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Abstract. How many natural numbers below X can be written as a sum of k

units of the ring of integers of a given number field? We give the asymptotics
as X gets large for quadratic number fields. This solves a problem of Jarden

and Narkiewicz from 2007 for quadratic number fields.

1. Introduction

Jarden and Narkiewicz proved that if L is a number field then there is no natural
number k such that every element of the ring of integers OL is a sum of at most k
units of OL. More precisely they proved [5, Corollary 6] that the rational integers n
that are sums of at most k units have density zero. Their proof is short and elegant,
based on van der Warden’s theorem and a classcial finiteness result concerning unit
equations, but does not shed any light on the asymptotics of the counting function.
They proposed the following problem [5, Problem C].

Problem 1 (Jarden and Narkiewicz, 2007). Let L be a number field. Obtain an
asymptotical formula for the number of positive rational integers n ≤ X which are
sums of at most k units of OL.

So far this problem has not been addressed in the literature. In this article we
solve Problem 1 for quadratic number fields.

For imaginary quadratic fields all units are roots of unity. Hence, no natural
number n > k is a sum of at most k units, whereas clearly all other n are. So let
us fix a real quadratic number field L = Q(

√
d) with d ≥ 2 and squarefree. For

w = (w1, . . . , wr) ∈ Lr, we write

(1) Sw := w1 + · · ·+ wr.

Throughout this paper, we let X ≥ 2 and k ∈ N = {1, 2, 3, . . .}. We are interested
in the set1

NL,k := {n ∈ Z : n = Su for some u ∈ (O×
L )

r with 0 ≤ r ≤ k}
and its counting function

(2) NL,k(X) := #{n ∈ NL,k : |n| ≤ X}.
Non-zero integers n in NL,k come in pairs n,−n. Hence, NL,k(X)− 1 is twice the
number of positive rational integers n ≤ X which are sums of at most k units of
OL.

Our main result is the following.
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1We interpret (O×

L )0 as containing only the empty tuple u, and Su = 0.
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Theorem 1. Let η > 1 be the fundamental unit of the real quadratic field L, let
k ∈ N and define ρ := ⌊k/2⌋. Then, for X ≥ 2,

NL,k(X) = ck

(
2 logX

log η

)ρ

+Ok,L((logX)ρ−1),

where

ck =

{
1/ρ! if k is even,

3/ρ! if k is odd.

Although only very few rational integers n are sums of at most k units in a fixed
real quadratc field L, every rational integer n is the sum of two units in some real

quadratic field, e.g., for |n| > 2 we can take the sum of conjugate units n±
√
n2−4
2 .

Restricting to sums of exactly k units we define

ÑL,k := {n ∈ Z : n = Su for some u ∈ (O×
L )

k},

and its counting function

(3) ÑL,k(X) := #{n ∈ ÑL,k : |n| ≤ X}.

That is, ÑL,k(X) is the number of integers n with |n| ≤ X that can be written
as the sum of exactly k units. The following result is an immediate consequence of
Theorem 1.

Corollary 1. Let η > 1 be the fundamental unit of the real quadratic field L, let
k ∈ N and define ρ := ⌊k/2⌋. Then, for X ≥ 2,

ÑL,k(X) = c̃k

(
2 logX

log η

)ρ

+Ok,L((logX)ρ−1),

where

c̃k =

{
1/ρ! if k is even,

2/ρ! if k is odd.

Other aspects of the sets ÑL,k and NL,k, at least for k = 2, have been studied

before. Nagell asked for which number fields L the number 1 is contained in ÑL,2.
He called such number fields L exceptional. Nagell’s considerations culminated
in [8], where he classified all exceptional number fields L of unit rank ≤ 1. More
recently Freitas–Kraus–Siksek [3] have shown that, for any given prime p ≥ 5, there
are only finitely many cyclic degree p fields L that are exceptional.

For cyclotomic fields L = Q(ζp), Newman [9, p. 89] observed that 1, 2 and 3 are

all contained in ÑL,2 for all primes p > 3, and he posed the problem to explicitly
determine NL,2 for cyclotomic number fields L.

Recently, Tinkova et.al. [11] considered the problem to completely determine

the sets ÑL,2 for cubic fields L. They resolved the problem for all cubic fields L
which are either cyclic or imaginary. Moreover, they showed that for number fields
L that do not contain a real quadratic field the sets NL,2 are finite.

Moreover, quantities of similar spirit as NL,k(X) were studied in [4, 2].

There has been much activity recently and in the past regarding statistics for
the number of fibres admitting rational or integral solutions in certain families of
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Diophantine equations. For an overview and references, we refer to the introduction
of [7].

Corollary 1 can be interpreted in this vein, as counting asymptotically the num-
ber of fibres admitting integral points in a certain natural family of schemes pa-
rameterised by integers.

More precisely, let A := OL[t, x0, . . . , xk−1]/(g), where

g = x0 · · ·xk−1(t− x1 − · · · − xk−1)− 1

and X ′ := Spec(A). The inclusion of OL[t] in A induces a morphism X ′ → A1
OL

of
schemes. The Weil restriction (see [6])

X := RA1
OL

/A1
Z
(X ′)

comes with a morphism X → A1
Z. For every n ∈ Z, we consider the pull-back

Xn := X ×A1
Z
Spec(Z) along the integral point Spec(Z) → A1

Z induced by Z[t] → Z,
t → n, which we call the fibre over n. Using standard properties of the Weil
restriction, we see that

Xn
∼= RSpec(OL)/ Spec(Z)(X ′ ×A1

OL
Spec(OL)) = RSpec(OL)/ Spec(Z)(Spec(An)),

where An = A⊗OL[t] OL = OL[x0, . . . , xk−1]/(gn) with

gn = x0 · · ·xk−1(n− x1 − · · · − xk−1)− 1.

Hence, for every ring B, the set of B-points of Xn,

Xn(B) = Spec(An)(B ⊗Z OL),

is in one-to-one correspondence with the set of solutions of the unit equation

(4) u1 + · · ·+ uk = n

with ui ∈ (B ⊗Z OL)
×. Therefore, the function ÑL,k(X) studied in Corollary 1

counts the set of integers n ∈ Z∩ [−X,X] for which the fibre Xn of X above n has
integral points, i.e. Xn(Z) ̸= ∅.

Regarding local solubility, when k ≥ 2 it is clear that Xn(R) ̸= ∅, and straight-
forward to see that Xn(Zp) ̸= ∅ whenever p ̸= 2. Moreover, Xn(Z2) ̸= ∅ if and
only if n ≡ k mod 2 or 2 is inert in L. Hence, in contrast to the global situation
described in Corollary 1, a positive proportion of the fibres Xn have points over R
and all Zp. We give a detailed proof of the local solubility in Section 6.

We end this introduction with a brief overview over the remaining sections. In
Section 2 we show that if n is a sum of at most k units, then n is a sum of traces
of units and some summands from a finite set depending only on k and L. Hence,
we must count vectors u with ℓ ≤ ρ components of units whose trace sums have no
vanishing subsums and are bounded in modulus by X. This is achieved in Section 3.
Different unit vectors can lead to the same integer n by permuting the coordinates
of the vector, but also in more subtle ways. Counting these clashes is the purpose
of Section 4. In Section 5 we are ready to prove Theorem 1. The final Section 6 is
devoted to the proof of the claims about local solubility of (4).
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2. Reduction to unit trace sums

For u ∈ Lr, we say that the sum Su = u1 + · · ·+ ur has no vanishing subsum, if∑
i∈I

ui ̸= 0 for all ∅ ≠ I ⊆ {1, . . . , r},

and no vanishing proper subsum, if∑
i∈I

ui ̸= 0 for all ∅ ≠ I ⊊ {1, . . . , r}.

Moreover, we let u′ denote its conjugate. I.e., u′ := (u′
1, . . . , u

′
r), where u′

i =
σ(ui), with σ : L → L the non-trivial Q-automorphism.

At several places we will use the well-known fact that for any T ∈ N the unit
equation

(5) v1 + · · ·+ vT = 1,

has only finitely many non-degenerate solutions v ∈ (O×
L )

T , i.e. solutions in which
no subsum of the left-hand side vanishes (e.g. [10, Theorem 2A in Chapter V]). We
denote the set of these solutions, depending only on L and T , by ST .

While for general number fields this is a deep fact (based on the subspace the-
orem), proved by Evertse [1] as well as van der Poorten and Schlickewei [12], we
only need the case when L is real quadratic, where it is a consequence of the simple
Lemma 2.

Proposition 1. There is a chain of finite subsets U0 ⊆ U1 ⊆ · · · of O×
L , such that

the following holds true.
If r ∈ N, n ∈ Z ∖ {0} and u ∈ (O×

L )
r such that n = Su with no vanishing

subsum, then we also have n = S(v,v′,ξ), where

v ∈ (O×
L )

ℓ and ξ ∈ Us
s , with ℓ, s ∈ N0 satisfying 2ℓ+ s ≤ r.

Remark 1.

(1) We interpret ξ ∈ U0
0 as the empty tuple, so that (v,v′, ξ) = (v,v′).

(2) If ξ ∈ (O×
L )

1 and S(v,v′,ξ) ∈ Z, then ξ ∈ {±1}.

Corollary 2. In the conclusion of Proposition 1, we may additionally require that
the sum S(v,v′,ξ) has no vanishing subsum.

Proof. If n = S(v,v′,ξ) has a vanishing subsum, then the remaining summands form

a tuple ũ ∈ (O×
L )

r̃ with r̃ ≤ r − 2 and n = Sũ. We apply Proposition 1 to r̃ and
ũ in place of r and u, which yields a representation n = S(v1,v′

1,ξ1)
. If the latter

has no vanishing subsums, we are done. Otherwise, repeat the above, leading to
an even shorter representation of the form n = S(v2,v′

2,ξ2)
. This process has to stop

with a tuple (vs,v
′
s, ξs) with at most r coordinates, such that n = S(vs,v′

s,ξs)
has

no vanishing subsums. □

2.1. Proof of Proposition 1.

Lemma 1. Let u1, u2 ∈ O×
L with u1 + u2 ∈ Z. Then one of the following three

situations holds:

(1) u2 = u′
1,

(2) u2 = −u1,

(3) {u1, u2} ∈
{{

3ϵ1+
√
5

2 , ϵ2−
√
5

2

}
,
{

3ϵ1−
√
5

2 , ϵ2+
√
5

2

}
: ϵ1, ϵ2 ∈ {±1}

}
.
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Proof. As u1, u2 ∈ OL with u1 + u2 ∈ Z, we can write

u1 =
a1 + b

√
d

2
, u2 =

a2 − b
√
d

2

with a1, a2, b ∈ Z. As u1, u2 are units, we have u1u
′
1 = ±1 and u2u

′
2 = ±1.

If u1u
′
1 = u2u

′
2, then a21 − db2 = a22 − db2 and thus a2 = ±a1, yielding situation

(1) or (2).
Now suppose that u1u

′
1 = −u2u

′
2, and without loss of generality u1u

′
1 = 1.

Then a21 − db2 = 4 and a22 − db2 = −4, which implies that a21 − a22 = 8, and thus
(a1, a2) = (±3,±1).

This gives 9 − db2 = 4, and thus d = 5, b = ±1. Hence, we are in situation
(3). □

We construct the sets U0 ⊆ U1 ⊆ · · · in Proposition 1 as follows. Take U0 =
U1 := {±1} and U2 to consist of ±1 and possibly the elements appearing in case
(3) of Lemma 1.

Now let t ≥ 3 and assume that we have already constructed the sets U0 ⊆ · · · ⊆
Ut−1. For every non-degenerate solution (v1, . . . , v2t−1) ∈ S2t−1 of the unit equation
(5) with T = 2t−1, write v := (v1, . . . , vt). For each of the at most #S2t−1 choices
of v, there are at most two values of u ∈ O×

L with uSv ∈ Z ∖ {0}, and we take Ut

to be the union of Ut−1 with all coordinates uvi of all tuples u := uv as above.
Having described the sets Ut, we now prove Proposition 1 by induction on r. For

r = 1, the conclusion holds trivially. For r = 2, it follows from Lemma 1.
Hence, let r ≥ 3 and assume that the proposition’s conclusion holds for all sums

of less than r terms.
From n = Su, we see that also n = Su′ and thus

0 = n− n = u1 + · · ·+ ur − u′
1 − · · · − u′

r.

Hence, there are subsets I, J ⊆ {1, . . . , r}, such that

(6)
∑
i∈I

ui −
∑
j∈J

u′
j

is a minimal vanishing subsum, i.e. no proper subsum vanishes. As n = Su has no
vanishing subsums, we conclude that I, J ̸= ∅. Moreover, we may assume without
loss of generality that |I| ≥ |J |, as conjugating and multiplying by −1 allow us to
exchange the roles of I and J . We observe that then

(7) n =

r∑
i=1

ui =

r∑
i=1

ui −

∑
i∈I

ui −
∑
j∈J

u′
j

 =
∑
i∈Ic

ui +
∑
j∈J

u′
j ,

where Ic = {1, . . . , r}∖ I. We now distinguish between four different cases.

Case 1: |I| > |J |. As the sum on the right-hand side of (7) has |Ic| + |J | =
r − |I| + |J | < r terms, we find a minimal subsum with q < r terms which equals
n. As the subsum is minimal, it has no vanishing subsums. Hence, the induction
hypothesis yields a representation n = S(v,v′,ξ) with v ∈ (O×

L )
ℓ and ξ ∈ Us

s , such
that 2ℓ+ s ≤ q < r. This is enough for the proposition’s conclusion to hold.
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Case 2: Ic ∩ J ̸= ∅. Let j0 ∈ Ic ∩ J and m := uj0 + u′
j0

∈ Z. Then by (7) we get
the representation

n−m =
∑

i∈(I∪{j0})c
ui +

∑
J∖{j0}

u′
j .

There is a minimal subsum of the right-hand side that equals n − m, with q ≤
r − (|I| + 1) + |J | − 1 ≤ r − 2 terms. Again, the induction hypothesis yields
a representation n − m = S(v1,v′

1,ξ)
with v1 ∈ (O×

L )
ℓ1 and ξ1 ∈ Us

s , such that
2ℓ1 + s ≤ q ≤ r − 2.

Then we may take ℓ := ℓ1 + 1 and v := (v1, uj0) ∈ (O×
L )

ℓ, giving 2ℓ+ s ≤ r and
n = S(v,v′,ξ) as desired.

Case 3: I = J = {1, . . . , r}. In this case, the sum u1+ · · ·+ur −u′
1− · · ·−u′

r = 0
has no vanishing proper subsums, and hence so does the sum

(8) v1 + · · ·+ v2r−1 = 1,

where

vi :=
ui

u′
r

(1 ≤ i ≤ r), vi :=
−u′

i−r

u′
r

(r + 1 ≤ i ≤ 2r − 1).

Hence, (v1, . . . , v2r−1) ∈ S2r−1. Writing v := (v1, . . . , vr), then u = u′
rv, which

implies that u′
rSv = Su = n ∈ Z∖ {0}. By construction of Ur, this implies that all

coordinates of u = u′
rv are in Ur. Hence, the proposition’s conclusion is satisfied

with ℓ = 0 and ξ = u ∈ Ur
r .

Case 4: I = J ⊊ {1, . . . , r}. In this case, we see from (6) that

∑
i∈I

ui =

(∑
u∈I

ui

)′

and thus m :=
∑

i∈I ui ∈ Q ∩ OL = Z. As Su has no vanishing subsums by
hypothesis, we see that m /∈ {0, n}, and also the above representation of m has
no vanishing subsums. As 1 ≤ q := |I| < r, the induction hypothesis yields a
representation m = S(v1,v′

1,ξ1)
with v1 ∈ (O×

L )
ℓ1 and ξ1 ∈ Us1

s1 , such that 2ℓ1+s1 ≤
q.

Moreover, we may write

n−m =

r∑
i=1

ui −
∑
i∈I

ui =
∑
i∈Ic

ui,

again a representation without vanishing subsums, as Su has no vanishing subsums.
As 1 ≤ r − q = |Ic| < r, the induction hypothesis yields a representation n−m =
S(v2,v′

2,ξ2)
with v2 ∈ (O×

L )
ℓ2 and ξ2 ∈ Us2

s2 , such that 2ℓ2 + s2 ≤ r − q.

Then we may take ℓ = ℓ1 + ℓ2, s := s1 + s2, v = (v1,v2) ∈ (O×
L )

ℓ and ξ :=
(ξ1, ξ2) ∈ Us

s to obtain 2ℓ+ s ≤ r and n = S(v,v′,ξ). □
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3. Counting unit trace sums

Throughout this section we fix ℓ ∈ N. Let c = (c1, . . . , cℓ) ∈ (L×)ℓ. This section
is devoted to study the following counting function

T c
L,ℓ(X) := #

(u1, . . . , uℓ) ∈ O×
L :

∣∣TrL/Q(c1u1) + · · ·+TrL/Q(cℓuℓ)
∣∣ ≤ X;

c1u1 + · · ·+ cℓuℓ + c′1u
′
1 + · · ·+ c′ℓu

′
ℓ

has no vanishing subsum;

|ui| ≥ 1 for 1 ≤ i ≤ ℓ.


If we drop the third condition |ui| ≥ 1 then we can replace any of the coordinates

ui by their conjugates u′
i so that for each u counted in T c

L,ℓ(X) we have at most 2ℓ

vectors. Hence, dropping the condition |ui| ≥ 1 gives a set of cardinality at most
2ℓT c

L,ℓ(X).

The main result of this section provides an asymptotic formula for T c
L,ℓ(X) as

X gets large.

Proposition 2. For X ≥ 2 we have

T c
L,ℓ(X) =

(
2 logX

log η

)ℓ

+OL,ℓ,c

(
(logX)ℓ−1

)
.

3.1. Proof of Proposition 2. We prove the upper and lower bound separately. To
prove the required upper bound we need the following lemma. A different version
was proved by the last author in [13, Proposition 3.2].

Lemma 2. Let q ≥ 1 be an integer, α ∈ C with |α| > 1, c = (c1, . . . , cq) ∈ (C×)q

and n1 ≥ · · · ≥ nq integers. Then there exists C = C(α, c) > 0 depending only on
α and c, such that

|c1αn1 + · · ·+ cqα
nq | > Cαn1 ,

provided that c1α
n1 + · · ·+ cqα

nq has no vanishing subsum.

Proof. This is trivial for q = 1. For q ≥ 2 we need to show that

fc,α(m) :=
∣∣c1 + c2α

−m2 + · · ·+ ckα
−mq

∣∣ ≥ C(α, c) > 0(9)

for every integer vector m = (m2, . . . ,mq) with 0 ≤ m2 ≤ · · · ≤ mq, provided
no subsum of c1 + c2α

−m2 + · · · + cqα
−mq vanishes. First suppose q = 2. Set

M0 = (log |2c2/c1|)/ log |α|, so that

fc,α(m) = |c1 + c2α
−m2 | ≥

∣∣∣c1
2

∣∣∣
whenever m2 ≥ M0. On the other hand, by the non-vanishing subsum hypothesis,
we have

min
0≤m2≤M0

fc,α(m) =: C0 > 0.

This proves the claim for q = 2 with C(α, c) = min{|c1/2|, C0}.
Now let q ≥ 2 be given and suppose (9) holds, assuming the non-vanishing

hypothesis. Let cq+1 ∈ C×. Set

M1 =
log
∣∣∣ 2cq+1

C(α,c)

∣∣∣
log |α|

,
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and consider the integer q-tuple (m,mq+1) with 0 ≤ m2 ≤ · · · ≤ mq ≤ mq+1. First
suppose that mq+1 ≥ M1 then

f(c,cq+1),α((m,mq+1)) = |c1 + c2α
−m2 + · · ·+ cqα

−mq + cq+1α
−mq+1 |

≥ fc,α(m)− |cq+1α
−M1 |

≥ C(α, c)

2
.

Next suppose that mq+1 ≤ M1. Using the non-vanishing subsum hypothesis, we
note that

min
0≤m2≤···≤mq+1≤M1

|c1 + c2α
−m2 + · · ·+ cq+1α

−mq+1 | =: C1 > 0.

Note that C1 depends only on α,C(α, c) and cq+1. Hence, we conclude

f(c,cq+1),α((m,mq+1)) ≥ min

{
C(α, c)

2
, C1

}
for all integer k-tuple (m,mq+1) with 0 ≤ m2 ≤ · · · ≤ mq ≤ mq+1. This completes
the proof of the lemma. □

Before we apply Lemma 2 to derive the required upper bound for T c
L,ℓ(X) let us

point out that Lemma 2 also implies the finiteness of the non-degenerate solutions
v ∈ (O×

L )
T to (5). For this it suffices to note that the conjugate v′ is also a solution

of (5), so that we can assume n1 ≥ |nT |.

Lemma 3. For X ≥ 2 we have

T c
L,ℓ(X) ≤

(
2 logX

log η

)ℓ

+OL,ℓ,c

(
(logX)ℓ−1

)
.

Proof. Let us consider an ℓ-tuple (u1, . . . , uℓ) ∈ T c
L,ℓ(X) so that∣∣TrL/Q(c1u1) + · · ·+TrL/Q(cℓuℓ)

∣∣ ≤ X,

and no subsum of

c1u1 + · · ·+ cℓuℓ + c′1u
′
1 + · · ·+ c′ℓu

′
ℓ

vanishes. Recall that |ui| ≥ 1, so that each ui has the form ui = ±ηni with ni ∈ N0.
Applying Lemma 2 with α = η and q = 2ℓ and taking logs gives

max
1≤i≤ℓ

{|ni|} log η ≤ log
∣∣TrL/Q(c1u1) + · · ·+TrL/Q(cℓuℓ)

∣∣+Oc,L(1)

≤ logX +Oc,L(1).

This immediately yields the upper bound

(10) T c
L,ℓ(X) ≤

(
2 logX

log η

)ℓ

+Oc,L

(
(logX)ℓ−1

)
.

□

Next we prove the required lower bound for T c
L,ℓ(X).

Lemma 4. For X ≥ 2 we have

T c
L,ℓ(X) ≥

(
2 logX

log η

)ℓ

+OL,ℓ,c

(
(logX)ℓ−1

)
.
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Proof. Set

C1 = C1(c) =
maxi{1, |ci|, |c′i|}
minj{1, |cj |, |c′j |}

, and C2 =
log(2ℓC1)

log η
.

It suffices to prove the bound for X > 2C1ℓ. Next let us count the n ∈ Nℓ satisfying

1) ℓC1(η
ni + 1) < X (1 ≤ i ≤ ℓ)

2) ni ≥ C2 (1 ≤ i ≤ ℓ)
3) |ni − nj | ≥ C2 (1 ≤ i < j ≤ ℓ)

The number of those n with 1) is⌊
log( X

C1ℓ
− 1)

log η

⌋ℓ

=

(
logX

log η

)ℓ

+OL,ℓ,c

(
(logX)ℓ−1

)
.

And of those n only OL,ℓ,c

(
(logX)ℓ−1

)
fail 2) and only OL,ℓ,c

(
(logX)ℓ−1

)
fail 3).

Hence, we have (
logX

log η

)ℓ

+OL,ℓ,c

(
(logX)ℓ−1

)
n ∈ Nℓ that satisfy 1), 2) and 3) simultaneously. Each of these n produces exactly

2ℓ unit vectors u ∈ O×
L

ℓ
with modulus of the coordinates ≥ 1 via ui = ±ηni

(1 ≤ i ≤ ℓ). Note that these(
2 logX

log η

)ℓ

+OL,ℓ,c

(
(logX)ℓ−1

)
unit vectors u are pairwise distinct. We claim that all these unit vectors u are
counted in T c

L,ℓ(X). First note that |u′
i| = η−ni < 1, and thus it follows from 1)

that ∣∣∣∣∣
ℓ∑

i=1

TrL/Q(ciui)

∣∣∣∣∣ < X.

Next suppose that

ℓ∑
i=1

TrL/Q(ciui) = c1u1 + c′1u
′
1 + · · ·+ cℓuℓ + c′ℓu

′
ℓ

has a vanishing subsum, say

v1 + · · ·+ vs = 0(11)

with 2 ≤ s ≤ 2ℓ. After permuting the coordinates of c we can assume that vi =
diη

mi where di ∈ {±ci,±c′i}, and m1 < m2 < · · · < ms are integers with ms −
ms−1 ≥ C2. The latter is a consequence of 2) and 3) for the positive integers ni.
Dividing the zero-sum (11) by ds yields

ηms = |(d1/ds)ηm1 + · · ·+ (ds−1/ds)η
ms−1 |

≤ (s− 1)C1η
ms−1

≤ (2ℓ− 1)C1η
ms−C2

=
(2ℓ− 1)C1

2ℓC1
ηms

< ηms .
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This contradiction shows that no subsum vanishes, and therefore completes the
proof of the lemma. □

Combining Lemma 3 and Lemma 4 proves Proposition 2

4. Upper bounds for non-unique tuples

Definition 1. We define an equivalence relation on Ω :=
⋃

m∈N Lm as follows: for
u ∈ Lm and w ∈ Ln, we have u ∼ w if and only if n = m and w arises from u by
a permutation of the coordinates.

Let Ut ⊆ O×
L be the finite subset from Proposition 1 and define

Ft := U0
0 ∪ U1

1 ∪ · · · ∪ U t
t .

Recall that we defined ρ := ⌊k/2⌋. For 0 ≤ ℓ ≤ ρ, we consider the sets

(12) Tk,ℓ :=

u = (v,v′, ξ) :

v ∈ (O×
L )

ℓ, ξ ∈ Fk−2ℓ;

Su ∈ Z with no vanishing subsums;

|vi| ≥ 1 for 1 ≤ i ≤ ℓ.


and Tk,ℓ(X) := {u ∈ Tk,ℓ : |Su| ≤ X}. Next, we define the subset of Tk,ρ(X) of
tuples u that do not represent Su essentially uniquely,

Ek(X) := {u ∈ Tk,ρ(X) : ∃ũ ∈ Tk,ρ(X) such that ũ ̸∼ u and Sũ = Su} .

The main result of this section is an upper bound for the size of Ek(X).

Proposition 3. We have

#Ek(X) ≪k,L (logX)ρ−1.

4.1. Proof of Proposition 3. Let u ∈ (O×
L )

r, ũ ∈ (O×
L )

s with 1 ≤ r, s ≤ k,
u ̸∼ ũ and Su = Sũ = n ∈ Z, such that both representations of n have no vanishing
subsums and 1 ≤ |n| ≤ X.

Then there are I ⊆ {1, . . . , r} and J ⊆ {1, . . . , s}, such that

(13) 0 = Su − Sũ =
∑
i∈I

ui −
∑
j∈J

ũj

is a minimal vanishing subsum, i.e. no subsum on the right-hand side vanishes. As
both Su and Sũ have no vanishing subsums, it follows that I, J ̸= ∅.

If |I| = |J | = 1, then we consider the complements Ic = {1, . . . , r} ∖ I and
Jc = {1, . . . , s}∖ J , and take a minimal vanishing subsum of

0 =
∑
i∈Ic

ui −
∑
j∈Jc

ũj .

Continuing this way, we either find a minimal vanishing subsum of the form (13)
with |I| + |J | ≥ 3, or u ∼ ũ. As the latter was excluded from the start, we may
thus assume by symmetry that our minimal vanishing subsum (13) satisfies |I| ≥ 2
and |J | ≥ 1.

For any j0 ∈ J , we thus have∑
i∈I

ui

ũj0

−
∑

j∈J∖{j0}

ũj

ũj0

= 1,
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with no vanishing subsums. Write u := ũj0 for simplicity, then

w :=
1

u
((ui)i∈I , (−ũj)j∈J∖{j0}) ∈ (O×

L )
T , T = |I|+ |J | − 1,

is a nondegenerate solution of the unit equation (5), whence w ∈ ST . Hence, for
one of at most #ST values of c = (ci)i∈I , we have ui = ciu for all i ∈ I.

We conclude that

u ∼ ((ciu)i∈I , (ui)i∈{1,...,r}∖I).

As |I| ≥ 2, we have decreased the number of free variables in O×
L by at least one,

at the cost of introducing the coefficients c.
For any u ∈ Ek(X), we moreover know that u ∈ Tk,ρ(X), and thus

((ciu)i∈I , (ui)i∈{1,...,r}∖I) ∼ u = (v,v′, ξ) with v ∈ (O×
L )

ρ and ξ ∈ Fk−ρ.

Hence, if k is even, then r = k and ξ is the empty tuple. If k is odd, then either
r = k − 1 and ξ is the empty tuple, or r = k and ξ ∈ {±1}.

As |I| ≥ 2, there are 1 ≤ i1 < i2 ≤ r with {i1, i2} ⊆ I, and thus uij = ciju for
j = 1, 2.

Fixing i1, i2 and the cij , we now distinguish a few different cases, showing in each

case that the number of tuples u satisfying the above conditions is ≪k,L (logX)ρ−1.

Case 1: i2 = 2ρ + 1. In this case, k is odd and i2 = r = k. Therefore, u =
(v,v′,±1) and one coordinate of v (and v′) is also fixed, say with value ±a, where
a depends only on ci1 and ci2 . Using Proposition 2, we get at most

≪ T
(1,...,1)
L,ρ−1 (X + 1 + |a+ a′|) ≪k,L (logX)ρ−1

possibilities for the value of v, and thus of u.

Case 2: i2 = i1 + ρ ≤ 2ρ. In this case, ci2u = ui2 = u′
i1

= c′i1u
′, and thus

u2 = ± u

u′ = ±
c′i1
ci2

.

This leaves only finitely many values of u, and thus of vi1 = ui1 = ci1u. Fixing vi1
and using again Proposition 2, we get ≪k,L (logX)ρ−1 choices for v, and thus for
u = (v,v′, ξ).

Case 3: i2 ≤ 2ρ and i2 ̸= i1 + ρ. We may assume that i1 < i2 ≤ ρ, possibly re-
placing uij by u′

ij
. In any case, the coordinates vi1 and vi2 of v are both determined

by u, and the sum of the traces of these coordinates, i.e. (vi1 + v′i1) + (vi2 + v′i2),
is the trace of (ci1 + ci2)u. Note that ci1 + ci2 ̸= 0, as the ci are coordinates of
some w ∈ ST . Using Proposition 2, we get that the number of v (and thus also the
number of u) is bounded by

≪ T
(ci1+ci2 ,1,...,1)

L,ρ−1 (X + 1) ≪k,L (logX)ρ−1.

□
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5. Proof of Theorem 1

Recall Definition 1 of the equivalence relation ∼ on Ω =
⋃

m∈N Lm. If M ⊆ Ω,
we write

M/ ∼:= {[m] : m ∈ M}
for the set of equivalence classes that have a representative in M . As the set
(A∖B)/ ∼ clearly contains (A/ ∼)∖ (B/ ∼), we see that

NL,k(X) ≥ #((Tk,ρ(X)∖ Ek(X))/ ∼) ≥ #(Tk,ρ(X)/ ∼)−#(Ek(X)/ ∼) .

On the other hand, Proposition 1 and Corollary 2 show that

NL,k(X) ≤
ρ∑

ℓ=0

#(Tk,ℓ(X)/ ∼) .

Proposition 2 implies that

Tk,ℓ(X) ≪L,k,ℓ (logX)ℓ for all 0 ≤ ℓ ≤ ρ,

by fixing ξ ∈ Fk−2ℓ and counting all v with |S(v,v′)| ≤ X + |Sξ| ≪k,L X. Together
with Proposition 3, this shows that

NL,k(X) = #(Tk,ρ(X)/ ∼) +Ok,L

(
(logX)ρ−1

)
.

Hence, it remains to evaluate #(Tk,ρ(X)/ ∼) asymptotically. Elements u ∈ Tk,ρ(X)
have one of the following shapes, all with v ∈ (O×

L )
ρ and |vi| ≥ 1 for 1 ≤ i ≤ ρ:

(S1) u = (v,v′),
(S2) u = (v,v′, 1),
(S3) u = (v,v′,−1).

If k is even, then only shape (S1) is possible. If k is odd, then all three shapes can
appear. Using that

|S(v,v′,ξ)| − |Sξ| ≤ |S(v,v′)| ≤ |S(v,v′,ξ)|+ |Sξ|,

we see that in each of the three cases we have at least T
(1,...,1)
L,ρ (X − 1) and at most

T
(1,...,1)
L,ρ (X +1) elements u ∈ Tk,ρ(X). Hence, by Proposition 2, for i ∈ {1, 2, 3} we

have

#{u ∈ Tk,ρ(X) : u of shape (Si)} =

(
2 logX

log η

)ρ

+Ok,L((logX)ρ−1).

An easy application of Proposition 2 shows that the contribution to the above count
of those u with two or more identical coordinates is ≪k,L (logX)ρ−1. Hence, we
can assume the coordinates of v are pairwise distinct and of modulus > 1. This
means that for each u in Tk,ρ(X) there are exactly ρ! many equivalent elements in
Tk,ρ(X) (arising from permuting the first ρ coordinates). We conclude that

# ({u ∈ Tk,ρ(X) : u of shape (Si)}/ ∼) =
1

ρ!

(
2 logX

log η

)ρ

+Ok,L((logX)ρ−1).

This proves Theorem 1 for even k, as then only shape (S1) is possible.
If k is odd, it only remains to note that all elements u ∈ Tk,ρ that belong

to the same equivalence class must share the same shape. Indeed, the shape of
u is specified by the number of coordinates of u and the parity of the number
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of coordinates of u equal to 1, which are clearly constant in equivalence classes.
Hence,

# (Tk,ρ(X)/ ∼) =

3∑
i=1

#({u ∈ Tk,ρ(X) : u of shape (Si)}/ ∼)

=
3

ρ!

(
2 logX

log η

)ρ

+Ok,L((logX)ρ−1). □

6. Local solubility

Let p be a prime. We need to study the solubility of (4) with ui ∈ (Zp⊗ZOL)
×.

We start by investigating solutions with ui ∈ Z×
p .

If either k, n ∈ Z×
p or k, n /∈ Z×

p , then at least one of n/k and (n− 1)/(k − 1) is

in Z×
p , and thus

n

k
+ · · ·+ n

k
= n or 1 +

n− 1

k − 1
+ · · ·+ n− 1

k − 1
= n

is a solution in units of Zp.
If p is odd and p | k, then p ∤ n− e for some e ∈ {1, 2} and we get the solution

e+
n− e

k − 1
+ · · ·+ n− e

k − 1
= n,

in units of Zp.
If p is odd and p ∤ k, p | n, then also p ∤ k − e for some e ∈ {1, 2} and we get the

solution

1 +
n− 1

k − 1
+ · · ·+ n− 1

k − 1
= n or 1 + 1 +

n− 2

k − 2
+ · · ·+ n− 2

k − 2
= n

in units of Zp.
In conclusion, there are solutions in units of Zp whenever p is odd or p = 2 and

n ≡ k mod 2. Via u 7→ u⊗ 1, these also give solutions in units of Zp ⊗Z OL.
If p = 2 is inert in OL, then Z2 ⊗Z OL = OP, the localisation of OL at the

unique prime ideal P over 2. One easily sees that every element of F4 = OL/P
can be written as a sum of two units, and hence (4) has solutions over F4, in units
ui ∈ F×

4 . By Hensel’s lemma, these solutions lift to solutions over OP, still in units
ui ∈ O×

P. Hence, we have shown that Xn(Zp) ̸= ∅ whenever p ̸= 2, when p = 2 is
inert in L, or when p = 2 and k ≡ n mod 2.

When k ̸≡ n mod 2 and 2 is split or ramified in L, let P be a prime ideal of OL

lying above 2. From the reductions Z2 → F2 and OL → OL/P = F2 we get a ring
homomorphism

Z2 ⊗Z OL → F2.

As under our hypothesis on k and n there are clearly no solutions of (4) in units of
F2, this shows that there can be no such solutions in units of Z2 ⊗Z OL, and hence
Xn(Z2) = ∅.
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