
ENUMERATION OF HIGHLY BALANCED TREES

STEPHAN WAGNER

Abstract. Bereg and Wang defined a new class of highly balanced d-ary trees which
they call k-trees; these trees have the interesting property that the internal path length
and thus the Wiener index can be calculated quite easily. A k-tree is characterized by the
property that all levels, except for the last k levels, are completely filled. Bereg and Wang
claim that the number of k-trees is exponentially increasing, but do not give an asymptotic
formula for it. In this paper, we study the number of d-ary k-trees and the number of
mutually non-isomorphic d-ary k-trees, making use of a technique due to Flajolet and
Odlyzko.

1. Introduction and Preliminaries

Bereg and Wang [2] study a class of highly balanced trees which they call k-trees:

Definition 1. A rooted binary tree is called a k-tree if every node of depth less than h− k
has exactly two children, where h is the depth of the tree. In other words, there are exactly

2j nodes of depth j for 0 ≤ j ≤ h− k.

This tree family has interesting properties with respect to the Wiener index (i.e. the
sum of all distances between pairs of vertices), which is the reason why it was studied
in [2]. Obviously, 0-trees are necessarily complete binary trees, which implies that the
number of vertices is 2h−1 − 1. On the other hand, if k ≥ 1, Bereg and Wang claim that
the number of k-trees increases exponentially without further specifying the growth rate.
In this paper, we will be concerned with the enumeration of k-trees, where the definition
is further extended in the obvious way to d-ary trees.

We note that many important classes of trees satisfy balance conditions of a similar
type. For instance, Kemp [6] studies trees with the property that all root-to-leaf paths
have the same length and obtains exact and asymptotic enumeration results for this class
of trees. Another, very well-known example are 2-3-trees (see for instance [7, 9]), which
are indeed completely balanced. They play an important role in computer science, and so
do the so-called AVL-trees, i.e. binary trees with the property that the heights of the two
subtrees stemming from each vertex differ by at most 1 [7, 8]. Indeed, we will see that the
enumeration of 2-3-trees is quite similar to the enumeration of k-trees, even though there
are differences due to the fact that 2-3-trees allow 2 and 3 as potential outdegrees of a
node. This becomes particularly clear if one considers 1-trees: note that there is exactly
one 1-tree of size 2k − 1 for each positive integer k (namely the complete binary tree).
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Thus, even though the number of 1-trees of size ≤ n grows exponentially, this is not true
for 1-trees of size equal n. This phenomenon does not occur for 2-3-trees.

Let us first discuss the trivial case, where we consider k-trees as ordered trees, and
isomorphisms are not taken into account. In this case, if pr(z) denotes the generating
function for d-ary k-trees with the property that the (r− k)-th level is full (i.e. it has dr−k

vertices of depth r − k) and the height is at most r, we have

pr(z) = zpr−1(z)
d

for r ≥ k (simply note that all d subtrees attached to the root have to be k-trees again),
while the initial value pk−1 is just the generating function for d-ary trees of height ≤ k− 1
(including the empty tree!). The latter is given by pk−1(z) = qk−1(z), where q0(z) = 1 + z
and

qh(z) = 1 + zqh−1(z)
d

for 1 ≤ h ≤ k − 1. Now a simple induction shows that

pr(z) = z
dr−k+1

−1

d−1 pk−1(z)
dr−k+1

,

and there are strong results available for the coefficients of powers of a given polynomial
(equivalently, one can regard it is the iterated convolution of a discrete distribution), see
for instance [10]. In the particularly simple case k = 1, one obtains

pr(z) = z
dr

−1

d−1 (1 + z)d
r

,

and one has the following result:

Proposition 1. The number of d-ary 1-trees of size n is exactly
(

dr

n− dr
−1

d−1

)

,

where r is chosen in such a way that dr − 1 ≤ (d− 1)n ≤ dr+1 − 1.

A much more interesting problem arises if one is interested in the number of non-

isomorphic k-trees. In this case, the above relations have to be modified accordingly, so
that we have

pr(z) = zZ(Sd, pr−1(z))

and
qh(z) = 1 + zZ(Sd, qh−1(z)),

where Z(Sd) denotes the cycle index of the symmetric group, see [4]. Explicitly, this can
be written as

pr(z) = z
∑

j1+2j2+...+djd=d

d
∏

ℓ=1

pr−1(z
ℓ)jℓ

ℓjℓjℓ!

and analogously for qh. These recursions are not polynomial any longer, which complicates
the asymptotic analysis.
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For polynomial iterations of the type pr(z) = P (z, pr−1), Flajolet and Odlyzko [3]
provide a very powerful result for the asymptotics of the coefficients of pr under some
technical assumptions. This cannot be applied directly to our situation, but the techniques
used in the aforementioned paper [3] can be used again, and wide parts are even completely
identical. The main difficulty lies in an estimate for the values of our polynomials at the
powers of a complex number z. We will obtain the following main theorem:

Theorem 2. The number of non-isomorphic k-trees with n vertices and the property that

the (r − k)-th level is full and the height is at most r is given by

[zn]pr(z) = d!1/(d−1)ρ−md−r/2
(

2π
(

ρ2ψ′′(ρ) + ρψ′(ρ)
))

−1/2
exp(drψ(ρ))(1 +O(r3d−r/2))

uniformly in n if λ1d
r ≤ m = n− dr−k+1

−1
d−1

≤ λ2d
r for fixed real numbers with

0 < λ1 < λ2 <
dk − 1

dk − dk−1
,

where

• ρ is chosen in such a way that ρψ′(ρ) = m
dr ,

• ψ is an analytic function on the set of positive reals.

From this we can draw the following corollary:

Corollary 3. The coefficients of pr(z) asymptotically follow a normal distribution with

mean µr ∼
(

ψ′(1) + d1−k

d−1

)

dr and variance σ2
r ∼ (ψ′(1) + ψ′′(1)) dr.

In the following section, we provide some auxiliary results that are needed for the proof
of the main theorem, which is given in Section 3. The special case d = 2, k = 1, that is
of particular interest in [2] as well, is treated in Section 4, followed by some concluding
remarks.

2. Auxiliary results

In the following, it will be advantageous to set

yr(z) = z−
dr−k+1

−1

d−1 pr(z)

for r ≥ k − 1. Note that since

Z(Sd, z
af(z)) = zadZ(Sd, f(z)),

this implies

(1) yr(z) = Z(Sd, yr−1(z)) =
∑

j1+2j2+...+djd=d

d
∏

ℓ=1

yr−1(z
ℓ)jℓ

ℓjℓjℓ!
.
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Clearly, [zn]yr(z) is now the number of non-isomorphic d-ary k-trees with n + dr−k+1
−1

d−1

vertices, whose (r−k)-th level is full and whose height is at most r. In particular, [z0]yr(z) =

[z1]yr(z) = 1: note that the first r − k levels contain dr−k+1
−1

d−1
vertices, and there is only

one way (up to isomorphism) to add no vertex or one more vertex. Hence, the polynomial
yr(z) starts with

yr(z) = 1 + z + · · · .

It is not difficult to show that the coefficient of z2 already tends to ∞ as r does. Indeed,
one has

[z2]yr(z) =

{

r k = 1,

r − k + 2 k > 1,

since a tree with the prescribed properties and dr−k+1
−1

d−1
+2 vertices is uniquely determined

by the level of the first common ancestor of the two vertices at level r− k+ 1 (or possibly
r − k + 2, if k > 1).

As a simple consequence, if follows immediately that

lim
r→∞

yr(z) = ∞

for z > 0. This helps us to prove the following simple lemma:

Lemma 4. For any δ > 0, there exist positive constants A1 = A1(δ), B1 = B1(δ) depending

only on δ such that

yr(z) ≥ A1 exp(B1d
r)

whenever z ≥ δ.

Proof. Since yr is increasing (its coefficients are non-negative), it obviously suffices to
consider z = δ. Because of the fact that yr(δ) tends to ∞, we can choose r0 ≥ k large
enough to have

yr0(δ) > d!1/(d−1).

Now, for r > r0, we obtain

yr(δ) = Z(Sd, yr−1(δ)) ≥
1

d!
yr−1(δ)

d

and therefore
yr(δ)

d!1/(d−1)
≥

1

d!d/(d−1)
yr−1(δ)

d =

(

yr−1(δ)

d!1/(d−1)

)d

.

Induction now shows that

yr(δ) ≥ d!1/(d−1)

(

yr0(δ)

d!1/(d−1)

)dr−r0

,

proving the lemma (for r < r0, the inequality is trivial if A1, B1 are sufficiently small). �

In order to obtain more precise asymptotic information, we need to show that 1
d!
yr−1(z)

d

is indeed the dominant term in Z(Sd, yr−1(z)). This motivates the following lemma:
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Lemma 5. For any δ > 0, there exist positive constants A2 = A2(δ), B2 = B2(δ) depending

only on δ such that

yr(z
ℓ)

yr(z)ℓ
≤ A2 exp(−B2d

r)

whenever 2 ≤ ℓ ≤ d and δ ≤ z ≤ δ−1.

Proof. If z ≤ 1, simply note that

yr(z
ℓ)

yr(z)ℓ
≤ yr(z)

1−ℓ

since yr is increasing, and apply Lemma 4. If z ≥ 1, we work with the “mirrored” function

ỹr(z) = z
dr+1

−dr−k+1

d−1 yr

(

1

z

)

(note that dr+1
−dr−k+1

d−1
is the degree of yr), which satisfies the same recursion. Therefore,

yr(z
ℓ)

yr(z)ℓ
=
ỹr(1/z

ℓ)

ỹr(1/z)ℓ

tends to 0 at a doubly exponential rate by the same arguments. This completes the proof
of the lemma. �

Now we extend this to a strip in the complex plane:

Lemma 6. For any δ > 0, there exist η > 0 and positive constants A3 = A3(δ), B3 = B3(δ)
depending only on δ such that

∣

∣

∣

∣

yr(z
ℓ)

yr(z)ℓ

∣

∣

∣

∣

≤ A3 exp(−B3d
r)

for any 2 ≤ ℓ ≤ d and any complex z in the region

R(δ) =
{

z ∈ C : |Arg z| ≤ η, δ ≤ Re z ≤ δ−1
}

.

Proof. Set α = A2

4
, β = 2B2

3
, γ = 2 and δ = B2

3d
, with A2 and B2 as in the previous lemma.

Furthermore, choose r0 sufficiently large and η sufficiently small so that

(2)

∣

∣

∣

∣

yr(z
ℓ)

yr(z)ℓ

∣

∣

∣

∣

≤ α exp(−βdr)

holds for r = r0 and all z ∈ R(δ) and 2 ≤ ℓ ≤ d (which is possible by Lemma 5 since
β < B2) as well as

(3)

∣

∣

∣

∣

yr(z)

yr(|z|)

∣

∣

∣

∣

≥ γ exp(−δdr)
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(again for r = r0 and all z ∈ R(δ); note that the right-hand side is < 1 for sufficiently
large r, so that validity of the inequality can be ensured by choosing η sufficiently small).
Furthermore, let r0 be large enough so that

(4)
γd exp(−δdr+1) − αd! exp(−βdr)

1 + αd! exp(−βdr)
≥ γ exp(−δdr+1)

for all r ≥ r0. Since γ > 1 and β > δd, this is also possible.

We will prove by induction that the inequalities (2) and (3) remain true for r > r0. To
this end, we apply the induction hypothesis together with the recursion (1) to obtain

|yr+1(z)| =

∣

∣

∣

∣

∣

∑

j1+2j2+...+djd=d

d
∏

ℓ=1

yr(z
ℓ)jℓ

ℓjℓjℓ!

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

1

d!
yr(z)

d +
∑

j1+2j2+...+djd=d
j1<d

d
∏

ℓ=1

yr(z
ℓ)jℓ

ℓjℓjℓ!

∣

∣

∣

∣

∣

∣

∣

∣

≥

∣

∣

∣

∣

1

d!
yr(z)

d

∣

∣

∣

∣

−
∑

j1+2j2+...+djd=d
j1<d

d
∏

ℓ=1

|yr(z
ℓ)|jℓ

ℓjℓjℓ!

≥
1

d!
|yr(z)|

d −
∑

j1+2j2+...+djd=d
j1<d

d
∏

ℓ=1

yr(|z|
ℓ)jℓ

ℓjℓjℓ!

≥
1

d!
yr(|z|)

d (γ exp(−δdr))d −
d! − 1

d!
α exp(−βdr)yr(|z|)

d

≥

(

γd

d!
exp(−δdr+1) − α exp(−βdr)

)

yr(|z|)
d.

and analogously

yr+1(|z|) ≤

(

1

d!
+ α exp(−βdr)

)

yr(|z|)
d.

Together with (4), this implies

∣

∣

∣

∣

yr+1(z)

yr+1(|z|)

∣

∣

∣

∣

≥ γ exp(−δdr+1),
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as required. Furthermore, we have
∣

∣

∣

∣

yr+1(z
ℓ)

yr+1(z)ℓ

∣

∣

∣

∣

≤
yr+1(|z|

ℓ)

|yr+1(z)ℓ|
≤
yr+1(|z|

ℓ)

yr+1(|z|)ℓ
·

1

γℓ
exp(δℓdr+1)

≤
A2

γℓ
exp(−B2d

r+1) exp(δℓdr+1)

≤
A2

γ2
exp((δd−B2)d

r+1) = α exp(−βdr+1)

for 2 ≤ ℓ ≤ d by Lemma 5, which completes the induction. Therefore, if we choose A3 ≥ α
and B3 ≤ β in such a way that the inequality holds for r < r0 as well, the lemma follows. �

This allows us to determine a uniform estimate for yr(z) within the region R(δ):

Proposition 7. For any δ > 0 there is a positive constant C = C(δ) depending only on δ
such that

yr(z) = exp

(

ψ(z)dr +
log d!

d− 1

)

(1 +O (exp(−Cdr)))

for all z ∈ R(δ), where

ψ(z) = d1−k log yk−1(z) −
d1−k

d− 1
log d! +

∞
∑

j=k−1

d−j−1 log

(

d!yj+1(z)

yj(z)d

)

is analytic in R(δ).

Proof. We use the classical approach for sequences with a doubly exponential growth,
compare [1] and [3]. Taking logarithms in (1) yields

log yr+1(z) = log
∑

j1+2j2+...+djd=d

d
∏

ℓ=1

yr(z
ℓ)jℓ

ℓjℓjℓ!

= log









1

d!
yr(z)

d +
∑

j1+2j2+...+djd=d
j1<d

d
∏

ℓ=1

yr(z
ℓ)jℓ

ℓjℓjℓ!









= d log yr(z) − log d! + log









1 + d!
∑

j1+2j2+...+djd=d
j1<d

d
∏

ℓ=1

yr(z
ℓ)jℓ

ℓjℓjℓ!yr(z)ℓjℓ









.

Here, the principal value of the logarithm is used. Note that yr(z) 6= 0 for z ∈ R(d) by
the previous lemma. We write vr(z) as an abbreviation for log yr(z) and qr(z) for the last
summand in the above equation. Then,

vr+1(z) = dvr(z) − log d! + qr(z)
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for r ≥ k − 1. Iterating this equation yields

vr(z) = dr−k+1vk−1(z) −
dr−k+1 − 1

d− 1
log d! +

r−1
∑

j=k−1

dr−j−1qj(z)

=
log d!

d− 1
+ dr

(

d1−kvk−1(z) −
d1−k

d− 1
log d! +

r−1
∑

j=k−1

d−j−1qj(z)

)

=
log d!

d− 1
+ dr

(

d1−kvk−1(z) −
d1−k

d− 1
log d! +

∞
∑

j=k−1

d−j−1qj(z) −
∞
∑

j=r

d−j−1qj(z)

)

=
log d!

d− 1
+ drψ(z) −

∞
∑

j=r

dr−j−1qj(z).

Note that the infinite sum converges uniformly since qj(z) is bounded as a consequence of
Lemma 6, thus implying analyticity of ψ(z). The same lemma shows that the remainder
term satisfies

∞
∑

j=r

dr−j−1qj(z) = O (exp(−B3d
r)) ,

since qr(z) = O (exp(−B3d
r)). This concludes the proof. �

Our next lemma concerns the behavior outside the region R(δ):

Lemma 8. For any δ > 0, there exist positive constants A4 = A4(δ), B4 = B4(δ) depending

only on δ such that

yr(z) ≤ A4 exp(−B4d
r)yr(|z|)

whenever δ ≤ |z| ≤ δ−1 and z /∈ R(δ).

Proof. Since yr(z) = 1 + z + . . ., the triangle inequality implies |yr(z)| ≤ yr(|z|) with
equality only for z = |z|. Hence, for any fixed r we can choose α < 1 in such a way that

|yr(z)| ≤ αyr(|z|)

whenever z /∈ R(δ). Now, note that

yr+1(z) ≤
1

d!
|yr(z)|

d +
∑

j1+2j2+...+djd=d
j1<d

d
∏

ℓ=1

yr(|z|
ℓ)jℓ

ℓjℓjℓ!
≤
αd

d!
yr(|z|)

d +O
(

yr(|z|)
d exp(−B3d

r)
)

in this case as well as

yr+1(|z|) =
1

d!
yr(|z|)

d +O
(

yr(|z|)
d exp(−B3d

r)
)

.

If K is the implied constant in the error terms and A4 < 1 and B4 are chosen appropriately
to ensure that

|yr(z)| ≤ A4 exp(−B4d
r)yr(|z|)
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for r = r0 and

Ad4
d!

exp(−B4d
r+1) +K exp(−B3d

r) ≤ A4 exp(−B4d
r+1)

(

1

d!
+K exp(−B3d

r)

)

for r ≥ r0 (which is the case if r0 is large enough and B4 small enough, since we assume
A4 < 1), the desired inequality follows inductively for r ≥ r0. Again, it holds trivially for
r ≤ r0 if the parameters are chosen appropriately. �

Before we can go on to prove our main theorem, we still need some more information
on the function ψ that is summarized in the following lemma:

Lemma 9. The function ψ satisfies

(zψ′(z))′ > 0

for all z > 0, and one has

lim
z→0

zψ′(z) = 0 and lim
z→∞

zψ′(z) =
dk − 1

dk − dk−1
.

Proof. Note first that we have

ψ(z) = lim
r→∞

d−r log yr(z),

and since the convergence is uniform on compact subsets of (0,∞), it follows that

zψ′(z) = lim
r→∞

d−r
zy′r(z)

yr(z)
.

and

(zψ′(z))′ = lim
r→∞

d−r
(

zy′r(z)

yr(z)

)

′

.

Now, note that for a polynomial a(z) =
∑

n anz
n with positive coefficients,

z

(

za′(z)

a(z)

)

′

=
z2a′′(z)

a(z)
+
za′(z)

a(z)
−

(

za′(z)

a(z)

)2

=

∑

n n
2anz

n

∑

n anz
n

−

(∑

n nanz
n

∑

n anz
n

)2

is the variance of an associated random variable A with P(A = n) = anzn

a(z)
and is thus always

non-negative. Furthermore, if a(z) is not a monomial, then the variance is strictly positive.
Furthermore, note that if a(z) = a1(z) + a2(z) and A,A1, A2 are the associated random

variables, then A is a mixture of A1 and A2 (with weights λ = a1(z)
a(z)

and 1 − λ = a2(z)
a(z)

,

respectively, i.e. A1 is chosen with probability λ, and A2 with probability 1−λ). It follows
that

V(A) = E(A2) − E(A)2 = λE(A2
1) + (1 − λ) E(A2

2) − (λE(A1) + (1 − λ) E(A2))
2

= λV(A1) + (1 − λ) V(A2) + λ(1 − λ) (E(A1) − E(A2))
2 ≥ λV(A1)
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and thus

z

(

za′(z)

a(z)

)

′

≥
a1(z)

a(z)
· z

(

za′1(z)

a1(z)

)

′

.

We apply this to the recurrence

yr+1(z) =
yr(z)

d

d!
+ . . .

to obtain

z

(

zy′r+1(z)

yr+1(z)

)

′

≥ d ·
d!yr+1(z)

yr(z)d
· z

(

zy′r(z)

yr(z)

)

′

.

Iteration yields

(5) z

(

zy′r(z)

yr(z)

)

′

≥ dr−k+1 · z

(

zy′k−1(z)

yk−1(z)

)

′ r
∏

j=k

(

d!yj(z)

yj−1(z)d

)

.

By Proposition 7,

d!yj(z)

yj−1(z)d
= 1 +O

(

exp(−Cdj−1)
)

,

which implies that the product
r
∏

j=k

(

d!yj(z)

yj−1(z)d

)

converges to a positive number. Since yk−1(z) is certainly not a monomial by its definition,

z

(

zy′k−1(z)

yk−1(z)

)

′

> 0,

and so (5) shows that

(zψ′(z))′ = lim
r→∞

d−r
(

zy′r(z)

yr(z)

)

′

> 0.

For the remaining part of the lemma, note first that

y′r+1(z) =
∑

j1+2j2+...+djd=d

d

dz

d
∏

ℓ=1

yr(z
ℓ)jℓ

ℓjℓjℓ!

=
∑

j1+2j2+...+djd=d

(

d
∑

ℓ=1

ℓjℓz
ℓ−1y′r(z

ℓ)

yr(zℓ)

)

d
∏

ℓ=1

yr(z
ℓ)jℓ

ℓjℓjℓ!

and thus

zy′r+1(z)

yr+1(z)
=

∑

j1+2j2+...+djd=d

(

∑d
ℓ=1

ℓjℓz
ℓy′r(zℓ)

yr(zℓ)

)

∏d
ℓ=1

yr(zℓ)jℓ

ℓjℓjℓ!

∑

j1+2j2+...+djd=d

∏d
ℓ=1

yr(zℓ)jℓ

ℓjℓjℓ!

.
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We already know that
(

zy′r(z)
yr(z)

)

′

> 0, i.e. this quotient is increasing. Therefore, for z ≤ 1,

we have the following upper estimate:

zy′r+1(z)

yr+1(z)
≤

∑

j1+2j2+...+djd=d

(

zy′r(z)
yr(z)

∑d
ℓ=1 ℓjℓ

)

∏d
ℓ=1

yr(zℓ)jℓ

ℓjℓjℓ!

∑

j1+2j2+...+djd=d

∏d
ℓ=1

yr(zℓ)jℓ

ℓjℓjℓ!

= d ·
zy′r(z)

yr(z)
.

Hence, d−r · zy
′

r(z)
yr(z)

decreases for r → ∞. Noting that yr(0) = 1 for all r, we have

lim
z→0

zy′r(z)

yr(z)
= 0

for all r, which implies, together with the monotonicity, that

lim
z→0

lim
r→∞

zy′r(z)

yr(z)
= 0,

as required. To prove the second limit formula, we can use the same trick as in the proof
of Lemma 5: if

ỹr(z) = z
dr+1

−dr−k+1

d−1 yr

(

1

z

)

is the mirrored function again, then it is easy to check that

zy′r(z)

yr(z)
=
dr+1 − dr−k+1

d− 1
−

1/zỹ′r(1/z)

ỹr(1/z)
.

Dividing by dr and passing to the limit, we obtain

lim
z→∞

zψ′(z) =
dk − 1

dk − dk−1
− lim

z→0
lim
r→∞

zỹ′r(z)

ỹr(z)
,

and the limit on the right hand side can be treated in the same way as the analogous limit
involving yr. This completes the proof. �

3. Proof of the main theorem

Proposition 7, together with Hwang’s Quasi-power Theorem [5], shows that the coeffi-
cients of pr(z) follow a normal distribution. In order to obtain more detailed information,
we apply the saddle point method. The rest of the proof can be literally taken from [3].
We start with the integral representation

[zn]pr(z) =

[

zn−
dr−k+1

−1

d−1

]

yr(z) =
1

2πi

∫

Γ

yr(z)z
−

(

n− dr−k+1
−1

d−1

)

−1
dz

for any simple closed curve Γ around 0. Write m = n − dr−k+1
−1

d−1
, and set λ = m

dr . Then,
λ1 ≤ λ ≤ λ2 by our condition on n. Hence, in view of Lemma 9, there is a unique ρ such
that

ρψ′(ρ) = λ,
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and ρ1 ≤ ρ ≤ ρ2, where ρ1 and ρ2 are such that ρ1ψ
′(ρ1) = λ1 and ρ2ψ

′(ρ2) = λ2. Now,
we choose Γ to be the circle of radius ρ around the origin. By Proposition 7 there is a
constant θ0 > 0 such that ψ is analytic in the region determined by

ρ1 ≤ |z| ≤ ρ2 and |Arg z| ≤ θ0.

Within that region, we have the expansion

(6) Reψ(ρeiθ) = ψ(ρ) −
θ2

2

(

ρ2ψ′′(ρ) + ρψ′(ρ)
)

+O(θ4),

and by taking θ0 small enough, we can ensure that

(7) Reψ(ρeiθ) ≤ ψ(ρ) −
θ2

4

(

ρ2ψ′′(ρ) + ρψ′(ρ)
)

.

If Γ1 denotes the part of the circle Γ with |Arg z| ≥ θ0, then by Proposition 7 and Lemma 8,
we have

1

2πi

∫

Γ1

yr(z)z
−m−1 dz = O

(

ρ−m exp (dr(ψ(ρ) − C1))
)

.

Furthermore, if Γ2 = Γ \ Γ1, then

1

2πi

∫

Γ2

yr(z)z
−m−1 dz =

1

2πi

∫

Γ2

z−m−1 exp

(

ψ(z)dr +
log d!

d− 1

)

dz

+O
(

ρ−m exp (dr(ψ(ρ) − C2))
)

by Proposition 7. Here, the positive constants C1 and C2 only depend on ρ1, ρ2 and θ0. It
remains to determine the integral on the right hand side. To this end, we split Γ2 further
into

Γ3 =
{

z : |z| = ρ, |Arg z| ≤ θ1 = rd−r/2
}

and Γ4 = Γ2 \ Γ3. Then, by (7),

Reψ(ρeiθ) ≤ ψ(ρ) − C3r
2d−r

holds on Γ4 for some positive constant C3, and thus

1

2πi

∫

Γ4

z−m−1 exp

(

ψ(z)dr +
log d!

d− 1

)

dz = O
(

ρ−m exp
(

drψ(ρ) − C3r
2
))

.

Finally, we are left with the integral

J =
1

2πi

∫

Γ3

z−m−1 exp

(

ψ(z)dr +
log d!

d− 1

)

dz

=
1

2π

∫ θ1

−θ1

exp

(

ψ(ρeiθ)dr +
log d!

d− 1
−m log ρ− imθ

)

dθ.

By the choice of ρ,

drψ(ρeiθ) − imθ = drψ(ρ) −
θ2

2
dr
(

ρ2ψ′′(ρ) + ρψ′(ρ)
)

+O
(

dr|θ|3
)

,
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and so we obtain

J =
d!1/(d−1)

2π
ρ−m exp(drψ(ρ))

∫ θ1

−θ1

exp

(

−
θ2

2
dr
(

ρ2ψ′′(ρ) + ρψ′(ρ)
)

)

(

1 +O
(

dr|θ|3
))

dθ

and finally

J = d!1/(d−1)ρ−md−r/2
(

2π
(

ρ2ψ′′(ρ) + ρψ′(ρ)
))

−1/2
exp(drψ(ρ))(1 +O(r3d−r/2)).

Putting everything together yields Theorem 2.

In order to prove Corollary 3, we first note that

log ([zn]pr(z)) =
(

ψ(ρ) −
m

dr
log ρ

)

dr −
r

2
log d+

1

d− 1
log d!

−
1

2
log
(

2π
(

ρ2ψ′′(ρ) + ρψ′(ρ)
))

+O
(

r3d−r/2
)

by Theorem 2. By the choice of ρ, the principal term can be rewritten as

(ψ(ρ) − ρψ′(ρ) log ρ) dr.

The derivative of the function f(z) = ψ(z) − zψ′(z) log z is given by

f ′(z) = − (ψ′(z) + zψ′′(z)) log z,

and since we already know that ψ′(z)+ zψ′′(z) is strictly positive (Lemma 9), the function
has a unique maximum at z = 1. The second derivative at z = 1 is given by

f ′′(1) = − (ψ′(1) + ψ′′(1)) .

If we define m0 by ψ′(1) = m0d
−r, we have

d−r(m−m0) = ρψ′(ρ) − ψ′(1) = (ψ′(1) + ψ′′(1)) (ρ− 1) +O
(

(ρ− 1)2
)

.

Hence,

log

(

[zn]
pr(z)

pr(1)

)

=
f ′′(1)

2
(ρ− 1)2dr +O

(

(ρ− 1)3dr + (ρ− 1) + r3d−r/2
)

= −
ψ′(1) + ψ′′(1)

2

(

d−r(m−m0)

ψ′(1) + ψ′′(1)

)2

dr

+O
(

d−2r(m−m0)
3 + d−r(m−m0) + r3d−r/2

)

= −
1

2(ψ′(1) + ψ′′(1))
d−r(m−m0)

2

+O
(

d−2r(m−m0)
3 + d−r(m−m0) + r3d−r/2

)

,

and so we finally obtain

[zn]
pr(z)

pr(1)
∼ exp

(

−
1

2(ψ′(1) + ψ′′(1))dr
(m−m0)

2

)

if m is “close” to the peak m0, i.e. m−m0 = o(d2r/3). This proves the corollary.
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4. A special case

As an illustrative example, let us consider the case d = 2, k = 1, i.e. binary trees with
the property that all levels except for the last one are completely filled. We have

pr(z) = zZ(S2, pr−1(z)) =
z

2

(

pr−1(z)
2 + pr−1(z

2)
)

with initial value p0(z) = 1 + z. Hence the iterates are

p1(z) = z + z2 + z3,

p2(z) = z3 + z4 + 2z5 + z6 + z7,

p3(z) = z7 + z8 + 3z9 + 3z10 + 5z11 + 3z12 + 3z13 + z14 + z15,

and so on. It is obvious that the coefficients have to be symmetric at every step. The total
number pr(1) satisfies the recurrence

pr(1) =
1

2

(

pr−1(1)2 + pr−1(1)
)

,

which leads to the sequence 2, 3, 6, 21, 231, 26796, 359026206, 64449908476890321, . . . (se-
quence A007501 in Sloane’s encyclopedia, see [11]; it is also noted there that the sequence
counts nonisomorphic complete binary trees with leaves colored using two colors, which is
clearly equivalent to our construction).

Now, the function ψ(z) can be computed numerically (see Figure 1). The aforemen-
tioned sequence is asymptotically equal to

pr(z) ∼ 2 · e2
rψ(1) ≈ 2 · 1.345768172r

.

1 2 3 4 5

0.25

0.5

0.75

1

1.25

1.5

Figure 1. Plot of the function ψ(z)
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For a binary 1-tree with a given number n of vertices, the height is unique. Hence, the
number of nonisomorphic binary 1-trees is given immediately by Theorem 2: if bn is this
number and (1 + ǫ1)2

r < n < (1− ǫ2)2
r+1 for fixed ǫ1, ǫ2 > 0 and a positive integer r, then

(8) bn ∼ 2(1−r)/2ρ−m
(

π
(

ρ2ψ′′(ρ) + ρψ′(ρ)
))

−1/2
exp (2rψ(ρ)) ,

uniformly in n, where m = n− 2r + 1 and ρ is chosen in such a way that ρψ′(ρ) = 2−rm.

Furthermore, Corollary 3 shows that the coefficients of pr asymptotically follow a nor-
mal distribution, where mean and variance can be given explicitly: the mean is exactly
3 ·2r−1−1 (which follows immediately from the symmetry of the coefficients), the variance
is given by 2r−1(1 − pr(1)−1) ∼ 2r−1. The latter can be derived from the recurrence: it
suffices to note that

vr =
p′′r(1)

pr(1)
+
p′r(1)

pr(1)
−

(

p′r(1)

pr(1)

)2

satisfies

vr = 2vr−1

(

1 +
1

pr−1(1) + 1

)

,

from which the formula for vr follows easily by induction. Around the peak m0 = 2r−1

(equivalently, n0 = 3 · 2r−1 − 1), (8) reduces to

bn ∼ 21−r/2π−1/2 exp

(

ψ(1)2r −
1

2r
(m−m0)

2

)

,

as shown in the previous section.

Finally, the following plot (Figure 2) shows the number of binary 1-trees with n vertices
(on a logarithmic scale).

200 400 600 800 1000

20

40
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100

120

140

Figure 2. The number of binary 1-trees of given size
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5. Conclusion

Of course, the presented method is not restricted to the specific recurrences that arise
from the study of k-trees. Generally, similar results can be expected if a sequence pr(z) of
polynomials is described recursively by an equation of the form

pr(z) = F (pr−1(z), pr−1(z
2), . . . , pr−1(z

d)),

where F is a multivariate polynomial with nonnegative coefficients. The presented case,
where cycle indices occur in the recurrences, is typical for combinatorial applications.

References

[1] A. V. Aho and N. J. A. Sloane. Some doubly exponential sequences. Fibonacci Quart., 11(4):429–437,
1973.

[2] S. Bereg and H. Wang. Wiener indices of balanced binary trees. Discrete Appl. Math., 155(4):457–467,
2007.

[3] P. Flajolet and A. M. Odlyzko. Limit distributions for coefficients of iterates of polynomials with
applications to combinatorial enumerations. Math. Proc. Cambridge Philos. Soc., 96(2):237–253, 1984.

[4] F. Harary and E. M. Palmer. Graphical enumeration. Academic Press, New York, 1973.
[5] H.-K. Hwang. On convergence rates in the central limit theorems for combinatorial structures. Euro-

pean J. Combin., 19(3):329–343, 1998.
[6] R. Kemp. Balanced ordered trees. In Proceedings of the Fifth International Seminar on Random

Graphs and Probabilistic Methods in Combinatorics and Computer Science (Poznań, 1991), volume 5,
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