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ABSTRACT. For a number field K let Sk be the maximal subgroup of the multi-
plicative group K* that embeds into the unit circle under each embedding of K
into the complex numbers. The group Sk can be seen as an archimedean coun-
terpart to the group of units Of of the ring of integers Ok. If K = Q(Sk) is a
CM-field then Sk /Tor(K*) is a free abelian group of infinite rank. If K = Q(Sk)
is not a CM-field then Sg = {£1}. In the former case Sk is the kernel of the
relative norm map from K* to the multiplicative subgroup k* of the maximal
totally real subfield k of K.

We prove an effective equidistribution result for the elements of Sx embed-
ded into the complex unit circle and enumerated by the Weil height. Our result
also includes a specific rate of convergence.

For imaginary quadratic fields an ineffective version of the equidistribution
result has been proven by Petersen and Sinclair.

1. INTRODUCTION

Let K be a number field. We choose a representative |- |, for each place v of K
and write v|oo if v is archimedean and v { o0 if v is non-archimedean. The group
of units of the ring of integers Ok is given by

Og ={a € K*;|a|,=1 forall v such that v { co}.
In this article we study its “archimedean counterpart” defined by
Sk = {a € K*;|a|,=1 for all v such that v|oo}.
It is clear that Sk is also a subgroup of the multiplicative group K* and that
(1.1) {£1} C Tor(K*) = Sk N OF,

where Tor(K*) denotes the torsion subgroup of K*. Our main result is con-
cerned with the distribution of elements in Sk when enumerated by the Weil
height.

But first let us clarify the basic structure of the group Sk and its connection
to CM-fields. Recall that a number field K is a CM-field if it is totally complex
and contains a totally real subfield k of index 2.

Proposition 1.1. Let K be a number field, and let Q(Sk) be the intersection of all
subfields of K that contain Sk. If Q(Sk) is not a CM-field then Sk = {£1}. If Q(Sk)
is a CM-field then Sg /Tor(K*) is a free abelian group of countably infinite rank.
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Obviously we have Sg(s,) = Sk for each number field K. For the purposes
of studying the group Sk we can and will therefore assume that K is a CM-field,
and we write k for its maximal totally real subfield.

The norm map Ngj; : K* — k™ is a homomorphism of groups and it is
closely related to the group Sk via the following proposition. The proof follows
easily from a characterisation of CM-fields due to Shimura, and stated here as

Proposition 2.1}

Proposition 1.2. Let K be a CM-field, and let k be its maximal totally real subfield.
Then Sk is the kernel of the norm map N ;. : K* — k™.

We now describe our main result. In short, it provides the asymptotics, and a
power saving error term, for the number of elements in Sk with bounded height
whose embeddings lie in given arcs of the unit circle in C.

Let 2N be the degree of the CM-field K, and recall that k is its maximal totally
real subfield. For 1 < n < N let 0, 0,4y be the N pairs of complex conjugate
embeddings of K into C, so that

Sk ={a € K;|ou(a)|=1 for1 <n < N}.

For a non-zero complex number x we write arg(x) for the unique argument of x
in [0, 27), so that x = |x|e!28™), For a product of intervals Z = 77 x - - - x Iy with
each interval I; C [0,277) we define

Sk(@) = {D‘ € Sk (arg(gn(“)))n S I}/

and we write |Z| for the product of the lengths of the intervals 7y, ..., Zy.

For each place v of K we choose the unique representative |-|, that either ex-
tends the usual archimedean absolute value or one of the usual p-adic absolute
values on Q, and we write [K; : Q,] for the local degree at v. Let

[Kp:Qo]
H(x) = Hmax{l, ||, } TR
(%

denote the absolute (multiplicative) Weil height on K. We refer the reader to [4,
Section 1.5] for more details on the Weil height. For H > 1 we define

(1.2) Sk(Z,H) = {a € Sk(I); H(w) < H}.
We set

2Nk/Q(P) 1 hkRk

p|1;£k Ne/@P)+1 | /N (D ) xSkl

where the produdﬂ runs over all prime ideals P of Oy dividing the relative dis-
criminant Dy, of K/k, and Niq(P) = [Of : P] denotes the (absolute) norm of
the ideal P, h; denotes the class number, Ry is the regulator, wy = 2 is the number
of roots of unity, and Ay is the discriminant of k.

We are now in position to state the main result.

(1.3) Ax =

las usual, the empty product is interpreted as 1.
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Theorem 1.1. Let K be a CM-field of degree 2N. There exists Cx > 0, depending only
on K, such that for every H > 2 we have

(1.4) #SK(T,H) — A|T|HPN| < CxHPN 1L,
where L is defined to belog H if N = 1and 1if N > 2.

For Z = [0,2m)N the main term of our result could possibly be derived from
work of Batyrev and Tschinkel ([2, Corollary 4.7] or even its precursor [1]]). How-
ever, this would require some efforts. While very general, the methods from [2]
do not provide effective results. To obtain an explicit power saving error term
we develop another method, more in the spirit of [8], which we explain at the
end of this section.

Let Sx(H) = {« € Sk; H(w) < H}. Consider the discrepancy

_ #SK(I/ H) _ ‘I|
D#(Sx) = st;p pS(H)  @oN c [0,1],

where the supremum is taken over all products of intervals
IT=T x---xZInC[02m)N.

Next consider the complete collection 07, . . ., on of independent embeddings
of K. Theorem|I.T|implies not only that the points of Sk are simultaneously and
independently equidistributed on the unit circle under these embeddings (when
enumerated by the Weil height) but we also get a an explicit upper bound on the
discrepancy (at least up to the constant Cj).

Corollary 1.1. Let K and L be as in Theorem There exists C > 0 such that for
H > 2 we have

L
(15) Du(Sx) < Ci-

A precursor of Corollary [1.1jwas proven in 2011 by Petersen and Sinclair [9,
Theorem 2.1] in the case of imaginary quadratic fields K. It is conceivable that
equidistribution can be deduced for arbitrary CM-fields by combining an obser-
vation of Peyre [10, Proposition 5.0.1] with the aforementioned work of Batyrev
and Tschinkel [2]. However, neither Batyrev, Tschinkel and Peyre’s nor Petersen
and Sinclair’s work yields an effective equidistribution result. Petersen and Sin-
clair’s work is analytic in nature and uses Weyl’s equidistribution criterion, the
Wiener-lkehara Tauberian Theorem, and properties of Hecke L-functions. Our
approach is quite different and the basic strategy is explained at the end of this
section.

It is worthwhile to note that equidistribution fails if we consider many qua-
dratic CM-fields simultaneously. Let us consider the set of all rational and all
imaginary quadratic points on the unit circle

S =J Sk,
K

where the union is taken over all imaginary quadratic fields K (here we consider
each K as subfield of C), and set

S)T, M) ={e” € 8,0 € T,H(e"®) < H} = | Sk(T, H).
K
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If T C (m1,2m) then #S5,(Z, H) = #5,(Z — 7r, H) as H(a) = H(—a). Therefore, it
suffices to consider the case Z C [0, 7r]. A point ¢ # +1 on the unit circle is
imaginary quadratic if and only if cos(f) = —b/2a, for coprime integers a > 0, b.
In this case the minimal polynomial is

flx) = ax? —2acos(0)x +a = ax* + bx +a € Z[x]

and H(e'®) = \/a (see [4, Propositions 1.6.5 and 1.6.6]). Writing |cos(Z)| for the
length of the interval cos(Z), we get

’HZ
#SHT, M) =0M+Y. Y 1= 105D g4, oa2 log ).
a=1 hEZZZ)iolsa) g(z)

In particular, S, is not equidistributed on the unit circle, when ordered by the
Weil height H(-).

We conclude this section with a brief overview of the remaining sections. In
Section [2| we recall some basic facts about CM-fields, and we deduce the first
part of Proposition[I.T|and Proposition

It follows from Proposition [1.2| that Hilbert’s Theorem 90 provides a surjec-
tive group homomorphism ¢ : K* — Sk with kernel k*. In Section[8|we use this,
in conjunction with the (logarithmic) Weil height, to deduce that Sk /Tor(K*) is a
free abelian group of (countably) infinite rank, proving the second part of Propo-
sition[L.1]

Sections 4-7 are preparations for the proof of Theorem|[I.1} Section[dprovides
the counting principle Lemma4.2]based on geometry of numbers to count lattice
points. In Section |5l we introduce the counting domain, and we prove that it
satisfies the technical conditions needed to apply Lemma

Section [p|can be seen as the core of the proof. The homomorphism i induces
an isomorphism ¢ : K* /k* — Sk. Therefore we need to construct a suitable
fundamental domain of K* under the action of k*. “Suitable” means that the
height bound cuts out a subset that is accessible to our counting techniques. All
this is done in detail in Section @] and (modulo minor modifications) this part
is applicable to counting elements of bounded height in the kernel of the norm
map for any quadratic extension K/k of number fields.

The next step is to transform the counting problem to an ordinary lattice
point counting problem, and this is carried out in Section [/} We then have all in
place to finalise the proof of Theorem (1.1} which is done in Section

In the final section we consider the quotient group K* /k*. We show that if a
coset k* in K* intersects Sk then the minimal height of all elements in that coset
is the height of the elements that lie in Sk (clearly they all have equal height).
More generally we show that this holds true whenever K/k is a quadratic exten-
sion and Sk is the kernel of the norm map Ny : K* — k*. Furthermore, we
show that the cosets that intersect Sk are precisely the images of the squares in
Sk under the inverse map of the isomorphism 9.
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2. BASICS ON CM-FIELDS

Letp : C — C be the complex conjugation. A basic observation made already
by Shimura [11} 18.2. Lemma (i)] is the following very useful characterisation of
CM-fields.

Lemma 2.1 (Shimura). A number field K is a CM-field if and only if there exists a non-
trivial automorphism T of K such that o o T = p o ¢ for all homomorphisms o : K — C.

If K is a CM-field and k its maximal totally real subfield then the automor-
phism 7 from Lemma [2.1]satisfies

(2.6) T:(T_lopocf

for every homomorphisms ¢ : K — C, and it is a non-trivial automorphism of
K fixing k (we drop o and simply write 0~ !pc). Consequently, T is the unique
non-trivial element of Gal(K/k), and

2.7) Gal(K/k) = (7).

Shimura [11} 18.2. Lemma (ii)] also observed that Lemma[2.Tjimplies the follow-
ing result.

Lemma 2.2 (Shimura). The composite field of finitely many CM-fields is also a CM-
field.

Blanksby and Loxton [3, Theorem 1] proved a characterisation of CM-fields
that connects them to the group Sk.

Theorem 2.1 (Blanksby, Loxton). Let K be a number field of degree d > 1. Then K is
a CM-field if and only if K = Q(«) for some o € Sk.

In fact [3, Theorem 1] is stated slightly differently and we are using the fact
that if the maximal modulus of the conjugates (over Q) of an algebraic number
« € Cis equal to 1, then all conjugates lie on the unit circle. This is because the
complex conjugate p(«) is also a conjugate (over Q) of a. Hence « is reciprocal.

Theorem [2.1|in conjunction with Lemma [2.2| yields the first part of Proposi-
tion[L.1]

Lemma 2.3. Let K be a number field. Then Sk # {£1} if and only if Q(Sk) is a
CM-field.

Proof. Suppose a1, ...,a, € Sk\{£1} with Q(Sk) = Q(ay, ..., a,). By Theorem
2.1 we see that K; = Q(a;) is CM for 1 < i < n. By Lemma 2.2]we conclude that
Q(Sk) = K7 - - - K, is also CM. The other direction is trivial. Il

Next we restate the Proposition[1.2]and we prove it.
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Proposition 2.1. Let K be a CM-field and k its maximal totally real subfield. Then Sk
is the kernel of the norm map N j : K* — k™.

Proof. Let & € K* be in the kernel of the norm map. Using (2.7) and gives

1= Ngji(a) = at(a) = a0 (p(o(w))
for all homomorphisms o : K — C. Applying ¢ on both sides gives

1=o@pe@) = [o@)
Hence, |a|,= 1 for all archimedean places v of K, and so a € Sk.
Now suppose B € Sk. Then |o(B)|*= o(B)p(c(B)) = 1 for all homomorphism
o : K — C. Applying ¢! on both sides gives 1 = B~ (o(c(B))) = Bt(B). Thus
Ny k() = 1. O

We also learn from this proof that if « € K* then o(Ng /(a)) = |o(a)|>> 0 for
any homomorphism ¢ : K — C. Hence, the norm N/, maps to the subset of k*
of totally positive elements.

As before let T be the unique non-trivial automorphism of K fixing k, and let
P : K* — K* be the group homomorphism defined by

2.8) P(B) = Tfﬁ)

We note that the kernel of ¢ is k*. Since K/k is a cyclic extension and Gal(K/k) =
(T) it follows from Hilbert’s Theorem 90 that ker N x = Im ¢. Hence, the maps
¥ and the norm N yield an exact sequence

~ N
2.9) o< Ay gor Vo T gex
and we know from Proposition that the group Sk is given by the kernel of
the norm map N /x which in turn is equal to the image of ¢. Hence,

(2.10) Sk =Imy = K* /k*.

3. THE GROUP STRUCTURE OF Sk

In this section we prove that Sx/Tor(K*) is a free abelian group of countably
infinite rank, proving the second claim of Proposition 1.1}

Lemma 3.1. Let K be a CM-field and let k be its maximal totally real subfield. Then
Sk /Tor(K*) is a free abelian group of countably infinite rank.

Proof. It follows from the exact sequence that the induced homomorphism
(3.11) ¥ KXk — Sk

is an isomorphism of multiplicative groups. By a result of Brandis [5] the group
K* /k* is not finitely generated. Because (3.11)) is an isomorphism, we conclude
that the group Sk is not finitely generated.

From we get
(3.12) Tor(Sk) = Tor(K*),

and therefore Tor(Sk) is a finite cyclic group of order 2q where g|Ak. Hence, the
torsion-free abelian group Sk /Tor(K*) is not finitely generated.
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We note that the absolute, logarithmic Weil height k() = log H(-) is well de-
fined on the multiplicative quotient group
K* /Tor(K™) = Gk.
Moreover, the Weil height
h:Gg — [0, 00)

satisfies (here we write & and B for coset representatives in Gg):
(i) 0 < h(«) for @ in Gk, and 0 = h(x) if and only if & =1,
(ii) h(a™) = |m|h(«) for each m € Z and « in G,
(iii) h(aB) < h(a)+ h(B) for each a and B in Gk,
(iv) there exists 0 < &(K) so that ¢(K) < h(«) for each « # 1 in Gk.

These four conditions imply that & is a discrete norm on the abelian group Gk,
and on all of its subgroups. It is known (see [7], [13], and [16]) that an abelian
group with a discrete norm must be a free group. As

Sk /Tor(K*) C G,
we find that the quotient group Sk /Tor(K*) is a free group and not finitely gen-
erated. Hence, Sk /Tor(K*) has (countably) infinite rank. O

4. LATTICE POINT COUNTING

Throughout this section let D > 2 be an integer. By a lattice A in RP we
mean a discrete, free Z-module of rank D. Let A1(A) be the shortest euclidean
length of a non-zero vector of A

A1 =min{|x|;x € A, x #0}.

Let M be a positive integer, and let L be a non-negative real number. We say that
aset Sisin Lip(D, M, L) if S is a subset of RP, and if there are M maps
¢, ..., pm: [0,1]°71 — RP
satisfying a Lipschitz condition
pi(x) — pi(y)|< L|x —y| forx,y € [0,1]°7L,i=1,...,M

such that S is covered by the images of the maps ¢;.

If the boundary dS is in Lip(D, M, L) then 9dS has measure zero and thus S is
measurable (see, e.g., [12]).

The following Lemma is [15, Lemma 3.1].

Lemma 4.1. Let A be a lattice in RP Let S be a set in RP such that the boundary 9S of
Sisin Lip(D, M, L), and suppose S lies in the closed euclidean ball with centre P. Then
S is measurable, and moreover,

VOlS 3D2/2 L b-1 %
— < —
#ANS) — ’_D M n +1%SNA) |,
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where 1*(SNA)=0if SNA =D and 1*(S N A) = 1 otherwise.

If we can choose P to be the origin and the latter is not contained in S then
we can get rid of the extra 1* in the error term, and this gives a slightly more
convenient version for our purposes.

Lemma 4.2. Let A be a lattice in RP and Ay = A1(A). Let S be a set in RP such that
the boundary S of S is in Lip(D, M, L). Suppose S is contained in the closed euclidean
ball about the origin of radius L, and the origin is not contained in S. Then

D-1
#ANS)— OIS ‘ < 2D3D* /2 <)f> :

det A 1
Proof. The claim follows from Lemma upon noticing that if L < A; then
ANS=Qsothat 1*(ANS)=0. Andif L > Ay then L/A; > 1*(ANS). U

5. PRELIMINARIES

For1 < n < N let 03, 7,4+~ be the N pairs of complex conjugate embeddings
of K into C. Write o : K — CN for the Minkowski-embedding defined by

o(B) = (1(B), - - -, on(B))-

Recall that k, the maximal totally real subfield of K, has degree N, and its N
distinct embeddings into C are given by the restrictions of o1, ...,0n to k. Let
I : k* — RN be the usual logarithmic mapping defined by

1(B) = log|o1(B)], - .., 21og|on(B)]).

Let F be a fundamental domain of ¥ = {(z,), € RY;Y, z, = 0} for the action of
the subgroup Uy = [(O) on L. If N = 1 (i.e., k = Q) we have U = {0}, and so
there is no choice except F = ¥ = {0}. If N > 1 then Uy is a lattice in X and we
have many choices for F. It is convenient to have an F with “simple” geometry,
therefore we take

F = [0, 1)M1 +e+ [O, 1)MN_1

where (u1,...,un_1) is a reduced basis of the unit lattice Uy, in the sense that
lur|< -+ < |un—1|< enRg for some constant ¢y > 0. The existence of such
a reduced basis follows from the general reduction theory and the additional
fact |u1|>x 1 which is a consequence of Northcott’s Theorem. Let T > 1. Let
([Kv : Qol)y|eo = (2, ..., 2), and consider the vector sum

F(T)=F+(2,...,2)(—o0,log T].

Then F(o0) = F+(2,...,2)(—0o0, o) is a fundamental domain for the action of the
subgroup Uy on RN.

Let 7 = J1 X -+ X Jn where each J; is an arbitrary subset of [0,277). We
define the set

(5.13)
Sp(T;T) = {x = (xp)n € (CX)N; 2 log’ann € F(T), and (arg(xn))n S j}

We note that Sp(J; T) is homogeneously expanding, i.e.,
(5.14) SE(T;T) =TSe(T; ).
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NowletZ =Z; x --- x Iy C [0,21)N be a product of intervals as in Theorem

and let

., 1 N1 1

One step in the proof of Theorem is to count lattice points inside the set
Sr(Z*; T) for suitable T. To this end we will need the following two lemmas.
Recall from Section@ thataset S C RP isin Lip(D, M, L) if if there are M maps

¢, ..., pm: [0,1]°71 — RP
satisfying a Lipschitz condition
pi(x) — ¢i(y)|< Llx —y| forx,y € [0,1]° L,i=1,..., M
such that S is covered by the images of the maps ¢;.

Lemma 5.1. The set Sp(Z*;1) is contained in the closed euclidean ball about the origin
of radius L, and its boundary o(Sp(Z*;1)) is in Lip(2N, M, L) with M = M(N) and
L = L(K) depending only on K. Further, the origin is not contained in Sp(Z*; 1).

Proof. The last assertion is clear from the definition . The first and the
second assertion are easy to see for N = 1, so we assume N > 2. Thus F =
[0, Dug +---+[0,Dun_q and |u;|< cyRifor1 <i < N —1.

For the first assertion we note that if x € Sp(Z*; 1) then |x,|?= exp(z, + 2t) for
some z € Fand t € (—o0,0]. Hence, |z,|< (N — 1)cnyRy < NenyRy, and so the
first claim holds for any L > Ly := (N exp(NcNRk))l/z.

Now let us prove the second claim. The boundary J(Sp(Z*;1)) comes in
two flavours. Firstly, those points x in the topological closure of Sp(Z*;1) with
(|x1]*)n € exp(dF(1)), where we used exp for the diagonal exponential map from
RN to (0,00)N. And secondly, those points x in the closure of Sp(Z*;1) with
x € [0,1] - Loexp(i0Z*), where exp denotes the complex diagonal exponential
map, and 9Z* denotes the boundary of the set Z* C RN.

The latter are covered by 2V Lipschitz maps as follows. Choose 1 < m < N,
and let 7y be one of the two endpoints of Z,,. Sending t,, € [0, 1] to t,,Loexp(iy)
and, for n # m, sending (t,, v.) € [0,1]% to t,Lg exp(i27ty,) defines a map
from [0,1]*N~! to CN. In this way we get 2 maps whose images cover [0, 1] -
Lo exp(i0Z*), and each one satisfies Lipschitz condition with Lipschitz constant
L <k 1 (see [14, (1)-(3) Appendix A]).

Parametrising the points of the first kind is more involved but this has been
done (in a more general setting) in [8, Lemma 3] and, with explicit constants,
in [14, Lemma A.1] (with the irrelevant difference that the coordinates x;, are in
some C" instead of C). Il

Lemma 5.2. The set Sp(Z*;1) is measurable and we have

_|ZIRk

VOI(SH(Z';1)) = 5 -

Proof. We note that the (N — 1)-volume of F is V/NRy. The proof is now nearly
identical to the proof of [8, Lemma 4] and left to the reader. Il
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6. CONSTRUCTING A SUITABLE FUNDAMENTAL DOMAIN

We use the letters A, B, C to denote non-zero ideals in Oy, and P, Q to denote
non-zero prime ideals in Ok. And we use the letters 2, 5, €, ®, P to denote non-
zero ideals in Ok, and the letters p, q to denote non-zero prime ideals in Okx. We
write AQk for the extension of the ideal A C Oy to an ideal of Ok, and we note
that (AB)Ok = (AOk)(BOk). Let

Re=1{Ci,...,Cp}

be a complete system of integral inequivalent representatives of the class group
Cl; of k. Let

P,...,Ps
be the (possibly empty) list of prime ideals of Oy that ramify in K, so that
Pl(’)K = p%, .. .,PSOK = pg
for certain distinct prime ideals py, ..., ps of Ox. We note that Py, ..., P are pre-
cisely the prime ideals that divide Dy ;. We set
P=pi v,

for the square-free part of D/, and the empty product (i.e., s = 0) is understood
as Ok.

We let Ip be the set of non-zero ideals of Ok that have no ideal divisors A
defined over the subfield k and are coprime to P, i.e.,

Ip={B C OB #{0},(B,P)=1, and AOg 1B forall A C O}.

Lemma 6.1. Let A, A’ be non-zero ideals of Oy, let ©,' be ideals of Ok both dividing
P, and let B and B’ both be in Ip. If AOxDB = A/OxD'B' then A = A', © =D’
and B =B/,

Proof. 1f p|P then ord,(AOk®B) and ord,(A'Ox®B’) are even. This implies that
D = D/, and thus AOx®B = A’Ox®B’. Let P C O, and suppose ordp(A) >
ordp(A’). Dividing both sides by P°"4r(4) Oy, and assuming ordp(A) > ordp(A’)
we conclude POk|B’ which is impossible as B’ € Ip. This proves that A = A’,
and hence B = B'. |

Recall that 7 is the unique non-trivial automorphism of K fixing k, and
(6.16) P KX — K~
denotes the group homomorphism defined by ¢(8) = B/7(B). The kernel of ¢ is
k* and 72 = id.
Lemma 6.2. Let C € Ry, D|P and B € Ip. Then 1(COxDB) = COxDT(VB), and
(B, t(B)) =1
Proof. We have t(COx) = t(C)Okx = COk. Further, “L'(p]')2 = T(p]Z) = ©(P;Ok) =
T(P)Ok = POk = pjz», and thus 7(p;) = p;, and so 7(D) = D. Now suppose the
prime ideal q divides 98 and 7(3B). Then (q) also divides T2(B) = B. As B € Ip
it follows that g N k must split in K, but then q and 7(q) are distinct prime ideals

and thus QOk = q7(q) divides B, contradicting that B € Ip. Hence ‘B and 7(*B)
are coprime. O
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Lemma 6.3. If f € K* and1 < n < N, then
an(p)

T = .

AEUTEA()

In particular, arg(c,,(p(B))) and 2 arg(c,(B)) differ by an integer multiple of 27t.
Proof. Using with o = 0, gives

_ o) _ o)
W) = 5 G B) " oenB)’

Next we define
Z*(2A) = {B € A\{0}; BOk = AB for some B € Ip}.
Lemma 6.4. Let C € Ry and D|P. Let B be in Z*(COxD)). Then

1/@2N)
_ NK/Q(,B)

Proof. By Lemma 6.3 (B) € Sk, and so there are no archimedean contributions
to the height of (). Writing v for the places of K and d, = [K, : Q,], we have

B dy/(2N)
H(y(p)) = gmax {11 Tﬁ) U}
By Lemma 6.2 we have
BOx B

T(BOx) ~ T(B)’
and B and 7(*B) are coprime. It follows that

dy/(2N) 1/(2N)
[Tmax{1,| Lo 1 = (Natzemn) ™.
vfoo v
Now N o(T(B) = Nk /(®B), and thus

()
1/(2N)
1/(2N) N
H(B) = (Ngjo(®)) " = (I\ﬁ(ﬁi@) '

As F,7 and H are kept fixed we may simplify the notation and write
(617)  Sco ={B € COkD;o(B) € SHT"; HNg/o(COxD))' N},
where Z* was defined in (5.15).

Lemma 6.5. The restriction of the map  defined in to the subset

U UE (Cox)NSco
CeRD|P

maps to the set Sx(Z, H).
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Proof. Let C € Ry and D|P, and let B be in Z*(COxD)) N S¢,». Recalling (6.17)
and (5.15) we see thatfor1 <n < N

arg(c,(B)) € T: C %In U GI + n) )

so that 2 arg(0,,(B)) € Z, U (Z, +2m). It follows from Lemmal6.3|that arg(c,.((B)))
Z, for 1 < n < N. And it follows from Lemma [6.4] that

/2N)
o Nege®
H(y(B)) = (W) <H.

This proves that ¢(B) € Sk(Z; H). O
Lemma 6.5/ shows that we have the map
(6.18) v: |J U@ (COkD)NSco — Sk(Z,H)
CERyD|P
Lemma 6.6. The map 1 defined in is surjective.

Proof. Let a be in Sk(Z, H). Since Sk is the kernel of the norm map N it fol-
lows from the exact sequence that ¢ : K* — K* has image Sk and kernel
k*. Hence there is B € Ok that maps to a. Now let A C Oy be of maximal norm
with AOk|BOk. Hence, p? { BOx(AOk)~! whenever p|P. Therefore there exists
D|P and B € Ip such that
BOk = AOkDB.

There exists ¢ € k™, unique up to units of Oy, such that A € Ry, say A = C.
Replacing B by ¢p we get

BOk = EOxAOKDB = ((A)OxDB = COxDB,
and this shows that B € Z*(COg®). Multiplying p with a unit of Oy, unique
up to sign, we get (21log|o,(B)|)n € F(o0) and, of course, still € Z*(COxD).
Replacing B by —p if needed we get o(B) € Sp(Z*; ). Finally, by Lemmal6.4]

1/(2N)
_ NK/Q(,B)
o - (e )"

Since H(y(B)) = H(x) < H, we conclude that f € Sc 9. This proves the surjec-
tivity of (6.18). O
Lemma 6.7. The map 1 defined in is injective.

Proof. Suppose B, B’ are both in the domain and have the same image. Then
B'/B € k* and so B’ = ¢ for some { € k*. Further

ﬁOK = COKQ%, and ﬁ/OK = C/OK@/%,
for certain C, C’' both in Ry, ©, ®' both dividing P, and B, B’ both in I». Hence,
ECORDB = C'OxD' B .

Writing ¢ = {1 /8o with non-zero &y, &1 € Ok, and A = &1C, A’ = §C’ it follows
that

AOgDB = A/ OxD'B’.
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Now Lemma tells us that that A = A/, © = ©’ and B = B’. This implies that
C and C’ both lie in the same ideal class of k and so must be equal. Consequently
B’ = np for aunit 7 in O Nk = O;. As B and B’ are both in S¢ » we conclude
that I(r7) = 0 and thus 77 = £1. Finally, since arg(c1(B)) and arg(o1(p’)) are both in
(1/2)Z;7 C [0, 7r) the case B’ = —pB is ruled out. This proves the injectivity. O

Lemma 6.8. The union

U U@ coxo)

CERk @‘P
is disjoint. In particular,
U U@ (COox)NnSco
CeRD|P
is a disjoint union.
Proof. Let Cq, Cy € Ry, let ©1,D; both be divisors of P and suppose
B < Z*(C10D1) N Z*(CoOkD5).
Hence, there exist 91,8, € Ip such that CiOx©198B7 = GOxD28,. Now
Lemmal6.T|implies that C; = C; and ©; = D, and this proves the lemma. O
Lemma 6.9. We have

#Sk(Z,H) = Z Z #Z*(COx®)NScn.
CERy ©|P

Proof. Follows immediately from Lemma and O

7. SIEVING

Lemma /6.9 shows that we simply need to compute #Z*(COx®) N Scn. In
this section we apply simple sieving arguments to reduce this task to an ordinary
lattice point counting problem.

For the entire section we fix a non-zero ideal 2 in Ok (playing the role of
COk9), and an arbitrary finite subset & of Ok (playing the role of Sc ). For a
non-zero ideal A C Oy we write

Zy= (Q[AOK\U Q[IJAOK) Nne.

pIP
We note that
Za =
{B € AAOK\{0}; BOx = AAOk*B for some B C Ok with (P,B) =1} NEG.
Lemma 7.1. We have
ZXAN6G =Zo\ |J (Zo, NAAOK)
ACO,
Proof. If p € Z*(2) then clearly f € Zp, and B ¢ AAOk whenever A C O.
Hence, ﬁ (S ZOk\UAQOk(ZOk N Q[AOK)
Now suppose B € Zo,\Uaco,(Zo, NAAOk). As B € Zo, we have pOx =
A0k*B for some B C Ok with (P,B) = 1. And since § ¢ Uaco, AAOk we see
that AOk 1B for all A C Oy. Hence, B € Ip, and thus € Z*(2). O
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Lemma 7.2. We have

U Zo,n240x) = |J Zg,
ACO; Q

(Q,Py-+Ps)=1
where the union is taken over all prime ideals Q C Oy different from the prime ideals
Pl, c ey Ps.
Proof. We have

U (Zo, NAAOk) = J(Zo, NAQOK),

ACO; Q

and if (Q, Py - - - Ps) # 1 then
Zop, NAQVk = @.
Therefore
U @o,nA400 = |J (Zo,NAQVK),
ACO, Q

(Q,Py-+Ps)=1

and further,

p|P
= & NAQOK\ | J@p NAQOK).
p|P
Finally, for prime Q with (Q,P;---P;) = 1 we have (QOk,P) = 1 and thus
ApOx NAQOk = ApQOk whenever p|P. Hence,

Zo, NAQOk = & NAQO\ | J(ApQOk) = Zp,
p|P

Z(gk NAQOx =6 N (Q[\U mp) NAQOk

and this completes the proof. U
Lemma 7.3. If Q1, ..., Qu are distinct prime ideals of Oy all coprime to Py - - - Ps then

m
ﬂ 20, = 2Qy-Qu-
i=1

Proof. For arbitrary sets A; and subsets B;;, and A = M;A; one has
Ni(Ai\U;Bjj) = A\(U;;Bij N A).

Applymg this with A; = AQ,; Ok, and Bij = le]-Ql-OK, so that ZQi =GN Ai\U]'BZ‘]',
and noting that B;; N A = 2Up;Q1 - - - Qm, as (p;, Q1 - - - QmOk) =1, we get

(1Zo, =6 N[)A\UBij =& NAQ: - - Qu\(U;,jAp;Q1 - - - Qun)-
i=1 i=1

Finally, we note that U; @Ap;Q1 -+ - Qm = U, p&ApQ1 - - - Qm, and thus the claim
drops out. U

Let ux(-) and ux(-) be the Mobius functions on non-zero ideals of Oy and Ok
respectively.
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Lemma 7.4. We have
# U Zo= )Y, —m(A#Z,,
Q

ACOy
QP Ps)=1 (A,Py-Ps)=1

where the left union is taken over all prime ideals Q C Oy different from the prime ideals
py,...,Ps.

Proof. As the set G is finite there are only finitely many non-zero ideals A C O
for which Z4 # @. Among those A only finitely many prime ideals divisors Q
occur. Let Qq,..., Qy be those that are coprime to P; - - - Ps (if no such Q exists
then evidently both sides are 0). Applying the inclusion-exclusion principle, and
then using Lemma 7.3 we find

m
# U Zo=#UZo= ) (D"(Zg
Q i=1

(QPyPs)=1 @#1C{1,2,....,m} icl
Py D)=

= Y )Tz,
Q#IC{1,2,...,m}

= ). —m(AHZ,.

ACO,
(A,PyPo)=1

Lemma 7.5. Let A be a non-zero ideal in Oy. Then we have

#ZA = 2 ‘uK(Qf)#(QlQEAOK N 6)
¢

Proof. The inclusion-exclusion principle yields

#JApAOK NS = ) —ux(EHAEAOK N ).
p|P e

As#Z, = #(RAAOx N S) — #U,p ApAOk N G the result follows at once. O

Lemma 7.6. We have

Z2A)NS =) ux(€) [#AENS)+ ) u(A#HACAOK N G)
¢|p AGOL
(A,Py-+Ps)=1

Proof. Combining Lemmal7.1} Lemmal7.2) Lemma(7.4] and Lemma(7.5|the result
drops out. U

Lemma 7.7. The following two identities hold

Hi(€) (L_ 1 )
&P NK/Q(G) P‘DK/k Nk/Q(P) ’

m(A) 1 1)
5 Nyo@? " 5@ i\ N2

(A,P)---P5)=1
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Proof. Recall that P = py---ps. If s = 0 (i.e,, P = Ok) then both statements are
obvious; the first sum is 1 and the second one is {x(2)~'. Note that N 1P =
Nk/g(pi). The first statement follows by induction from the following simple
identity

H(€) _ H(€) (1 , () )
Now let us prove the second identity. We have
m(A) _2 4
Y oar = LT (10 + mPINgo(P) 2 + jPINgoP) )
ACOy /Q
(A,Py-+-Ps)=1 P{Py---Ps
= - 7] = NP2
prfis Nk/Q(P) 62 P Dk Nk/Q(P)

In the last step we have used that a prime ideal P divides P; - - - P; if and only if
it divides Dy - ]

8. PROOF OF THEOREM [1.1]

Here we finalise the proof of Theorem[I.1} Combining Lemmal6.9and Lemma
[7.6lwe are led to the problem of counting elements of an ideal satisfying certain
archimedean conditions.

Let § C Ok be a non-zero ideal; then ¢ () is a lattice in CN = R2N of deter-
minant

(819) det(e(§)) = 2" Ni/o(®)\/ |8xl,
and the shortest non-zero vector has euclidean length
(8.20) M(@(®) > Ny

(see [8, Lemma 5]). For brevity let us write

V' =Vol(S¢(Z7;1)),

T = HNgo(COxD)/@N.
Now
(8.21) 0 (Scp)) = c(COD) N Sp(IHT),
and it follows from that

Vol (Sp(Z*; T)) = VT™N = VH>N Ny 1o(COkD).

Lemma 8.1. Let C € Ry, €|P, D|P, A C Ok, and let H > 2. Then there exists a

constant ¢y = ¢1(K) such that
ZNVHZN fHZNfl

#(COxDEAOr NS — <coq—
(COx kM5co) V1AkNi /(@ N (A2 | = Nyjg(A)-1/N
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Proof. Using the injectivity of the map o (-) and we get
#HCOKDEAOK NScp) =#(0(COxkDEAOK) N (Sco))
=#(c(COkDEAOK) N o (COxD) N SE(Z5;T))
=#(0c(COxDEAOK) N SE(Z*;T)) .
Combining Lemma[5.Tand we see that d(Sp(Z*; T)) is in Lip(2N, M, LT),

and that Sp(Z*; T) does not contain the origin but is contained in the zero cen-
tred ball of radius LT. We apply Lemma 4.2 with A = o(COxDEAOk), and we

use (8.19) and (8.20). Since
Ni/o(€AOk) = Ni/o(€)Ni/jo(A)* > Nijg(A)
the result drops out. U

Lemma 8.2. Let C € Ry, D|P, €|P, and H > 2. Then there exists a constant
¢y = ¢o(K) such that

2NV H2N 1r(A)
U (ACOxDEAOK NScp) — o a3
A;k VIAkINg/o(€) i3, Nija(A)?
(A,Py--Ps)=1 (A,Py--Ps)=1
< oHN-1g,

where L =logHif N =1and L=1if N > 2.

Proof. For N > 2 this follows immediately from Lemma([8.1} If N = 1 then we use
that COxDEAOk N Scp is empty whenever Ny o(€AOk) > H. In particular,
we can restrict the sum to those A with Ny o(A) < H. Applying Lemma
yields the error term

H
E (1—— <x HlogH.
& TNy KT8

(AP -P)=1
Nk/Q(A)S’H,

Restricting the sum also introduces the additional error term

v 2Ny 32 ti(A)
A3, V/Ak[Nk/(€) Nijo(A)

(A,Py-Ps)=1
Nk/Q(A)>H

This completes the proof of Lemma O

Using Lemma [7.6], and then plugging in the estimates from Lemma [8.1] and
Lemma [8.2]yields

<k H.

N 2N
474 (CORD) NS = Y FKER VI 1y, )
e V 1Bk Nk/o(€) e Ny /o(A)

+O0x (HzN‘lL‘) .
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For the main term we observe that

Pr(@R2TVHT () )
P V |8k Nk/o(€) N=w Ni/o(A)?
A Ls)=

ZZNVHZN< (@) ) A)

VAN Ny/q(A)?

&P N ,o(€)
(A,P)---P5)=1
Now using Lemma and summing over the 2° divisors D|P, and then over
C € R we get

2o NV HN px(€) #ilA)
-T) = N (A2
Sk(H;T) NI <e|7> NK/Q(QS)> A;;k Nijo(A)?

+Ox (25hk’HZN’1£> .

(APyPo)=1

Using Lemma [7.7] and recalling that Dy has exactly s prime ideal factors
gives

s 1k (€) me(A) | _ 2Ny o(P) 1
2 (ezp NK/Q(€)> A;k Nyjo(A? | (Pg/k Nk/Q(P)"'l) 02

(A,Py-Ps)=1

Plugging in the value for V from Lemmal5.2} and using

|Ak|= |8 Nisjo(Dx i)

(see [6, p.24]) shows that the leading constant of the main term is given by Ax|Z|.
This completes the proof of Theorem

9. MINIMAL HEIGHTS IN COSETS OF k*

In this section we generalise the previous CM-field setting. We assume through-
out that K/k is an arbitrary quadratic extension of number fields.

Let T : K — K be the unique automorphism that fixes k, so that Gal(K/k) =
(1), and Ng k(&) = at(a). Asin Sectionwe let ¢ : K* — K* be the group
homomorphism defined by

P(p) = Tfﬁ)

so that ker i = k™. We write Sy for the kernel of the norm map N . Hence,
Hilbert’s Theorem 90 implies Im i = Sk 4, and we get an induced isomorphism

(9.22) §: KX /K = S

We will determine elements of minimal height for those cosets of k* in K* that
intersect Sy /-
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Lemma 9.1. If a belongs to Sk /. then the inequality
9.23) H() < H(y)

holds for each vy in k*. In particular, the minimum value of the Weil height on elements
of the multiplicative coset ak™ is given by

min {H(a7y) : v € k*} = H().
Proof. Assume that a is in Sg/x and 7y is in k. The automorphism 7 preserves
the height of points in K*. Therefore ay and
T(@y) = T(@)1(7) = @y ="y

have the same height. Similarly, a !y and

1

(aly) " =y

have the same height. That is, the three elements
wy, a 'y, and ayl,

satisfy the identity
H(ay) = H(a™"y) = H(ay ™).
Now by well known properties of the height we get
H(a)* = H(a?) = H((ay)(a77"))
< H(@y)H(ay ™) = Hla)",
This verifies the inequality (9.23). O
Consider the inverse of the isomorphism
P S — KXk
Lemma [.1] raises the following question. Which elements of Sk x are mapped

under ¢! to cosets that intersect Sy /k? This question is answered by Lemma
9.3 which follows easily from the following simple observation.

Lemma 9.2. An element a € K* lies in Sk y if and only if () = a2,

Proof. Since ?(8) = ¢(B)? for any B € K* we get ¢(a) = a> whenever a € Sk k-
And if i(a) = a* then at(a) = 1, and thus « € Sk ;. This proves the lemma. [

Lemma 9.3. A coset of k* in K* intersects Sy i if and only if it is the image of a square
in Sk under the isomorphism Pl

Proof. First suppose € Sk x- Then () = B? by Lemma and we get
$HB%) = 7 (p(B) = BE,
proving that the image of a square is a coset that intersects Sg .

Next suppose that the image pk* intersects Sk . We can assume B € Sk,
and thus () = B2 by Lemma We conclude

Bk = (p(B) = (B,

which proves the other direction. O
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