k
∑

j=1

WG(zj)Z(Sk−j, TG(z))

+ z

k−1
∑

j=1

k−j
∑

i=1

(

DG(zj) + zjT ′
G(zj)

)

· ziT ′
G(zi)Z(Sk−j−i, TG(z))

+ z

k
∑

j=1

(j − 1)zj
(

D′
G(zj) + T ′

G(zj) + zjT ′′
G (zj)

)

Z(Sk−j, TG(z)).

(7)

These functional equations (and combinations of them for different values of k) enable
us to calculate the average Wiener indices for various sorts of degree-restricted rooted
trees. For the study of unrooted trees, however, we need yet another tool. In particular,
we want to determine the average Wiener index of trees with maximal degree ≤ 4, also
known as chemical trees (cf. [3]).
For this purpose, let FD denote the family of rooted trees with the property that the
outdegree of every vertex lies in D0 = D ∪ {0}, where D ⊆ N, and let F̃D be the family
of trees with the property that all degrees lie in the set D̃ = {d + 1 : d ∈ D0}. By a
theorem of Otter (cf. [6]), the number of different representations of a tree as a rooted
tree equals 1 plus the number of representations as a pair of two unequal rooted trees (the
order being irrelevant), with their roots joined by an edge. Thus, for counting the trees
in F̃D, one has to take

• rooted trees with k ∈ D̃ branches from FD

minus

• pairs of unequal rooted trees from FD, joined by an edge.

If TD and T̃D are the respective generating functions for the number of trees in FD and
F̃D, this means that

T̃D(z) = z + z
∑

k∈D0

Z(Sk+1, TD(z)) − 1

2

(

T 2
D(z) − TD(z2)

)

. (8)

The first summand, corresponding to the tree with only a single vertex, can be included
or not, as it makes no real difference. The generating function for the Wiener index
of trees from F̃D is also a difference of the respective generating functions for the two
possibilities of representing a tree from F̃D which were given above. If we denote it by
W̃D(z) = W̃

(1)
D (z) − W̃

(2)
D (z), the first summand is given by equation (9), which is easily

deduced from (5) and (7).
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W̃
(1)
D (z) =

∑

k∈D̃

(

z
k
∑

j=1

DD(zj)Z(Sk−j, TD(z)) + z

(

d

dz
z · Z(Sk, TD(z))

)

− z · Z(Sk, TD(z))

+ z

k
∑

j=1

WD(zj)Z(Sk−j, TD(z))

+ z

k−1
∑

j=1

k−j
∑

i=1

(

DD(zj) + zjT ′
D(zj)

)

· ziT ′
D(zi)Z(Sk−j−i, TD(z))

+ z

k
∑

j=1

(j − 1)zj
(

D′
D(zj) + T ′

D(zj) + zjT ′′
D(zj)

)

Z(Sk−j, TD(z))

)

,

(9)

On the other hand, if two rooted trees T1 and T2 are joined by an edge, the Wiener index
of the resulting tree T is given by

W (T ) = W (T1) + W (T2) + D(T1)|T2| + D(T2)|T1| + |T1||T2|.

Therefore, we obtain

W̃
(2)
D (z) =

1

2

∑

T1∈FD

∑

T2∈FD

(

W (T1) + W (T2) + D(T1)|T2| + D(T2)|T1| + |T1||T2|
)

z|T1|+|T2|

− 1

2

∑

T∈FD

(

2W (T ) + 2D(T )|T |+ |T |2
)

z2|T |

=
1

2

(

2WD(z)TD(z) + 2DD(z) · zT ′
D(z) + z2T ′

D(z)2

− 2WD(z2) − 2z2D′
D(z2) − z2(z2T ′′

D(z2) + T ′
D(z2))

)

.

(10)

3 Wiener index of trees and chemical trees

Equations (5), (7), (9) and (10) enable us to calculate the exact average Wiener index of
all trees of size n from a certain family F with degree restrictions for considerably high n.
As an example, we calculate the average Wiener index of all chemical trees (i.e. maximal
degree ≤ 4) up to n = 100. We have to start with the generating function T3 for F3, the
class of rooted trees with maximal outdegree ≤ 3, whose functional equation is given by

T3(z) = z ·
3
∑

k=0

Z(Sk, T3(z)).

Then, the generating function for the number of trees with degree ≤ 4 is given by

T̃3(z) = z

4
∑

k=0

Z(Sk, T3(z)) − 1

2

(

T 2
3 (z) − T3(z

2)
)

.
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From (5), we know that the corresponding generating function for D(T ) satisfies

D3(z) = z

3
∑

k=1

k
∑

j=1

D3(z
j)Z(Sk−j, T3(z)) + zT ′

3(z) − T3(z).

Analogously, from (7), we obtain

W3(z) = D3(z) +

3
∑

k=1

(

z

k
∑

j=1

W3(z
j)Z(Sk−j, T3(z))

+ z
k−1
∑

j=1

k−j
∑

i=1

(

D3(z
j) + zjT ′

3(z
j)
)

· ziT ′
3(z

i)Z(Sk−j−i, T3(z))

+ z
k
∑

j=1

(j − 1)zj
(

D′
3(z

j) + T ′
3(z

j) + zjT ′′
3 (zj)

)

Z(Sk−j, T3(z))

)

.

W̃3, the generating function for the sum of the Wiener indices of all trees with maximal
degree ≤ 4, is then given by (9) and (10). Easy computer calculations yield us the
following table – up to n = 20, the values were given in [3] by direct computation; t̃4,n

denotes the number of trees of size n with maximal degree ≤ 4, w̃4,n the total of their
Wiener indices:

n t̃4,n w̃4,n w̃4,n/t̃4,n

1 1 0 0
2 1 1 1
3 1 4 4
4 2 19 9.5
5 3 54 18
6 5 155 31
7 9 432 48
8 18 1252 69.56
9 35 3384 96.69
10 75 9714 129.52
20 366319 310884129 848.67
50 1.11774 · 1018 1.05659 · 1022 9452.93
100 5.92107 · 1039 3.34957 · 1044 56570.38

Table 1: Some numerical values for chemical trees.

Things are somewhat easier in the case of ordinary trees. If D = N, the functional
equations reduce to

D(z) = T (z)
∑

j≥1

D(zj) + zT ′(z) − T (z),
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W (z) = D(z) + T (z)
∑

j≥1

W (zj) +
∑

j≥1

∑

i≥1

(

D(zj) + zjT ′(zj)
)

· ziT ′(zi) · T (z)

+
∑

j≥1

(j − 1)zj
(

D′(zj) + T ′(zj) + zjT ′′(zj)
)

· T (z),

W̃ (z) = W (z) − 1

2

(

2W (z)T (z) + 2D(z) · zT ′(z) + z2T ′(z)2

− 2W (z2) − 2z2D′(z2) − z2(z2T ′′(z2) + T ′(z2))
)

.

These equations are also given in Moon [10]. They yield the following table of values:

n wn w̃n wn/tn w̃n/t̃n
1 0 0 0 0
2 1 1 1 1
3 8 4 4 4
4 38 19 9.5 9.5
5 164 54 18.22222 18
6 609 180 30.45 30
7 2256 508 47 46.18182
8 7815 1533 67.95652 66.65217
9 26892 4332 94.02797 92.17021
10 90146 13041 125.37691 123.02830
20 10319401978 655274837 804.55470 796.13984
50 3.73537 · 1024 9.20871 · 1022 8768.95009 8732.57790
100 2.66359 · 1048 3.25933 · 1046 51836.59972 51724.32112

Table 2: Some numerical values for trees.

4 Asymptotic analysis

Now, we study the asymptotic behavior of the Wiener index for rooted trees and trees
with degree restrictions. In particular, we will prove the following fairly general theorem:

Theorem 1 Let D ⊆ N be an arbitrary subset of the positive integers such that D 6= {1}
and gcd(d : d ∈ D) = 1. Then the average total height D(Tn) of a tree Tn ∈ FD with
n vertices is asymptotically 2Kn3/2, the average Wiener index is asymptotically Kn5/2,
where K is given by

K =

√
π

2αbρ3/2

and α, b and ρ are defined as follows:

• ρ is the radius of convergence of TD(z),

• The expansion of TD(z) around ρ is given by

TD(z) = t0 − b
√

ρ − z + O(ρ − z), (11)
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• α =
∑

k∈D Z(Sk−2, TD(z))|z=ρ.

Remark: If D = N, we have α = 1
ρ

= 2.95576528 . . ., ρ = 0.33832185 . . . and b =

2.68112814 . . ., the constants given by Otter [12].

In the proof of the theorem, we will make use of the following property of the cycle indices
of symmetric groups:

Lemma 2 If the cycle index Z(Sk) of the symmetric group Sk is written in terms of
s1, s2, . . ., we have

∂

∂sl

Z(Sk) =
1

l
Z(Sk−l).

Proof: From [6], we know that the cycle index of Sk has the explicit representation

Z(Sk) =
1

k!

∑

(j)

h(j)
k
∏

r=1

sjr

r ,

where the sum runs over all partitions (j) = (j1, . . . , jk) of k (jr denotes the number of
parts equal to r) and h(j) is given by

h(j) =
k!

∏k
r=1 rjrjr!

.

There is an obvious bijection between the partitions of k which contain l and the partitions
of k − l. For a partition (j) of k that contains l, let (j′) be the partition of k − l which
results from replacing jl by jl − 1. Then it is easy to see that

h(j′) =
(k − l)!ljlh(j)

k!
.

This shows that

∂

∂sl
Z(Sk) =

1

k!

∑

(j)

jlh(j)

sl

k
∏

r=1

sjr

r

=
1

(k − l)!

∑

(j′)

h(j′)

l

k
∏

r=1

sj′r
r =

1

l
Z(Sk−l).

�

Corollary 3

d

dz
Z(Sk, f(z)) =

k
∑

l=1

zl−1f ′(zl)Z(Sk−l, f(z)).

Proof: This follows trivially upon application of the chain rule. �

Proof of the theorem: We fix D and use the abbreviations T , D, W for TD, DD, WD. We
start with the equation

T (z) = z
∑

k∈D0

Z(Sk, T (z)). (12)
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The gcd-condition for D ensures that all but finitely many coefficients of T are positive.
Following [6, pp. 208–214], one can prove that T has positive radius of convergence
1 > ρ ≥ 0.33832 . . . (the lower bound being given by the case D = N), that T converges
at z = ρ and that ρ is the only singularity on the circle of convergence. Furthermore, T
has an expansion of the form (11) around ρ, giving an asymptotic formula for the number
tD,n of trees of size n in FD:

tD,n ∼ b

2
√

π
ρ−n+1/2n−3/2.

The values of ρ, t0 and b can be determined numerically. Differentiating (12) yields, by
Corollary 3,

T ′(z) =
T

z
+ z

∑

k∈D

k
∑

l=1

zl−1T ′(zl)Z(Sk−l, T (z))

=
T

z
+ zT ′(z)

∑

k∈D

Z(Sk−1, T (z)) +
∑

k∈D

k
∑

l=2

zlT ′(zl)Z(Sk−l, T (z))

and thus

T ′(z)

(

1 − z
∑

k∈D

Z(Sk−1, T (z))

)

=
T

z
+
∑

k∈D

k
∑

l=2

zlT ′(zl)Z(Sk−l, T (z)). (13)

We set

β :=
∑

k∈D

k
∑

l=2

zlT ′(zl)Z(Sk−l, T (z))
∣

∣

∣

z=ρ
.

Note, at this occasion, that T (zl) is holomorphic within a larger circle than T (z) if l > 1,
and that the sum over l can be uniformly bounded by a geometric sum on any compact
subset of this larger circle. Furthermore, since it is a well-known fact that

∑

k≥0

Z(Sk, f(z)) = exp

(

∑

m≥1

1

m
f(zm)

)

,

we know that the sum over all k ∈ D converges as the sum
∑

m≥1
1
m

T (ρm) is bounded.
This argument will be used quite frequently in the following steps without being mentioned
explicitly. Now, expanding around ρ gives us

1 − z
∑

k∈D

Z(Sk−1, T (z)) ∼ 2

b

(

t0
ρ

+ β

)√
ρ − z. (14)

On the other hand, we have

d

dz

(

1 − z
∑

k∈D

Z(Sk−1, T (z))

)

= −
∑

k∈D

Z(Sk−1, T (z)) − zT ′(z)
∑

k∈D

Z(Sk−2, T (z))

− z
∑

k∈D

k−1
∑

l=2

zl−1T ′(zl)T (Sk−1−l, T (z)).
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The first and the last summand are bounded, therefore, if we set

α :=
∑

k∈D

Z(Sk−2, T (z))
∣

∣

∣

z=ρ
,

we obtain
d

dz

(

1 − z
∑

k∈D

Z(Sk−1, T (z))

)

∼ −ρbα

2
(ρ − z)−1/2,

giving us α = 2
b2ρ

(

t0
ρ

+ β
)

. Next, we turn to the functional equation for D(z):

D(z) = zT ′(z) − T (z) + zD(z)
∑

k∈D

Z(Sk−1, T (z)) + z
∑

k∈D

k
∑

l=2

D(zl)Z(Sk−l, T (z)). (15)

The last summand is bounded around ρ – note that D(z) has the same radius of conver-

gence as T (z), since D(T ) ≤ |T |(|T |−1)
2

for all trees T ; the same argument holds true for
the generating function of the Wiener index by inequality (2). Solving for D(z) yields

D(z) =
zT ′(z) − T (z) + z

∑

k∈D

∑k
l=2 D(zl)Z(Sk−l, T (z))

1 − z
∑

k∈D Z(Sk−1, T (z))
.

Therefore, the expansion of D(z) around ρ is given by

D(z) ∼ b2ρ2

4(t0 + βρ)
(ρ − z)−1 =

1

2α
(ρ − z)−1, (16)

which follows upon combining (11), (14) and (15). Finally, we consider the function W (z):

W (z) = D(z) + zW (z)
∑

k∈D

Z(Sk−1, T (z)) + z
∑

k∈D

k
∑

j=2

W (zj)Z(Sk−j, T (z))

+ z
∑

k∈D

k−1
∑

j=1

k−j
∑

i=1

(

D(zj) + zjT ′(zj)
)

· ziT ′(zi)Z(Sk−j−i, T (z))

+ z
∑

k∈D

k
∑

j=1

(j − 1)zj
(

D′(zj) + T ′(zj) + zjT ′′(zj)
)

Z(Sk−j, T (z)).

(17)

We extract the asymptotically relevant terms to obtain

W (z)

(

1 − z
∑

k∈D

Z(Sk−1, T (z))

)

= z2D(z)T ′(z)
∑

k∈D

Z(Sk−2, T (z)) + O((ρ − z)−1).

The right hand side of this equation behaves like ρ2b
4

(ρ − z)−3/2, so this yields

W (z) ∼ ρ

4α
(ρ − z)−2. (18)

Thus, if tD,n, dD,n and wD,n denote the coefficients of T (z), D(z) and W (z) respectively,
we have

tD,n ∼ b

2
√

π
ρ−n+1/2n−3/2, dD,n ∼ 1

2α
ρ−n−1, wD,n ∼ 1

4α
ρ−n−1n.
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So the average values of D(Tn) and W (Tn) for Tn ∈ FD are given by

dD,n

tD,n
∼

√
π

αbρ3/2
n3/2,

wD,n

tD,n
∼

√
π

2αbρ3/2
n5/2,

which finally proves the claim. �

In the same manner, we prove our second main theorem:

Theorem 4 Let D ⊂ N be a subset of the positive integers as in Theorem 1. Then the
average Wiener index of a tree Tn ∈ F̃D is asymptotically Kn5/2, where K is defined as
in Theorem 1.

Proof: We use the abbreviations T , D, W again and write T̃ , W̃ for T̃D, W̃D. We consider
the generating function T̃ (z) first:

T̃ (z) = z + z
∑

k∈D0

Z(Sk+1, T (z)) − 1

2

(

T 2(z) − T (z2)
)

. (19)

Clearly, T̃ (z) must have the same radius of convergence as T , and ρ is the only singularity
of T̃ (z) on the circle of convergence. Thus we have to determine the expansion of T̃ (z)
around ρ. First, we differentiate (19):

T̃ ′(z) = 1 +
∑

k∈D0

Z(Sk+1, T (z)) + z
∑

k∈D0

k+1
∑

l=1

zl−1T ′(zl)Z(Sk+1−l, T (z)) − T (z)T ′(z) + zT ′(z2)

= 1 +
∑

k∈D0

Z(Sk+1, T (z)) + T ′(z)

(

z
∑

k∈D0

Z(Sk, T (z)) − T (z)

)

+ z
∑

k∈D0

k+1
∑

l=2

zl−1T ′(zl)Z(Sk+1−l, T (z)) + zT ′(z2)

= 1 +
∑

k∈D0

Z(Sk+1, T (z)) + z
∑

k∈D

k+1
∑

l=2

zl−1T ′(zl)Z(Sk+1−l, T (z)) + zT ′(z2).

Thus the derivative of T̃ (z) is bounded at z = ρ. Differentiating again yields

T̃ ′′(z) =
∑

k∈D0

T ′(z)Z(Sk, T (z)) + z
∑

k∈D

k+1
∑

l=2

zl−1T ′(zl)T ′(z)Z(Sk−l, T (z)) + . . . ,

the remaining terms being bounded at z = ρ. We find that

T̃ ′′(z) ∼
(

β +
t0
ρ

)

T ′(z) =
b2αρ

2
T ′(z)

around z = ρ. This means that T̃ (z) has an expansion of the form

T (z) = t̃0 + a1(ρ − z) +
b3αρ

3
(ρ − z)3/2 + O((ρ − z)2), (20)
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giving the asymptotic formula for the number t̃D,n of trees of size n in F̃D:

tD,n ∼ b3α

4
√

π
ρ−n+5/2n−5/2.

We only have to determine the expansion of W̃ (z) now. This function is given by W̃ (z) =
W̃ (1)(z)−W̃ (2)(z), where W̃ (1) and W̃ (2) are given by (9) and (10) respectively. We extract
all asymptotically relevant parts and obtain

W̃ (1)(z) = z(D(z) + W (z))
∑

k∈D̃

Z(Sk−1, T (z))

+ z2T ′(z)(D(z) + zT ′(z))
∑

k∈D̃

Z(Sk−2, T )

+ zD(z)
∑

k∈D̃

k−1
∑

l=2

zlT ′(zl)Z(Sk−1−l, T (z)) + O((ρ − z)−1/2)

= z(D(z) + W (z))
∑

k∈D0

Z(Sk, T (z))

+ z2T ′(z)(D(z) + zT ′(z))
∑

k∈D

Z(Sk−1, T )

+ zD(z)
∑

k∈D

k
∑

l=2

zlT ′(zl)Z(Sk−l, T (z)) + O((ρ − z)−1/2).

(21)

and

W̃ (2)(z) = W (z)T (z) + zT ′(z)D(z) +
z2

2
T ′(z)2 + O((ρ − z)−1/2). (22)

Now, we make use of equations (12) and (13). Some algebraic manipulations then lead
us to

W̃ (z) = (D(z) + W (z))T (z) − W (z)T (z) + zT ′(z)D(z)

(

z
∑

k∈D

Z(Sk−1, T ) − 1

)

+
z2

2
T ′(z)2 + z2T ′(z)2

(

z
∑

k∈D

Z(Sk−1, T ) − 1

)

+ zD(z)
∑

k∈D

k
∑

l=2

zlT ′(zl)Z(Sk−l, T (z)) + O((ρ − z)−1/2)

= D(z)T (z) +
z2

2
T ′(z)2

− (D(z) + zT ′(z))

(

T (z) + z
∑

k∈D

k
∑

l=2

zlT ′(zl)Z(Sk−l, T (z))

)

+ zD(z) · β + O((ρ − z)−1/2)

= D(z) · t0 +
z2

2
T ′(z)2 − (D(z) + zT ′(z))(t0 + ρβ) + D(z) · ρβ + O((ρ− z)−1/2)

=
z2

2
T ′(z)2 + O((ρ − z)−1/2).

12



Therefore, the expansion of W̃ around ρ is given by

W̃ (z) ∼ ρ2b2

8
(ρ − z)−1, (23)

giving us an asymptotic formula for the coefficients of W̃ (z):

w̃D,n ∼ b2

8
ρ−n+1.

Dividing by t̃D,n finally yields the theorem. �

As a conclusion, we give numerical values of K for D = {1, . . . , M} in some special cases:

M K(M)
2 0.7842482154
3 0.6418839467
4 0.5962854459
5 0.5790571390
10 0.5683583008
∞ 0.5682799594

Table 3: Some numerical values of K.

Remark: The theorem still holds – mutatis mutandis – when the gcd-condition for D
is violated. In this case, there are several singularities of equal behavior on the circle of
convergence. If, for example, D = {3} (in this case, F̃D corresponds to saturated hydro-
carbons), there are only trees in FD with a number of vertices n ≡ 1 mod 3, and their
average Wiener index is asymptotically 0.3705918694n5/2.

Remark: It is also possible to determine the moments of the Wiener index of a random
tree as well by the same methods. For instance, in the case D = N, we have

D(T )2 =

(

k
∑

i=1

D(Ti) + |T | − 1

)2

= 2D(T )(|T | − 1) − (|T | − 1)2 +

(

k
∑

i=1

D(Ti)

)2

= 2D(T )(|T | − 1) − (|T | − 1)2 +

k
∑

i=1

D(Ti)
2 +

∑

i6=j

D(Ti)D(Tj),

which yields the functional equation

D2(z) = 2zD′(z) − 2D(z) − z2T ′′(z) + zT ′(z) − T (z)

+

(

∑

i≥1

∑

j≥1

D(zi)D(zj) +
∑

i≥1

iD2(z
i)

)

T (z)
(24)

13



for the generating function

D2(z) :=
∑

T

D(T )2z|T |.

However, the calculations become quite complex and tedious, so we leave out the details
of the proof for the sake of brevity. Asymptotic analysis of the functional equations will
give the following results:

Theorem 5 Let Tn be a random rooted tree on n vertices. Then we have, for the variance
of D(Tn) and W (Tn) and the covariance of the two,

Var(D(Tn)) ∼ 10 − 3π

3αb2ρ3
n3,

Cov(D(Tn), W (Tn)) ∼ 16 − 5π

10αb2ρ3
n4,

Var(W (Tn)) ∼ 16 − 5π

20αb2ρ3
n5.

Also, if T̃n is a random tree on n vertices, we have

Var(W (T̃n)) ∼
16 − 5π

20αb2ρ3
n5.

Here, α = 2.95576528 . . ., ρ = 0.33832185 . . . and b = 2.68112814 . . . as in Theorem 1.
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